code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse from collections import defaultdict import yaml _snake_case = '''docs/source/en/_toctree.yml''' def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = defaultdict(lowerCAmelCase__ ) _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Any = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"local": doc["local"], "title": doc["title"]} ) else: new_doc_list.append(lowerCAmelCase__ ) _lowerCAmelCase : str = new_doc_list _lowerCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] _lowerCAmelCase : Union[str, Any] = [] for duplicate_key in duplicates: _lowerCAmelCase : Union[str, Any] = list({doc["title"] for doc in doc_list if doc["local"] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if "local" not in counts or counts[doc["local"]] == 1] ) _lowerCAmelCase : str = sorted(lowerCAmelCase__ , key=lambda _lowerCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCAmelCase__ ) > 1: raise ValueError("{doc_list} has two 'overview' docs which is not allowed." ) overview_doc.extend(lowerCAmelCase__ ) # Sort return overview_doc def A ( _lowerCamelCase=False ): '''simple docstring''' with open(lowerCAmelCase__ , encoding="utf-8" ) as f: _lowerCAmelCase : Any = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase : Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase : Any = content[api_idx]["sections"] # Then to the model doc _lowerCAmelCase : str = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowerCAmelCase : str = api_doc[scheduler_idx]["sections"] _lowerCAmelCase : Tuple = clean_doc_toc(lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = False if new_scheduler_doc != scheduler_doc: _lowerCAmelCase : List[Any] = True if overwrite: _lowerCAmelCase : str = new_scheduler_doc if diff: if overwrite: _lowerCAmelCase : str = api_doc with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) def A ( _lowerCamelCase=False ): '''simple docstring''' with open(lowerCAmelCase__ , encoding="utf-8" ) as f: _lowerCAmelCase : str = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase : List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase : Dict = content[api_idx]["sections"] # Then to the model doc _lowerCAmelCase : Dict = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowerCAmelCase : Tuple = False _lowerCAmelCase : List[str] = api_doc[pipeline_idx]["sections"] _lowerCAmelCase : List[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowerCAmelCase : Optional[Any] = pipeline_doc["section"] _lowerCAmelCase : Tuple = clean_doc_toc(lowerCAmelCase__ ) if overwrite: _lowerCAmelCase : int = new_sub_pipeline_doc new_pipeline_docs.append(lowerCAmelCase__ ) # sort overall pipeline doc _lowerCAmelCase : Any = clean_doc_toc(lowerCAmelCase__ ) if new_pipeline_docs != pipeline_docs: _lowerCAmelCase : Union[str, Any] = True if overwrite: _lowerCAmelCase : Optional[int] = new_pipeline_docs if diff: if overwrite: _lowerCAmelCase : int = api_doc with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _snake_case = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
706
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
0
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( __lowerCamelCase): def __init__( self, __a, __a, __a): '''simple docstring''' super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_) @torch.no_grad() def __call__( self, __a = 1, __a = None, __a = 0.0, __a = 50, __a = "pil", __a = True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) _lowerCAmelCase : Optional[int] = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase : Optional[int] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _lowerCAmelCase : Any = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) _lowerCAmelCase : Optional[int] = {} if accepts_eta: _lowerCAmelCase : Optional[int] = eta for t in self.progress_bar(self.scheduler.timesteps): _lowerCAmelCase : Dict = self.scheduler.scale_model_input(a_, a_) # predict the noise residual _lowerCAmelCase : Optional[Any] = self.unet(a_, a_).sample # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[Any] = self.scheduler.step(a_, a_, a_, **a_).prev_sample # decode the image latents with the VAE _lowerCAmelCase : str = self.vqvae.decode(a_).sample _lowerCAmelCase : Optional[Any] = (image / 2 + 0.5).clamp(0, 1) _lowerCAmelCase : Union[str, Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowerCAmelCase : Optional[Any] = self.numpy_to_pil(a_) if not return_dict: return (image,) return ImagePipelineOutput(images=a_)
707
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
0
from __future__ import annotations import math import random from typing import Any class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : str = 0 _lowerCAmelCase : List[Any] = 0 def snake_case__ ( self): '''simple docstring''' return self.head == self.tail def snake_case__ ( self, __a): '''simple docstring''' self.data.append(__a) _lowerCAmelCase : Union[str, Any] = self.tail + 1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.data[self.head] _lowerCAmelCase : Dict = self.head + 1 return ret def snake_case__ ( self): '''simple docstring''' return self.tail - self.head def snake_case__ ( self): '''simple docstring''' print(self.data) print("**************") print(self.data[self.head : self.tail]) class UpperCAmelCase_ : def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = data _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Tuple = 1 def snake_case__ ( self): '''simple docstring''' return self.data def snake_case__ ( self): '''simple docstring''' return self.left def snake_case__ ( self): '''simple docstring''' return self.right def snake_case__ ( self): '''simple docstring''' return self.height def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = data def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = node def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = node def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = height def A ( _lowerCamelCase ): '''simple docstring''' if node is None: return 0 return node.get_height() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if a > b: return a return b def A ( _lowerCamelCase ): '''simple docstring''' print("left rotation node:" , node.get_data() ) _lowerCAmelCase : List[str] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_snake_case ) _lowerCAmelCase : Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_snake_case ) _lowerCAmelCase : List[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_snake_case ) return ret def A ( _lowerCamelCase ): '''simple docstring''' print("right rotation node:" , node.get_data() ) _lowerCAmelCase : Optional[Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_snake_case ) _lowerCAmelCase : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_snake_case ) _lowerCAmelCase : Union[str, Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_snake_case ) return ret def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = node.get_left() assert left_child is not None node.set_left(left_rotation(_snake_case ) ) return right_rotation(_snake_case ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = node.get_right() assert right_child is not None node.set_right(right_rotation(_snake_case ) ) return left_rotation(_snake_case ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if node is None: return MyNode(_snake_case ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _snake_case ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected _lowerCAmelCase : Tuple = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child _lowerCAmelCase : List[Any] = right_rotation(_snake_case ) else: _lowerCAmelCase : Tuple = lr_rotation(_snake_case ) else: node.set_right(insert_node(node.get_right() , _snake_case ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: _lowerCAmelCase : List[str] = node.get_right() assert right_child is not None if data < right_child.get_data(): _lowerCAmelCase : Union[str, Any] = rl_rotation(_snake_case ) else: _lowerCAmelCase : List[str] = left_rotation(_snake_case ) _lowerCAmelCase : Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_snake_case ) return node def A ( _lowerCamelCase ): '''simple docstring''' while True: _lowerCAmelCase : str = root.get_right() if right_child is None: break _lowerCAmelCase : int = right_child return root.get_data() def A ( _lowerCamelCase ): '''simple docstring''' while True: _lowerCAmelCase : Union[str, Any] = root.get_left() if left_child is None: break _lowerCAmelCase : str = left_child return root.get_data() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = root.get_left() _lowerCAmelCase : Any = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: _lowerCAmelCase : int = get_left_most(_snake_case ) root.set_data(_snake_case ) root.set_right(del_node(_snake_case , _snake_case ) ) elif left_child is not None: _lowerCAmelCase : Dict = left_child elif right_child is not None: _lowerCAmelCase : str = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(_snake_case , _snake_case ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_snake_case , _snake_case ) ) if get_height(_snake_case ) - get_height(_snake_case ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): _lowerCAmelCase : Dict = left_rotation(_snake_case ) else: _lowerCAmelCase : str = rl_rotation(_snake_case ) elif get_height(_snake_case ) - get_height(_snake_case ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): _lowerCAmelCase : List[Any] = right_rotation(_snake_case ) else: _lowerCAmelCase : Dict = lr_rotation(_snake_case ) _lowerCAmelCase : str = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_snake_case ) return root class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Any = None def snake_case__ ( self): '''simple docstring''' return get_height(self.root) def snake_case__ ( self, __a): '''simple docstring''' print("insert:" + str(__a)) _lowerCAmelCase : str = insert_node(self.root, __a) def snake_case__ ( self, __a): '''simple docstring''' print("delete:" + str(__a)) if self.root is None: print("Tree is empty!") return _lowerCAmelCase : Union[str, Any] = del_node(self.root, __a) def __str__( self, ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' _lowerCAmelCase : List[Any] = "" _lowerCAmelCase : List[Any] = MyQueue() q.push(self.root) _lowerCAmelCase : Union[str, Any] = self.get_height() if layer == 0: return output _lowerCAmelCase : Dict = 0 while not q.is_empty(): _lowerCAmelCase : List[str] = q.pop() _lowerCAmelCase : int = " " * int(math.pow(2, layer - 1)) output += space if node is None: output += "*" q.push(__a) q.push(__a) else: output += str(node.get_data()) q.push(node.get_left()) q.push(node.get_right()) output += space _lowerCAmelCase : int = cnt + 1 for i in range(100): if cnt == math.pow(2, __a) - 1: _lowerCAmelCase : Any = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def A ( ): '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() _snake_case = AVLtree() _snake_case = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
708
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class UpperCAmelCase_ ( lowerCAmelCase__): @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny") _lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained("bert-base-uncased") _lowerCAmelCase : Any = bertabert.config.encoder.vocab_size _lowerCAmelCase : Tuple = tokenizer.sep_token_id _lowerCAmelCase : Tuple = tokenizer.cls_token_id _lowerCAmelCase : List[str] = 128 _lowerCAmelCase : Union[str, Any] = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]") _lowerCAmelCase : int = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]") _lowerCAmelCase : Dict = train_dataset.select(range(32)) _lowerCAmelCase : int = val_dataset.select(range(16)) _lowerCAmelCase : Dict = 4 def _map_to_encoder_decoder_inputs(__a): # Tokenizer will automatically set [BOS] <text> [EOS] _lowerCAmelCase : Optional[Any] = tokenizer(batch["article"], padding="max_length", truncation=_SCREAMING_SNAKE_CASE, max_length=512) _lowerCAmelCase : Optional[int] = tokenizer(batch["highlights"], padding="max_length", truncation=_SCREAMING_SNAKE_CASE, max_length=128) _lowerCAmelCase : List[Any] = inputs.input_ids _lowerCAmelCase : Tuple = inputs.attention_mask _lowerCAmelCase : str = outputs.input_ids _lowerCAmelCase : Optional[int] = outputs.input_ids.copy() _lowerCAmelCase : Tuple = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] _lowerCAmelCase : Tuple = outputs.attention_mask assert all(len(_SCREAMING_SNAKE_CASE) == 512 for x in inputs.input_ids) assert all(len(_SCREAMING_SNAKE_CASE) == 128 for x in outputs.input_ids) return batch def _compute_metrics(__a): _lowerCAmelCase : Dict = pred.label_ids _lowerCAmelCase : List[str] = pred.predictions # all unnecessary tokens are removed _lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE, skip_special_tokens=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE, skip_special_tokens=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[str] = sum([int(pred_str[i] == label_str[i]) for i in range(len(_SCREAMING_SNAKE_CASE))]) / len(_SCREAMING_SNAKE_CASE) return {"accuracy": accuracy} # map train dataset _lowerCAmelCase : int = train_dataset.map( _map_to_encoder_decoder_inputs, batched=_SCREAMING_SNAKE_CASE, batch_size=_SCREAMING_SNAKE_CASE, remove_columns=["article", "highlights"], ) train_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) # same for validation dataset _lowerCAmelCase : Union[str, Any] = val_dataset.map( _map_to_encoder_decoder_inputs, batched=_SCREAMING_SNAKE_CASE, batch_size=_SCREAMING_SNAKE_CASE, remove_columns=["article", "highlights"], ) val_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) _lowerCAmelCase : List[str] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : str = SeqaSeqTrainingArguments( output_dir=_SCREAMING_SNAKE_CASE, per_device_train_batch_size=_SCREAMING_SNAKE_CASE, per_device_eval_batch_size=_SCREAMING_SNAKE_CASE, predict_with_generate=_SCREAMING_SNAKE_CASE, evaluation_strategy="steps", do_train=_SCREAMING_SNAKE_CASE, do_eval=_SCREAMING_SNAKE_CASE, warmup_steps=0, eval_steps=2, logging_steps=2, ) # instantiate trainer _lowerCAmelCase : Tuple = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE, args=_SCREAMING_SNAKE_CASE, compute_metrics=_compute_metrics, train_dataset=_SCREAMING_SNAKE_CASE, eval_dataset=_SCREAMING_SNAKE_CASE, tokenizer=_SCREAMING_SNAKE_CASE, ) # start training trainer.train()
709
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
0
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : List[str] = {} # Mapping from char to TrieNode _lowerCAmelCase : List[Any] = False def snake_case__ ( self, __a): '''simple docstring''' for word in words: self.insert(UpperCamelCase__) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = self for char in word: if char not in curr.nodes: _lowerCAmelCase : Any = TrieNode() _lowerCAmelCase : Optional[int] = curr.nodes[char] _lowerCAmelCase : Tuple = True def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = self for char in word: if char not in curr.nodes: return False _lowerCAmelCase : Union[str, Any] = curr.nodes[char] return curr.is_leaf def snake_case__ ( self, __a): '''simple docstring''' def _delete(__a, __a, __a) -> bool: if index == len(UpperCamelCase__): # If word does not exist if not curr.is_leaf: return False _lowerCAmelCase : Tuple = False return len(curr.nodes) == 0 _lowerCAmelCase : Optional[Any] = word[index] _lowerCAmelCase : Tuple = curr.nodes.get(UpperCamelCase__) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _lowerCAmelCase : Tuple = _delete(UpperCamelCase__, UpperCamelCase__, index + 1) if delete_curr: del curr.nodes[char] return len(curr.nodes) == 0 return delete_curr _delete(self, UpperCamelCase__, 0) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if node.is_leaf: print(A_ , end=" " ) for key, value in node.nodes.items(): print_words(A_ , word + key ) def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "banana bananas bandana band apple all beast".split() _lowerCAmelCase : Optional[int] = TrieNode() root.insert_many(A_ ) # print_words(root, "") assert all(root.find(A_ ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' print(str(A_ ) , "works!" if passes else "doesn't work :(" ) def A ( ): '''simple docstring''' assert test_trie() def A ( ): '''simple docstring''' print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
710
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _snake_case = '''pt''' elif is_tf_available(): _snake_case = '''tf''' else: _snake_case = '''jax''' class UpperCAmelCase_ ( snake_case__ , unittest.TestCase): lowerCamelCase__ = ByTaTokenizer lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : Optional[int] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def snake_case__ ( self): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small") def snake_case__ ( self, **__a): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_A) def snake_case__ ( self, __a, __a=False, __a=20, __a=5): '''simple docstring''' _lowerCAmelCase : List[str] = [] for i in range(len(_A)): try: _lowerCAmelCase : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=_A) except UnicodeDecodeError: pass toks.append((i, tok)) _lowerCAmelCase : Optional[Any] = list(filter(lambda __a: re.match(R"^[ a-zA-Z]+$", t[1]), _A)) _lowerCAmelCase : Optional[int] = list(filter(lambda __a: [t[0]] == tokenizer.encode(t[1], add_special_tokens=_A), _A)) if max_length is not None and len(_A) > max_length: _lowerCAmelCase : List[str] = toks[:max_length] if min_length is not None and len(_A) < min_length and len(_A) > 0: while len(_A) < min_length: _lowerCAmelCase : Tuple = toks + toks # toks_str = [t[1] for t in toks] _lowerCAmelCase : Dict = [t[0] for t in toks] # Ensure consistency _lowerCAmelCase : Dict = tokenizer.decode(_A, clean_up_tokenization_spaces=_A) if " " not in output_txt and len(_A) > 1: _lowerCAmelCase : Dict = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_A) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_A) ) if with_prefix_space: _lowerCAmelCase : Any = ' ' + output_txt _lowerCAmelCase : str = tokenizer.encode(_A, add_special_tokens=_A) return output_txt, output_ids def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.ta_base_tokenizer _lowerCAmelCase : Any = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"]) _lowerCAmelCase : Tuple = tokenizer(["hi", "I went to the gym", ""]) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.ta_base_tokenizer _lowerCAmelCase : List[str] = 'Unicode €.' _lowerCAmelCase : Dict = tokenizer(_A) _lowerCAmelCase : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _A) # decoding _lowerCAmelCase : Union[str, Any] = tokenizer.decode(_A) self.assertEqual(_A, "Unicode €.</s>") _lowerCAmelCase : List[Any] = tokenizer("e è é ê ë") _lowerCAmelCase : Union[str, Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _A) # decoding _lowerCAmelCase : Optional[int] = tokenizer.decode(_A) self.assertEqual(_A, "e è é ê ë</s>") # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë")), "e è é ê ë</s>") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.ta_base_tokenizer _lowerCAmelCase : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowerCAmelCase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowerCAmelCase : List[Any] = tokenizer(_A, padding=_A, return_tensors=_A) self.assertIsInstance(_A, _A) if FRAMEWORK != "jax": _lowerCAmelCase : Optional[int] = list(batch.input_ids.numpy()[0]) else: _lowerCAmelCase : Dict = list(batch.input_ids.tolist()[0]) self.assertListEqual(_A, _A) self.assertEqual((2, 37), batch.input_ids.shape) self.assertEqual((2, 37), batch.attention_mask.shape) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.ta_base_tokenizer _lowerCAmelCase : Optional[int] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowerCAmelCase : Optional[int] = tokenizer(_A, padding=_A, return_tensors=_A) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _A) self.assertIn("attention_mask", _A) self.assertNotIn("decoder_input_ids", _A) self.assertNotIn("decoder_attention_mask", _A) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.ta_base_tokenizer _lowerCAmelCase : Optional[int] = [ 'Summary of the text.', 'Another summary.', ] _lowerCAmelCase : Optional[Any] = tokenizer( text_target=_A, max_length=32, padding="max_length", truncation=_A, return_tensors=_A) self.assertEqual(32, targets["input_ids"].shape[1]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.ta_base_tokenizer _lowerCAmelCase : Optional[int] = ['A long paragraph for summarization. </s>'] _lowerCAmelCase : Tuple = ['Summary of the text. </s>'] # fmt: off _lowerCAmelCase : str = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowerCAmelCase : Dict = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowerCAmelCase : Dict = tokenizer(_A, text_target=_A) self.assertEqual(_A, batch["input_ids"][0]) self.assertEqual(_A, batch["labels"][0]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length, 42) # Now let's start the test _lowerCAmelCase : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowerCAmelCase : Any = tokenizer.encode(_A, add_special_tokens=_A) tokenizer.save_pretrained(_A) _lowerCAmelCase : int = tokenizer.__class__.from_pretrained(_A) _lowerCAmelCase : Optional[Any] = after_tokenizer.encode(_A, add_special_tokens=_A) self.assertListEqual(_A, _A) shutil.rmtree(_A) _lowerCAmelCase : int = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(["bim", "bambam"]) _lowerCAmelCase : Any = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token") tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) _lowerCAmelCase : Any = tokenizer.encode(_A, add_special_tokens=_A) tokenizer.save_pretrained(_A) _lowerCAmelCase : Optional[int] = tokenizer.__class__.from_pretrained(_A) _lowerCAmelCase : int = after_tokenizer.encode(_A, add_special_tokens=_A) self.assertListEqual(_A, _A) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length, 42) _lowerCAmelCase : Any = tokenizer.__class__.from_pretrained(_A, model_max_length=43) self.assertEqual(tokenizer.model_max_length, 43) shutil.rmtree(_A) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A) with open(os.path.join(_A, "special_tokens_map.json"), encoding="utf-8") as json_file: _lowerCAmelCase : Union[str, Any] = json.load(_A) with open(os.path.join(_A, "tokenizer_config.json"), encoding="utf-8") as json_file: _lowerCAmelCase : Any = json.load(_A) _lowerCAmelCase : Optional[int] = [f"<extra_id_{i}>" for i in range(125)] _lowerCAmelCase : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowerCAmelCase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: json.dump(_A, _A) with open(os.path.join(_A, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: json.dump(_A, _A) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowerCAmelCase : str = tokenizer_class.from_pretrained( _A, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"])), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowerCAmelCase : str = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_A)] _lowerCAmelCase : Optional[Any] = tokenizer_class.from_pretrained( _A, additional_special_tokens=_A, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"])), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A) _lowerCAmelCase : str = tokenizer_class.from_pretrained(_A) self.assertTrue(tokenizer.decode([255]) == "") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_tokenizers(fast=_A, do_lower_case=_A) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): _lowerCAmelCase : Dict = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_string(_A) self.assertIsInstance(_A, _A) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): _lowerCAmelCase : Dict = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens( _A, skip_special_tokens=_A) for attr in attributes_list: setattr(_A, attr + "_id", _A) self.assertEqual(getattr(_A, _A), _A) self.assertEqual(getattr(_A, attr + "_id"), _A) setattr(_A, attr + "_id", _A) self.assertEqual(getattr(_A, _A), _A) self.assertEqual(getattr(_A, attr + "_id"), _A) setattr(_A, "additional_special_tokens_ids", []) self.assertListEqual(getattr(_A, "additional_special_tokens"), []) self.assertListEqual(getattr(_A, "additional_special_tokens_ids"), []) setattr(_A, "additional_special_tokens_ids", [token_id_to_test_setters]) self.assertListEqual(getattr(_A, "additional_special_tokens"), [token_to_test_setters]) self.assertListEqual(getattr(_A, "additional_special_tokens_ids"), [token_id_to_test_setters])
711
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
0
import math def A ( _lowerCamelCase ): '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCAmelCase : Optional[Any] = range(3 , int(math.sqrt(__snake_case ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A ( _lowerCamelCase , _lowerCamelCase=1 , **_lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = factor * value _lowerCAmelCase : List[str] = value while not is_prime(__snake_case ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__snake_case ) return value
712
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
0
import functools from typing import Any def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or len(lowerCamelCase_ ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie _lowerCAmelCase : dict[str, Any] = {} _lowerCAmelCase : Tuple = """WORD_KEEPER""" for word in words: _lowerCAmelCase : Tuple = trie for c in word: if c not in trie_node: _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : Dict = trie_node[c] _lowerCAmelCase : str = True _lowerCAmelCase : str = len(lowerCamelCase_ ) # Dynamic programming method @functools.cache def is_breakable(_lowerCamelCase ) -> bool: if index == len_string: return True _lowerCAmelCase : str = trie for i in range(lowerCamelCase_ , lowerCamelCase_ ): _lowerCAmelCase : str = trie_node.get(string[i] , lowerCamelCase_ ) if trie_node is None: return False if trie_node.get(lowerCamelCase_ , lowerCamelCase_ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
713
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _snake_case = TypeVar("T") class UpperCAmelCase_ ( Generic[T]): def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : int = data _lowerCAmelCase : Optional[int] = None def __str__( self): '''simple docstring''' return f"{self.data}" class UpperCAmelCase_ ( Generic[T]): def __init__( self): '''simple docstring''' _lowerCAmelCase : List[str] = None def __iter__( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.top while node: yield node.data _lowerCAmelCase : List[str] = node.next def __str__( self): '''simple docstring''' return "->".join([str(UpperCamelCase_) for item in self]) def __len__( self): '''simple docstring''' return len(tuple(iter(self))) def snake_case__ ( self): '''simple docstring''' return self.top is None def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Node(UpperCamelCase_) if not self.is_empty(): _lowerCAmelCase : Tuple = self.top _lowerCAmelCase : Dict = node def snake_case__ ( self): '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack") assert isinstance(self.top, UpperCamelCase_) _lowerCAmelCase : Optional[Any] = self.top _lowerCAmelCase : Any = self.top.next return pop_node.data def snake_case__ ( self): '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack") assert self.top is not None return self.top.data def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = None if __name__ == "__main__": from doctest import testmod testmod()
714
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class UpperCAmelCase_ : def __init__( self, __a, ): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : Union[str, Any] = 13 _lowerCAmelCase : int = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : int = self.seq_length + self.mem_len _lowerCAmelCase : List[Any] = 15 _lowerCAmelCase : List[str] = True _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Optional[int] = 99 _lowerCAmelCase : int = [10, 50, 80] _lowerCAmelCase : int = 32 _lowerCAmelCase : List[Any] = 32 _lowerCAmelCase : Union[str, Any] = 4 _lowerCAmelCase : str = 8 _lowerCAmelCase : Dict = 128 _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : Any = 2 _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Tuple = 3 _lowerCAmelCase : Any = self.vocab_size - 1 _lowerCAmelCase : str = 0.01 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : List[Any] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Tuple = TransfoXLConfig( vocab_size=self.vocab_size, mem_len=self.mem_len, clamp_len=self.clamp_len, cutoffs=self.cutoffs, d_model=self.hidden_size, d_embed=self.d_embed, n_head=self.num_attention_heads, d_head=self.d_head, d_inner=self.d_inner, div_val=self.div_val, n_layer=self.num_hidden_layers, eos_token_id=self.eos_token_id, pad_token_id=self.vocab_size - 1, init_range=self.init_range, num_labels=self.num_labels, ) return (config, input_ids_a, input_ids_a, lm_labels) def snake_case__ ( self): '''simple docstring''' random.seed(self.seed) tf.random.set_seed(self.seed) def snake_case__ ( self, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = TFTransfoXLModel(__a) _lowerCAmelCase : Any = model(__a).to_tuple() _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids_a, "mems": mems_a} _lowerCAmelCase : Union[str, Any] = model(__a).to_tuple() self.parent.assertEqual(hidden_states_a.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, ) self.parent.assertListEqual( [mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, ) def snake_case__ ( self, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = TFTransfoXLLMHeadModel(__a) _lowerCAmelCase : Tuple = model(__a).to_tuple() _lowerCAmelCase : str = {"input_ids": input_ids_a, "labels": lm_labels} _lowerCAmelCase : Tuple = model(__a).to_tuple() _lowerCAmelCase : int = model([input_ids_a, mems_a]).to_tuple() _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _lowerCAmelCase : str = model(__a).to_tuple() self.parent.assertEqual(lm_logits_a.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, ) self.parent.assertEqual(lm_logits_a.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, ) def snake_case__ ( self, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFTransfoXLForSequenceClassification(__a) _lowerCAmelCase : str = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.prepare_config_and_inputs() (_lowerCAmelCase) : Union[str, Any] = config_and_inputs _lowerCAmelCase : Tuple = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase): lowerCamelCase__ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) lowerCamelCase__ = () if is_tf_available() else () lowerCamelCase__ = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = TFTransfoXLModelTester(self) _lowerCAmelCase : Optional[Any] = ConfigTester(self, config_class=__a, d_embed=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' self.model_tester.set_seed() _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*__a) def snake_case__ ( self): '''simple docstring''' self.model_tester.set_seed() _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(__a) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : List[str] = model.get_output_embeddings() assert isinstance(__a, tf.keras.layers.Layer) _lowerCAmelCase : List[str] = model.get_bias() assert name is None else: _lowerCAmelCase : int = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(__a) self.assertIsNotNone(__a) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss.") def snake_case__ ( self): '''simple docstring''' pass @require_tf class UpperCAmelCase_ ( unittest.TestCase): @unittest.skip("Skip test until #12651 is resolved.") @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103") # fmt: off _lowerCAmelCase : int = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]], dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : str = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Dict = model.generate(__a, max_length=200, do_sample=__a) self.assertListEqual(output_ids[0].numpy().tolist(), __a)
715
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
0
from __future__ import annotations from math import ceil, floor, sqrt def A ( _lowerCamelCase = 2_000_000 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [0] _lowerCAmelCase : Union[str, Any] = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowerCAmelCase : Union[str, Any] = 0 # the area corresponding to the grid that gives the product closest to target _lowerCAmelCase : Union[str, Any] = 0 # an estimate of b, using the quadratic formula _lowerCAmelCase : Any = 42 # the largest integer less than b_estimate _lowerCAmelCase : str = 42 # the largest integer less than b_estimate _lowerCAmelCase : Dict = 42 # the triangle number corresponding to b_floor _lowerCAmelCase : Any = 42 # the triangle number corresponding to b_ceil _lowerCAmelCase : Tuple = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowerCAmelCase : List[str] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowerCAmelCase : str = floor(a__ ) _lowerCAmelCase : List[str] = ceil(a__ ) _lowerCAmelCase : Tuple = triangle_numbers[b_floor] _lowerCAmelCase : Union[str, Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowerCAmelCase : Any = triangle_b_first_guess * triangle_a _lowerCAmelCase : str = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowerCAmelCase : str = triangle_b_second_guess * triangle_a _lowerCAmelCase : Union[str, Any] = idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
716
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class UpperCAmelCase_ ( __lowerCAmelCase): lowerCamelCase__ = '''camembert''' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=1, __a=0, __a=2, __a="absolute", __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_, bos_token_id=lowerCAmelCase_, eos_token_id=lowerCAmelCase_, **lowerCAmelCase_) _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : str = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : List[str] = position_embedding_type _lowerCAmelCase : List[str] = use_cache _lowerCAmelCase : str = classifier_dropout class UpperCAmelCase_ ( __lowerCAmelCase): @property def snake_case__ ( self): '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCAmelCase : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
717
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 16_000 ): '''simple docstring''' _lowerCAmelCase : str = int(round(sample_rate * max_length ) ) if len(_lowerCamelCase ) <= sample_length: return wav _lowerCAmelCase : int = randint(0 , len(_lowerCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field(default=a , metadata={'help': 'Name of a dataset from the datasets package'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A file containing the training audio paths and labels.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A file containing the validation audio paths and labels.'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) lowerCamelCase__ = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) lowerCamelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Name or path of preprocessor config.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def snake_case__ ( self): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", UpperCAmelCase__, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`.") def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _lowerCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. _lowerCAmelCase : Any = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--label_column_name` to the correct text column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _lowerCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _lowerCAmelCase : int = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _lowerCAmelCase : int = feature_extractor.model_input_names[0] def train_transforms(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = [] for audio in batch[data_args.audio_column_name]: _lowerCAmelCase : Any = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_lowerCamelCase ) _lowerCAmelCase : Dict = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : Optional[Any] = {model_input_name: inputs.get(_lowerCamelCase )} _lowerCAmelCase : List[Any] = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_lowerCamelCase ): _lowerCAmelCase : str = [audio['''array'''] for audio in batch[data_args.audio_column_name]] _lowerCAmelCase : Union[str, Any] = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : str = {model_input_name: inputs.get(_lowerCamelCase )} _lowerCAmelCase : Dict = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _lowerCAmelCase : int = raw_datasets['''train'''].features[data_args.label_column_name].names _lowerCAmelCase : int = {}, {} for i, label in enumerate(_lowerCamelCase ): _lowerCAmelCase : str = str(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = label # Load the accuracy metric from the datasets package _lowerCAmelCase : Union[str, Any] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase ): _lowerCAmelCase : Any = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_lowerCamelCase , references=eval_pred.label_ids ) _lowerCAmelCase : Tuple = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel=_lowerCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : int = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _lowerCAmelCase : Dict = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowerCAmelCase : Dict = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) # Initialize our trainer _lowerCAmelCase : str = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , ) # Training if training_args.do_train: _lowerCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase : Optional[int] = last_checkpoint _lowerCAmelCase : List[str] = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , _lowerCamelCase ) trainer.save_metrics("eval" , _lowerCamelCase ) # Write model card and (optionally) push to hub _lowerCAmelCase : Tuple = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) if __name__ == "__main__": main()
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(_lowerCamelCase , np.ndarray ): return list(tensor.shape ) _lowerCAmelCase : Optional[int] = tf.shape(_lowerCamelCase ) if tensor.shape == tf.TensorShape(_lowerCamelCase ): return dynamic _lowerCAmelCase : List[Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_lowerCamelCase )] def A ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ): '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 , axis=_lowerCamelCase , name=_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-5 , _lowerCamelCase=-1 ): '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized _lowerCAmelCase : str = tf.nn.moments(_lowerCamelCase , axes=[axis] , keepdims=_lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _lowerCAmelCase : Dict = [1] * inputs.shape.rank _lowerCAmelCase : List[Any] = shape_list(_lowerCamelCase )[axis] _lowerCAmelCase : Optional[Any] = tf.reshape(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = tf.reshape(_lowerCamelCase , _lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. _lowerCAmelCase : Union[str, Any] = tf.nn.batch_normalization( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , offset=_lowerCamelCase , scale=_lowerCamelCase , variance_epsilon=_lowerCamelCase , ) return outputs def A ( _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=-1 ): '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _lowerCAmelCase : Dict = tf.shape(_lowerCamelCase ) _lowerCAmelCase : List[Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _lowerCAmelCase : Optional[int] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , tf.Tensor ): _lowerCAmelCase : Tuple = tf.convert_to_tensor(_lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _lowerCAmelCase : Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _lowerCAmelCase : Optional[int] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _lowerCAmelCase : int = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "input_ids" ): '''simple docstring''' tf.debugging.assert_less( _lowerCamelCase , tf.cast(_lowerCamelCase , dtype=tensor.dtype ) , message=( F"The maximum value of {tensor_name} ({tf.math.reduce_max(_lowerCamelCase )}) must be smaller than the embedding " F"layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _lowerCAmelCase : Optional[int] = [x for x in data if len(_lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " F"bytes: {bad_attributes}" ) _lowerCAmelCase : Dict = np.asarray(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : str = np.array_split(_lowerCamelCase , _lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _lowerCAmelCase : Union[str, Any] = np.array_split(_lowerCamelCase , _lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_lowerCamelCase ): _lowerCAmelCase : List[Any] = chunk_data else: _lowerCAmelCase : List[str] = data def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if name in group.attrs: _lowerCAmelCase : Tuple = [n.decode("utf8" ) if hasattr(_lowerCamelCase , "decode" ) else n for n in group.attrs[name]] else: _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Dict = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(_lowerCamelCase , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def A ( _lowerCamelCase ): '''simple docstring''' def _expand_single_ad_tensor(_lowerCamelCase ): if isinstance(_lowerCamelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_lowerCamelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , _lowerCamelCase )
719
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
0
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 _lowerCAmelCase : Tuple = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowerCAmelCase : Union[str, Any] = min(__a , __a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
720
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
0
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = 0 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = right or len(_lowerCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(_lowerCamelCase , _lowerCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
721
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
0
_snake_case = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] _snake_case = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] _snake_case = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] _snake_case = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] _snake_case = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] _snake_case = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] _snake_case = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] _snake_case = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
700
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCAmelCase_ : def __init__( self, __a, __a=3, __a=7, __a=True, __a=True, __a=False, __a=True, __a=99, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Union[str, Any] = seq_length _lowerCAmelCase : Dict = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Tuple = use_token_type_ids _lowerCAmelCase : Optional[Any] = use_labels _lowerCAmelCase : Union[str, Any] = vocab_size _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : str = type_vocab_size _lowerCAmelCase : Optional[int] = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Tuple = num_labels _lowerCAmelCase : Union[str, Any] = num_choices _lowerCAmelCase : str = scope def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Optional[Any] = None if self.use_input_mask: _lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_lowerCamelCase, initializer_range=self.initializer_range, pad_token_id=1, new_decoder_architecture=_lowerCamelCase, ) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = FalconModel(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() _lowerCAmelCase : Any = model(_lowerCamelCase, attention_mask=_lowerCamelCase) _lowerCAmelCase : Optional[Any] = model(_lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Tuple = FalconModel(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() _lowerCAmelCase : Dict = model( _lowerCamelCase, attention_mask=_lowerCamelCase, encoder_hidden_states=_lowerCamelCase, encoder_attention_mask=_lowerCamelCase, ) _lowerCAmelCase : List[str] = model( _lowerCamelCase, attention_mask=_lowerCamelCase, encoder_hidden_states=_lowerCamelCase, ) _lowerCAmelCase : Optional[int] = model(_lowerCamelCase, attention_mask=_lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = FalconForCausalLM(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() _lowerCAmelCase : List[str] = model(_lowerCamelCase, attention_mask=_lowerCamelCase, labels=_lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Dict = True _lowerCAmelCase : int = True _lowerCAmelCase : Any = FalconForCausalLM(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() # first forward pass _lowerCAmelCase : Any = model( _lowerCamelCase, attention_mask=_lowerCamelCase, encoder_hidden_states=_lowerCamelCase, encoder_attention_mask=_lowerCamelCase, use_cache=_lowerCamelCase, ) _lowerCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3), config.vocab_size) _lowerCAmelCase : List[str] = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and _lowerCAmelCase : str = torch.cat([input_ids, next_tokens], dim=-1) _lowerCAmelCase : Tuple = torch.cat([input_mask, next_mask], dim=-1) _lowerCAmelCase : Union[str, Any] = model( _lowerCamelCase, attention_mask=_lowerCamelCase, encoder_hidden_states=_lowerCamelCase, encoder_attention_mask=_lowerCamelCase, output_hidden_states=_lowerCamelCase, )["hidden_states"][0] _lowerCAmelCase : Any = model( _lowerCamelCase, attention_mask=_lowerCamelCase, encoder_hidden_states=_lowerCamelCase, encoder_attention_mask=_lowerCamelCase, past_key_values=_lowerCamelCase, output_hidden_states=_lowerCamelCase, )["hidden_states"][0] # select random slice _lowerCAmelCase : Optional[int] = ids_tensor((1,), output_from_past.shape[-1]).item() _lowerCAmelCase : str = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase, _lowerCamelCase, atol=1E-3)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Tuple = config_and_inputs _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase): lowerCamelCase__ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = (FalconForCausalLM,) if is_torch_available() else () lowerCamelCase__ = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = FalconModelTester(self) _lowerCAmelCase : Any = ConfigTester(self, config_class=_lowerCamelCase, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , *_lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: _lowerCAmelCase : List[str] = alibi self.model_tester.create_and_check_model(_lowerCamelCase, *_lowerCamelCase) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[int] = 3 _lowerCAmelCase : Optional[int] = input_dict["input_ids"] _lowerCAmelCase : Dict = input_ids.ne(1).to(_lowerCamelCase) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) _lowerCAmelCase : List[str] = FalconForSequenceClassification(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() _lowerCAmelCase : Optional[Any] = model(_lowerCamelCase, attention_mask=_lowerCamelCase, labels=_lowerCamelCase) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[Any] = 3 _lowerCAmelCase : str = "single_label_classification" _lowerCAmelCase : List[str] = input_dict["input_ids"] _lowerCAmelCase : Optional[Any] = input_ids.ne(1).to(_lowerCamelCase) _lowerCAmelCase : Optional[int] = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) _lowerCAmelCase : Tuple = FalconForSequenceClassification(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() _lowerCAmelCase : Union[str, Any] = model(_lowerCamelCase, attention_mask=_lowerCamelCase, labels=_lowerCamelCase) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : str = input_dict["input_ids"] _lowerCAmelCase : str = FalconForCausalLM(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() _lowerCAmelCase : Tuple = model(_lowerCamelCase, use_cache=_lowerCamelCase) _lowerCAmelCase : Optional[int] = input_ids.shape[0] _lowerCAmelCase : Dict = model._convert_to_rw_cache(result.past_key_values) _lowerCAmelCase : List[Any] = model._convert_cache_to_standard_format(_lowerCamelCase, _lowerCamelCase) for layer in range(len(_lowerCamelCase)): for tensor_idx in range(2): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx])) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = 3 _lowerCAmelCase : str = "multi_label_classification" _lowerCAmelCase : Tuple = input_dict["input_ids"] _lowerCAmelCase : int = input_ids.ne(1).to(_lowerCamelCase) _lowerCAmelCase : Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size).to(torch.float) _lowerCAmelCase : int = FalconForSequenceClassification(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() _lowerCAmelCase : List[str] = model(_lowerCamelCase, attention_mask=_lowerCamelCase, labels=_lowerCamelCase) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def snake_case__ ( self): '''simple docstring''' for model_class in self.all_generative_model_classes: _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_lowerCamelCase, "use_cache"): return _lowerCAmelCase : int = model_class(_lowerCamelCase).to(_lowerCamelCase) if "use_cache" not in inputs: _lowerCAmelCase : Dict = True _lowerCAmelCase : Optional[int] = model(**_lowerCamelCase) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return _lowerCAmelCase : List[str] = ( getattr(_lowerCamelCase, "decoder_layers", _lowerCamelCase) or getattr(_lowerCamelCase, "num_decoder_layers", _lowerCamelCase) or config.num_hidden_layers ) _lowerCAmelCase : List[Any] = getattr(_lowerCamelCase, "num_kv_heads", config.num_attention_heads) _lowerCAmelCase : Optional[int] = getattr(_lowerCamelCase, "d_model", config.hidden_size) _lowerCAmelCase : List[str] = embed_dim // num_attention_heads _lowerCAmelCase : str = outputs["past_key_values"] self.assertEqual(len(_lowerCamelCase), _lowerCamelCase) _lowerCAmelCase , _lowerCAmelCase : int = inputs["input_ids"].shape for i in range(_lowerCamelCase): if config.new_decoder_architecture: _lowerCAmelCase : Any = config.num_attention_heads elif config.multi_query: _lowerCAmelCase : Optional[Any] = 1 self.assertEqual(len(past_kv[0]), 2) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) self.assertEqual( past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b") _lowerCAmelCase : int = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b") model.eval() model.to(_lowerCamelCase) _lowerCAmelCase : Tuple = tokenizer("My favorite food is", return_tensors="pt").to(_lowerCamelCase) _lowerCAmelCase : int = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) _lowerCAmelCase : Optional[Any] = model.generate(**_lowerCamelCase, do_sample=_lowerCamelCase, max_new_tokens=19) _lowerCAmelCase : Tuple = tokenizer.batch_decode(_lowerCamelCase)[0] self.assertEqual(_lowerCamelCase, _lowerCamelCase) @slow def snake_case__ ( self): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: _lowerCAmelCase : str = AutoTokenizer.from_pretrained(_lowerCamelCase) _lowerCAmelCase : List[str] = FalconForCausalLM.from_pretrained(_lowerCamelCase) model.eval() model.to(_lowerCamelCase) _lowerCAmelCase : Union[str, Any] = tokenizer("My favorite food is", return_tensors="pt").to(_lowerCamelCase) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_lowerCamelCase, do_sample=_lowerCamelCase, max_new_tokens=4) model.generate(**_lowerCamelCase, do_sample=_lowerCamelCase, max_new_tokens=4) model.generate(**_lowerCamelCase, num_beams=2, max_new_tokens=4) @slow def snake_case__ ( self): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: _lowerCAmelCase : int = AutoTokenizer.from_pretrained(_lowerCamelCase) _lowerCAmelCase : Optional[int] = FalconForCausalLM.from_pretrained(_lowerCamelCase) model.eval() model.to(device=_lowerCamelCase) _lowerCAmelCase : Tuple = tokenizer("My favorite food is", return_tensors="pt").to(_lowerCamelCase) # Test results are the same with and without cache _lowerCAmelCase : str = model.generate(**_lowerCamelCase, do_sample=_lowerCamelCase, max_new_tokens=20, use_cache=_lowerCamelCase) _lowerCAmelCase : List[str] = model.generate(**_lowerCamelCase, do_sample=_lowerCamelCase, max_new_tokens=20, use_cache=_lowerCamelCase) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
701
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): lowerCamelCase__ = AutoencoderKL lowerCamelCase__ = 'sample' lowerCamelCase__ = 1E-2 @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = 4 _lowerCAmelCase : int = 3 _lowerCAmelCase : List[Any] = (32, 32) _lowerCAmelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes).to(__lowerCamelCase) return {"sample": image} @property def snake_case__ ( self): '''simple docstring''' return (3, 32, 32) @property def snake_case__ ( self): '''simple docstring''' return (3, 32, 32) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } _lowerCAmelCase : str = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase : Tuple = self.model_class(**__lowerCamelCase) model.to(__lowerCamelCase) assert not model.is_gradient_checkpointing and model.training _lowerCAmelCase : Tuple = model(**__lowerCamelCase).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCAmelCase : Optional[Any] = torch.randn_like(__lowerCamelCase) _lowerCAmelCase : Tuple = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCAmelCase : str = self.model_class(**__lowerCamelCase) # clone model model_a.load_state_dict(model.state_dict()) model_a.to(__lowerCamelCase) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCAmelCase : Dict = model_a(**__lowerCamelCase).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCAmelCase : Any = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5) _lowerCAmelCase : List[str] = dict(model.named_parameters()) _lowerCAmelCase : Optional[Any] = dict(model_a.named_parameters()) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data, named_params_a[name].grad.data, atol=5E-5)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(__lowerCamelCase) _lowerCAmelCase : Optional[int] = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy") _lowerCAmelCase : Tuple = model.to(__lowerCamelCase) model.eval() if torch_device == "mps": _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0) else: _lowerCAmelCase : Any = torch.Generator(device=__lowerCamelCase).manual_seed(0) _lowerCAmelCase : Optional[int] = torch.randn( 1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0), ) _lowerCAmelCase : Dict = image.to(__lowerCamelCase) with torch.no_grad(): _lowerCAmelCase : List[Any] = model(__lowerCamelCase, sample_posterior=__lowerCamelCase, generator=__lowerCamelCase).sample _lowerCAmelCase : Optional[Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCAmelCase : List[str] = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ]) elif torch_device == "cpu": _lowerCAmelCase : str = torch.tensor( [-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026]) else: _lowerCAmelCase : Any = torch.tensor( [-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485]) self.assertTrue(torch_all_close(__lowerCamelCase, __lowerCamelCase, rtol=1E-2)) @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self, __a, __a): '''simple docstring''' return f"gaussian_noise_s={seed}_shape={'_'.join([str(__lowerCamelCase) for s in shape])}.npy" def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self, __a=0, __a=(4, 3, 512, 512), __a=False): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch.floataa if fpaa else torch.floataa _lowerCAmelCase : Dict = torch.from_numpy(load_hf_numpy(self.get_file_format(__lowerCamelCase, __lowerCamelCase))).to(__lowerCamelCase).to(__lowerCamelCase) return image def snake_case__ ( self, __a="CompVis/stable-diffusion-v1-4", __a=False): '''simple docstring''' _lowerCAmelCase : Dict = '''fp16''' if fpaa else None _lowerCAmelCase : Optional[Any] = torch.floataa if fpaa else torch.floataa _lowerCAmelCase : List[Any] = AutoencoderKL.from_pretrained( __lowerCamelCase, subfolder="vae", torch_dtype=__lowerCamelCase, revision=__lowerCamelCase, ) model.to(__lowerCamelCase).eval() return model def snake_case__ ( self, __a=0): '''simple docstring''' if torch_device == "mps": return torch.manual_seed(__lowerCamelCase) return torch.Generator(device=__lowerCamelCase).manual_seed(__lowerCamelCase) @parameterized.expand( [ # fmt: off [33, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ]) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_sd_vae_model() _lowerCAmelCase : Any = self.get_sd_image(__lowerCamelCase) _lowerCAmelCase : List[str] = self.get_generator(__lowerCamelCase) with torch.no_grad(): _lowerCAmelCase : Dict = model(__lowerCamelCase, generator=__lowerCamelCase, sample_posterior=__lowerCamelCase).sample assert sample.shape == image.shape _lowerCAmelCase : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase : Any = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) assert torch_all_close(__lowerCamelCase, __lowerCamelCase, atol=3E-3) @parameterized.expand( [ # fmt: off [33, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]], [47, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]], # fmt: on ]) @require_torch_gpu def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_sd_vae_model(fpaa=__lowerCamelCase) _lowerCAmelCase : List[str] = self.get_sd_image(__lowerCamelCase, fpaa=__lowerCamelCase) _lowerCAmelCase : List[Any] = self.get_generator(__lowerCamelCase) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(__lowerCamelCase, generator=__lowerCamelCase, sample_posterior=__lowerCamelCase).sample assert sample.shape == image.shape _lowerCAmelCase : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase : Any = torch.tensor(__lowerCamelCase) assert torch_all_close(__lowerCamelCase, __lowerCamelCase, atol=1E-2) @parameterized.expand( [ # fmt: off [33, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ]) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = self.get_sd_vae_model() _lowerCAmelCase : Dict = self.get_sd_image(__lowerCamelCase) with torch.no_grad(): _lowerCAmelCase : Tuple = model(__lowerCamelCase).sample assert sample.shape == image.shape _lowerCAmelCase : Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase : List[Any] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) assert torch_all_close(__lowerCamelCase, __lowerCamelCase, atol=3E-3) @parameterized.expand( [ # fmt: off [13, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]], [37, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]], # fmt: on ]) @require_torch_gpu def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_sd_vae_model() _lowerCAmelCase : Union[str, Any] = self.get_sd_image(__lowerCamelCase, shape=(3, 4, 64, 64)) with torch.no_grad(): _lowerCAmelCase : str = model.decode(__lowerCamelCase).sample assert list(sample.shape) == [3, 3, 512, 512] _lowerCAmelCase : Dict = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCAmelCase : Any = torch.tensor(__lowerCamelCase) assert torch_all_close(__lowerCamelCase, __lowerCamelCase, atol=1E-3) @parameterized.expand( [ # fmt: off [27, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]], [16, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]], # fmt: on ]) @require_torch_gpu def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = self.get_sd_vae_model(fpaa=__lowerCamelCase) _lowerCAmelCase : Dict = self.get_sd_image(__lowerCamelCase, shape=(3, 4, 64, 64), fpaa=__lowerCamelCase) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model.decode(__lowerCamelCase).sample assert list(sample.shape) == [3, 3, 512, 512] _lowerCAmelCase : Dict = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase : Union[str, Any] = torch.tensor(__lowerCamelCase) assert torch_all_close(__lowerCamelCase, __lowerCamelCase, atol=5E-3) @parameterized.expand([(13,), (16,), (27,)]) @require_torch_gpu @unittest.skipIf(not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.") def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.get_sd_vae_model(fpaa=__lowerCamelCase) _lowerCAmelCase : str = self.get_sd_image(__lowerCamelCase, shape=(3, 4, 64, 64), fpaa=__lowerCamelCase) with torch.no_grad(): _lowerCAmelCase : Any = model.decode(__lowerCamelCase).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model.decode(__lowerCamelCase).sample assert list(sample.shape) == [3, 3, 512, 512] assert torch_all_close(__lowerCamelCase, __lowerCamelCase, atol=1E-1) @parameterized.expand([(13,), (16,), (37,)]) @require_torch_gpu @unittest.skipIf(not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.") def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_sd_vae_model() _lowerCAmelCase : Dict = self.get_sd_image(__lowerCamelCase, shape=(3, 4, 64, 64)) with torch.no_grad(): _lowerCAmelCase : Tuple = model.decode(__lowerCamelCase).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model.decode(__lowerCamelCase).sample assert list(sample.shape) == [3, 3, 512, 512] assert torch_all_close(__lowerCamelCase, __lowerCamelCase, atol=1E-2) @parameterized.expand( [ # fmt: off [33, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]], [47, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]], # fmt: on ]) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_sd_vae_model() _lowerCAmelCase : Tuple = self.get_sd_image(__lowerCamelCase) _lowerCAmelCase : Optional[Any] = self.get_generator(__lowerCamelCase) with torch.no_grad(): _lowerCAmelCase : List[Any] = model.encode(__lowerCamelCase).latent_dist _lowerCAmelCase : int = dist.sample(generator=__lowerCamelCase) assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCAmelCase : Optional[int] = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCAmelCase : int = torch.tensor(__lowerCamelCase) _lowerCAmelCase : Any = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(__lowerCamelCase, __lowerCamelCase, atol=__lowerCamelCase)
702
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
703
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _snake_case = 25_0004 _snake_case = 25_0020 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( snake_case__ , unittest.TestCase): lowerCamelCase__ = MBartaaTokenizer lowerCamelCase__ = MBartaaTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : Dict = MBartaaTokenizer(lowercase_, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=lowercase_) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = "<s>" _lowerCAmelCase : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_), lowercase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_), lowercase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<s>") self.assertEqual(vocab_keys[1], "<pad>") self.assertEqual(vocab_keys[-1], "<mask>") self.assertEqual(len(lowercase_), 1054) def snake_case__ ( self): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1054) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = MBartaaTokenizer(lowercase_, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=lowercase_) _lowerCAmelCase : List[str] = tokenizer.tokenize("This is a test") self.assertListEqual(lowercase_, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) _lowerCAmelCase : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowercase_, [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."], ) _lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(lowercase_) self.assertListEqual( lowercase_, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) _lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(lowercase_) self.assertListEqual( lowercase_, [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."], ) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = {"input_ids": [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_, model_name="facebook/mbart-large-50", revision="d3913889c59cd5c9e456b269c376325eabad57e2", ) def snake_case__ ( self): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Union[str, Any] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(lowercase_, **lowercase_) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(lowercase_, **lowercase_) _lowerCAmelCase : List[Any] = tempfile.mkdtemp() _lowerCAmelCase : Optional[int] = tokenizer_r.save_pretrained(lowercase_) _lowerCAmelCase : Optional[Any] = tokenizer_p.save_pretrained(lowercase_) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(lowercase_, lowercase_) # Checks everything loads correctly in the same way _lowerCAmelCase : List[Any] = tokenizer_r.from_pretrained(lowercase_) _lowerCAmelCase : str = tokenizer_p.from_pretrained(lowercase_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_, lowercase_)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : List[Any] = tempfile.mkdtemp() _lowerCAmelCase : List[Any] = tokenizer_r.save_pretrained(lowercase_, legacy_format=lowercase_) _lowerCAmelCase : List[Any] = tokenizer_p.save_pretrained(lowercase_) # Checks it save with the same files self.assertSequenceEqual(lowercase_, lowercase_) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(lowercase_) _lowerCAmelCase : Union[str, Any] = tokenizer_p.from_pretrained(lowercase_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_, lowercase_)) shutil.rmtree(lowercase_) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(lowercase_, legacy_format=lowercase_) _lowerCAmelCase : List[str] = tokenizer_p.save_pretrained(lowercase_) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way _lowerCAmelCase : Tuple = tokenizer_r.from_pretrained(lowercase_) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(lowercase_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_, lowercase_)) shutil.rmtree(lowercase_) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = 'facebook/mbart-large-50-one-to-many-mmt' lowerCamelCase__ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCamelCase__ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCamelCase__ = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def snake_case__ ( cls): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO") _lowerCAmelCase : Dict = 1 return cls def snake_case__ ( self): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 25_0001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 25_0004) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 25_0020) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"], 25_0038) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens, lowercase_) def snake_case__ ( self): '''simple docstring''' self.assertIn(lowercase_, self.tokenizer.all_special_ids) _lowerCAmelCase : List[str] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[Any] = self.tokenizer.decode(lowercase_, skip_special_tokens=lowercase_) _lowerCAmelCase : Optional[Any] = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=lowercase_) self.assertEqual(lowercase_, lowercase_) self.assertNotIn(self.tokenizer.eos_token, lowercase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0], lowercase_) _lowerCAmelCase : str = 10 _lowerCAmelCase : Any = self.tokenizer(lowercase_, max_length=lowercase_, truncation=lowercase_).input_ids[0] self.assertEqual(ids[0], lowercase_) self.assertEqual(ids[-1], 2) self.assertEqual(len(lowercase_), lowercase_) def snake_case__ ( self): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [25_0053, 25_0001]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_) _lowerCAmelCase : int = MBartaaTokenizer.from_pretrained(lowercase_) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, lowercase_) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=lowercase_, return_tensors="pt") _lowerCAmelCase : Optional[int] = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=lowercase_, truncation=lowercase_, max_length=len(self.expected_src_tokens), return_tensors="pt", ) _lowerCAmelCase : Tuple = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id) self.assertIsInstance(lowercase_, lowercase_) self.assertEqual((2, 14), batch.input_ids.shape) self.assertEqual((2, 14), batch.attention_mask.shape) _lowerCAmelCase : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, lowercase_) self.assertEqual(2, batch.decoder_input_ids[0, 0]) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text, padding=lowercase_, truncation=lowercase_, max_length=3, return_tensors="pt") _lowerCAmelCase : List[Any] = self.tokenizer( text_target=self.tgt_text, padding=lowercase_, truncation=lowercase_, max_length=10, return_tensors="pt") _lowerCAmelCase : str = targets["input_ids"] _lowerCAmelCase : List[Any] = shift_tokens_right(lowercase_, self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.decoder_input_ids.shape[1], 10) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer._build_translation_inputs( "A test", return_tensors="pt", src_lang="en_XX", tgt_lang="ar_AR") self.assertEqual( nested_simplify(lowercase_), { # en_XX, A, test, EOS "input_ids": [[25_0004, 62, 3034, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_0001, }, )
704
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
0
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _snake_case = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( _UpperCAmelCase): lowerCamelCase__ = '''maskformer''' lowerCamelCase__ = {'''hidden_size''': '''mask_feature_size'''} lowerCamelCase__ = ['''resnet''', '''swin'''] lowerCamelCase__ = ['''detr'''] def __init__( self, __a = 256, __a = 256, __a = 0.1, __a = False, __a = None, __a = None, __a = 0.02, __a = 1.0, __a = 1.0, __a = 1.0, __a = 20.0, __a = None, **__a, ): '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _lowerCAmelCase : Optional[Any] = SwinConfig( image_size=384, in_channels=3, patch_size=4, embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12, drop_path_rate=0.3, out_features=["stage1", "stage2", "stage3", "stage4"], ) if isinstance(A_, A_): _lowerCAmelCase : Optional[Any] = backbone_config.pop("model_type") _lowerCAmelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[int] = config_class.from_dict(A_) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " f"Supported model types: {','.join(self.backbones_supported)}") if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _lowerCAmelCase : List[str] = DetrConfig() else: # verify that the decoder is supported _lowerCAmelCase : Any = ( decoder_config.pop("model_type") if isinstance(A_, A_) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"Transformer Decoder {decoder_type} not supported, please use one of" f" {','.join(self.decoders_supported)}") if isinstance(A_, A_): _lowerCAmelCase : Tuple = CONFIG_MAPPING[decoder_type] _lowerCAmelCase : str = config_class.from_dict(A_) _lowerCAmelCase : Optional[Any] = backbone_config _lowerCAmelCase : List[Any] = decoder_config # main feature dimension for the model _lowerCAmelCase : Union[str, Any] = fpn_feature_size _lowerCAmelCase : Union[str, Any] = mask_feature_size # initializer _lowerCAmelCase : Any = init_std _lowerCAmelCase : Optional[Any] = init_xavier_std # Hungarian matcher && loss _lowerCAmelCase : Any = cross_entropy_weight _lowerCAmelCase : int = dice_weight _lowerCAmelCase : Union[str, Any] = mask_weight _lowerCAmelCase : int = use_auxiliary_loss _lowerCAmelCase : Tuple = no_object_weight _lowerCAmelCase : Union[str, Any] = output_auxiliary_logits _lowerCAmelCase : str = self.decoder_config.encoder_attention_heads _lowerCAmelCase : Tuple = self.decoder_config.num_hidden_layers super().__init__(**A_) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls( backbone_config=A_, decoder_config=A_, **A_, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[str] = self.backbone_config.to_dict() _lowerCAmelCase : List[str] = self.decoder_config.to_dict() _lowerCAmelCase : Optional[int] = self.__class__.model_type return output
705
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
0
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name def A ( _lowerCamelCase ): '''simple docstring''' warnings.warn( "The preprocess method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor.preprocess instead" , _lowerCamelCase , ) if isinstance(_lowerCamelCase , torch.Tensor ): return image elif isinstance(_lowerCamelCase , PIL.Image.Image ): _lowerCAmelCase : int = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase : Union[str, Any] = image[0].size _lowerCAmelCase : List[Any] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _lowerCAmelCase : Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] _lowerCAmelCase : Dict = np.concatenate(_lowerCamelCase , axis=0 ) _lowerCAmelCase : Any = np.array(_lowerCamelCase ).astype(np.floataa ) / 255.0 _lowerCAmelCase : Union[str, Any] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase : Optional[int] = 2.0 * image - 1.0 _lowerCAmelCase : List[str] = torch.from_numpy(_lowerCamelCase ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase : Dict = torch.cat(_lowerCamelCase , dim=0 ) return image def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(_lowerCamelCase , torch.Tensor ): return mask elif isinstance(_lowerCamelCase , PIL.Image.Image ): _lowerCAmelCase : Any = [mask] if isinstance(mask[0] , PIL.Image.Image ): _lowerCAmelCase : Optional[int] = mask[0].size _lowerCAmelCase : List[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _lowerCAmelCase : List[str] = [np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask] _lowerCAmelCase : Dict = np.concatenate(_lowerCamelCase , axis=0 ) _lowerCAmelCase : Any = mask.astype(np.floataa ) / 255.0 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : List[Any] = torch.from_numpy(_lowerCamelCase ) elif isinstance(mask[0] , torch.Tensor ): _lowerCAmelCase : Optional[Any] = torch.cat(_lowerCamelCase , dim=0 ) return mask class UpperCAmelCase_ ( __lowercase): lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self, __a, __a): '''simple docstring''' super().__init__() self.register_modules(unet=__a, scheduler=__a) @torch.no_grad() def __call__( self, __a, __a, __a = 250, __a = 0.0, __a = 10, __a = 10, __a = None, __a = "pil", __a = True, ): '''simple docstring''' _lowerCAmelCase : Tuple = image _lowerCAmelCase : Optional[Any] = _preprocess_image(__a) _lowerCAmelCase : Optional[int] = original_image.to(device=self.device, dtype=self.unet.dtype) _lowerCAmelCase : Dict = _preprocess_mask(__a) _lowerCAmelCase : Any = mask_image.to(device=self.device, dtype=self.unet.dtype) _lowerCAmelCase : str = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__a, __a) and len(__a) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(__a)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators.") _lowerCAmelCase : List[str] = original_image.shape _lowerCAmelCase : List[Any] = randn_tensor(__a, generator=__a, device=self.device, dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(__a, __a, __a, self.device) _lowerCAmelCase : Tuple = eta _lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 _lowerCAmelCase : str = generator[0] if isinstance(__a, __a) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): if t < t_last: # predict the noise residual _lowerCAmelCase : Union[str, Any] = self.unet(__a, __a).sample # compute previous image: x_t -> x_t-1 _lowerCAmelCase : Tuple = self.scheduler.step(__a, __a, __a, __a, __a, __a).prev_sample else: # compute the reverse: x_t-1 -> x_t _lowerCAmelCase : List[str] = self.scheduler.undo_step(__a, __a, __a) _lowerCAmelCase : Dict = t _lowerCAmelCase : Union[str, Any] = (image / 2 + 0.5).clamp(0, 1) _lowerCAmelCase : Tuple = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowerCAmelCase : str = self.numpy_to_pil(__a) if not return_dict: return (image,) return ImagePipelineOutput(images=__a)
706
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'vision-encoder-decoder' lowerCamelCase__ = True def __init__( self, **__a): '''simple docstring''' super().__init__(**__UpperCamelCase) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because " f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}") _lowerCAmelCase : Optional[Any] = kwargs.pop("encoder") _lowerCAmelCase : List[Any] = encoder_config.pop("model_type") _lowerCAmelCase : Dict = kwargs.pop("decoder") _lowerCAmelCase : str = decoder_config.pop("model_type") _lowerCAmelCase : str = AutoConfig.for_model(__UpperCamelCase, **__UpperCamelCase) _lowerCAmelCase : Dict = AutoConfig.for_model(__UpperCamelCase, **__UpperCamelCase) _lowerCAmelCase : Dict = True @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Optional[Any] = True return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **__UpperCamelCase) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : Dict = self.encoder.to_dict() _lowerCAmelCase : Dict = self.decoder.to_dict() _lowerCAmelCase : Union[str, Any] = self.__class__.model_type return output class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4 @property def snake_case__ ( self): '''simple docstring''' return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}}) class UpperCAmelCase_ ( a): @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = OrderedDict() _lowerCAmelCase : str = {0: "batch", 1: "past_decoder_sequence + sequence"} _lowerCAmelCase : Optional[int] = {0: "batch", 1: "past_decoder_sequence + sequence"} _lowerCAmelCase : Optional[Any] = {0: "batch", 1: "encoder_sequence"} return common_inputs def snake_case__ ( self, __a, __a = -1, __a = -1, __a = False, __a = None, ): '''simple docstring''' import torch _lowerCAmelCase : int = OrderedDict() _lowerCAmelCase : Tuple = super().generate_dummy_inputs( __UpperCamelCase, batch_size=__UpperCamelCase, seq_length=__UpperCamelCase, is_pair=__UpperCamelCase, framework=__UpperCamelCase) _lowerCAmelCase , _lowerCAmelCase : Dict = dummy_input["input_ids"].shape _lowerCAmelCase : List[Any] = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCAmelCase : Optional[int] = dummy_input.pop("input_ids") _lowerCAmelCase : Optional[Any] = dummy_input.pop("attention_mask") _lowerCAmelCase : Any = torch.zeros(__UpperCamelCase) return common_inputs class UpperCAmelCase_ ( a): @property def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self, __a): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(__UpperCamelCase) def snake_case__ ( self, __a, __a, __a = "default"): '''simple docstring''' _lowerCAmelCase : Dict = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__UpperCamelCase, __UpperCamelCase)
707
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _snake_case = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _snake_case = [0, 25, 50] _snake_case = [25, 50, 75] _snake_case = fuzz.membership.trimf(X, abca) _snake_case = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _snake_case = np.ones(75) _snake_case = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) _snake_case = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _snake_case = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _snake_case = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _snake_case = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _snake_case = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _snake_case = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _snake_case = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _snake_case = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
708
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
0
_snake_case = "Tobias Carryer" from time import time class UpperCAmelCase_ : def __init__( self, __a, __a, __a, __a=int(time())): # noqa: B008 '''simple docstring''' _lowerCAmelCase : List[str] = multiplier _lowerCAmelCase : Dict = increment _lowerCAmelCase : Optional[Any] = modulo _lowerCAmelCase : List[Any] = seed def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. _snake_case = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
709
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _snake_case = 25_0004 _snake_case = 25_0020 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( a__ , unittest.TestCase): lowerCamelCase__ = MBartTokenizer lowerCamelCase__ = MBartTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : Union[str, Any] = MBartTokenizer(lowerCamelCase_, keep_accents=lowerCamelCase_) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = MBartTokenizer(lowerCamelCase_, keep_accents=lowerCamelCase_) _lowerCAmelCase : Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCamelCase_, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) _lowerCAmelCase : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCamelCase_, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) _lowerCAmelCase : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase_) self.assertListEqual( lowerCamelCase_, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ], ) _lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(lowerCamelCase_) self.assertListEqual( lowerCamelCase_, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) def snake_case__ ( self): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Tuple = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_, **lowerCamelCase_) _lowerCAmelCase : Any = self.tokenizer_class.from_pretrained(lowerCamelCase_, **lowerCamelCase_) _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : Any = tokenizer_r.save_pretrained(lowerCamelCase_) _lowerCAmelCase : Optional[int] = tokenizer_p.save_pretrained(lowerCamelCase_) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) _lowerCAmelCase : Union[str, Any] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(lowerCamelCase_, lowerCamelCase_) # Checks everything loads correctly in the same way _lowerCAmelCase : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_) _lowerCAmelCase : List[Any] = tokenizer_p.from_pretrained(lowerCamelCase_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_, lowerCamelCase_)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : List[str] = tokenizer_r.save_pretrained(lowerCamelCase_, legacy_format=lowerCamelCase_) _lowerCAmelCase : Union[str, Any] = tokenizer_p.save_pretrained(lowerCamelCase_) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_, lowerCamelCase_) # Checks everything loads correctly in the same way _lowerCAmelCase : str = tokenizer_r.from_pretrained(lowerCamelCase_) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(lowerCamelCase_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_, lowerCamelCase_)) shutil.rmtree(lowerCamelCase_) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Dict = tempfile.mkdtemp() _lowerCAmelCase : List[str] = tokenizer_r.save_pretrained(lowerCamelCase_, legacy_format=lowerCamelCase_) _lowerCAmelCase : Dict = tokenizer_p.save_pretrained(lowerCamelCase_) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way _lowerCAmelCase : Optional[int] = tokenizer_r.from_pretrained(lowerCamelCase_) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(lowerCamelCase_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_, lowerCamelCase_)) shutil.rmtree(lowerCamelCase_) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = "facebook/mbart-large-en-ro" lowerCamelCase__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] lowerCamelCase__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] lowerCamelCase__ = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE] @classmethod def snake_case__ ( cls): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartTokenizer.from_pretrained( cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO") _lowerCAmelCase : Optional[int] = 1 return cls def snake_case__ ( self): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 25_0001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 25_0004) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 25_0020) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens, lowerCamelCase_) def snake_case__ ( self): '''simple docstring''' self.assertIn(lowerCamelCase_, self.tokenizer.all_special_ids) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(lowerCamelCase_, skip_special_tokens=lowerCamelCase_) _lowerCAmelCase : Any = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=lowerCamelCase_) self.assertEqual(lowerCamelCase_, lowerCamelCase_) self.assertNotIn(self.tokenizer.eos_token, lowerCamelCase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0], lowerCamelCase_) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : List[Any] = self.tokenizer(lowerCamelCase_, max_length=lowerCamelCase_, truncation=lowerCamelCase_).input_ids[0] self.assertEqual(ids[-2], 2) self.assertEqual(ids[-1], lowerCamelCase_) self.assertEqual(len(lowerCamelCase_), lowerCamelCase_) def snake_case__ ( self): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [25_0026, 25_0001]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = tempfile.mkdtemp() _lowerCAmelCase : int = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_) _lowerCAmelCase : Dict = MBartTokenizer.from_pretrained(lowerCamelCase_) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, lowerCamelCase_) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=lowerCamelCase_, return_tensors="pt") _lowerCAmelCase : Any = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=lowerCamelCase_, truncation=lowerCamelCase_, max_length=len(self.expected_src_tokens), return_tensors="pt", ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_) self.assertEqual((2, 14), batch.input_ids.shape) self.assertEqual((2, 14), batch.attention_mask.shape) _lowerCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, lowerCamelCase_) self.assertEqual(2, batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, []) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, EN_CODE]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.tokenizer(self.src_text, padding=lowerCamelCase_, truncation=lowerCamelCase_, max_length=3, return_tensors="pt") _lowerCAmelCase : List[Any] = self.tokenizer( text_target=self.tgt_text, padding=lowerCamelCase_, truncation=lowerCamelCase_, max_length=10, return_tensors="pt") _lowerCAmelCase : Any = targets["input_ids"] _lowerCAmelCase : Any = shift_tokens_right(lowerCamelCase_, self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.decoder_input_ids.shape[1], 10) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.tokenizer._build_translation_inputs( "A test", return_tensors="pt", src_lang="en_XX", tgt_lang="ar_AR") self.assertEqual( nested_simplify(lowerCamelCase_), { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 25_0004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_0001, }, )
710
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
0
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = row, column _lowerCAmelCase : Any = [[default_value for c in range(UpperCamelCase__)] for r in range(UpperCamelCase__)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : Any = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : Dict = max(UpperCamelCase__, len(str(UpperCamelCase__))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : int = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(UpperCamelCase__) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(UpperCamelCase__, (list, tuple)) and len(UpperCamelCase__) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(UpperCamelCase__) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(UpperCamelCase__) _lowerCAmelCase : str = value def __add__( self, __a): '''simple docstring''' assert isinstance(UpperCamelCase__, UpperCamelCase__) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : str = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : int = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(UpperCamelCase__, (int, float)): # Scalar multiplication _lowerCAmelCase : Union[str, Any] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = self[r, c] * another return result elif isinstance(UpperCamelCase__, UpperCamelCase__): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : Tuple = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Any = f"Unsupported type given for another ({type(UpperCamelCase__)})" raise TypeError(UpperCamelCase__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(UpperCamelCase__, UpperCamelCase__) and isinstance(UpperCamelCase__, UpperCamelCase__) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : Dict = v.transpose() _lowerCAmelCase : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Any = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = 1, 2, -3 _lowerCAmelCase : int = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
711
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( __UpperCAmelCase): lowerCamelCase__ = ['pixel_values'] def __init__( self, __a = True, __a = None, __a = PILImageResampling.BILINEAR, __a = True, __a = 1 / 255, __a = True, __a = None, __a = True, **__a, ): '''simple docstring''' super().__init__(**lowerCAmelCase_) _lowerCAmelCase : Any = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase : int = get_size_dict(lowerCAmelCase_, default_to_square=lowerCAmelCase_) _lowerCAmelCase : List[str] = crop_size if crop_size is not None else {"height": 256, "width": 256} _lowerCAmelCase : Optional[Any] = get_size_dict(lowerCAmelCase_, param_name="crop_size") _lowerCAmelCase : Tuple = do_resize _lowerCAmelCase : Optional[Any] = size _lowerCAmelCase : str = resample _lowerCAmelCase : List[Any] = do_rescale _lowerCAmelCase : Dict = rescale_factor _lowerCAmelCase : str = do_center_crop _lowerCAmelCase : int = crop_size _lowerCAmelCase : str = do_flip_channel_order def snake_case__ ( self, __a, __a, __a = PIL.Image.BILINEAR, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = get_size_dict(lowerCAmelCase_, default_to_square=lowerCAmelCase_) if "shortest_edge" not in size: raise ValueError(f"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}") _lowerCAmelCase : str = get_resize_output_image_size(lowerCAmelCase_, size=size["shortest_edge"], default_to_square=lowerCAmelCase_) return resize(lowerCAmelCase_, size=lowerCAmelCase_, resample=lowerCAmelCase_, data_format=lowerCAmelCase_, **lowerCAmelCase_) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : int = get_size_dict(lowerCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(lowerCAmelCase_, size=(size["height"], size["width"]), data_format=lowerCAmelCase_, **lowerCAmelCase_) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' return rescale(lowerCAmelCase_, scale=lowerCAmelCase_, data_format=lowerCAmelCase_, **lowerCAmelCase_) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return flip_channel_order(lowerCAmelCase_, data_format=lowerCAmelCase_) def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : List[str] = resample if resample is not None else self.resample _lowerCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : int = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _lowerCAmelCase : Union[str, Any] = size if size is not None else self.size _lowerCAmelCase : Any = get_size_dict(lowerCAmelCase_, default_to_square=lowerCAmelCase_) _lowerCAmelCase : Tuple = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : Union[str, Any] = get_size_dict(lowerCAmelCase_, param_name="crop_size") _lowerCAmelCase : Optional[int] = make_list_of_images(lowerCAmelCase_) if not valid_images(lowerCAmelCase_): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") # All transformations expect numpy arrays. _lowerCAmelCase : List[str] = [to_numpy_array(lowerCAmelCase_) for image in images] if do_resize: _lowerCAmelCase : int = [self.resize(image=lowerCAmelCase_, size=lowerCAmelCase_, resample=lowerCAmelCase_) for image in images] if do_center_crop: _lowerCAmelCase : List[Any] = [self.center_crop(image=lowerCAmelCase_, size=lowerCAmelCase_) for image in images] if do_rescale: _lowerCAmelCase : str = [self.rescale(image=lowerCAmelCase_, scale=lowerCAmelCase_) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _lowerCAmelCase : Union[str, Any] = [self.flip_channel_order(image=lowerCAmelCase_) for image in images] _lowerCAmelCase : Any = [to_channel_dimension_format(lowerCAmelCase_, lowerCAmelCase_) for image in images] _lowerCAmelCase : List[str] = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase_, tensor_type=lowerCAmelCase_) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase_) != len(lowerCAmelCase_): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(lowerCAmelCase_): _lowerCAmelCase : Union[str, Any] = target_sizes.numpy() _lowerCAmelCase : str = [] for idx in range(len(lowerCAmelCase_)): _lowerCAmelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=lowerCAmelCase_) _lowerCAmelCase : str = resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowerCAmelCase_) else: _lowerCAmelCase : Tuple = logits.argmax(dim=1) _lowerCAmelCase : Any = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
712
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer _snake_case = ["bert-base-uncased", "bert-base-cased"] _snake_case = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class UpperCAmelCase_ ( tf.keras.Model): def __init__( self, __a): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = tokenizer _lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_UpperCAmelCase) _lowerCAmelCase : str = TFAutoModel.from_config(_UpperCAmelCase) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.tokenizer(_UpperCAmelCase) _lowerCAmelCase : int = self.bert(**_UpperCAmelCase) return out["pooler_output"] @require_tf @require_tensorflow_text class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : Any = [ BertTokenizer.from_pretrained(_UpperCAmelCase) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _lowerCAmelCase : Union[str, Any] = [TFBertTokenizer.from_pretrained(_UpperCAmelCase) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_UpperCAmelCase, use_fast_bert_tokenizer=_UpperCAmelCase) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _lowerCAmelCase : Tuple = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] _lowerCAmelCase : Any = list(zip(self.test_sentences, self.test_sentences[::-1])) def snake_case__ ( self): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _lowerCAmelCase : List[Any] = tokenizer(_UpperCAmelCase, return_tensors="tf", padding="longest") _lowerCAmelCase : List[str] = tf_tokenizer(_UpperCAmelCase) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key], tf.intaa) == tf_outputs[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Dict = tf_tokenizer(self.paired_sentences) _lowerCAmelCase : str = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences], text_pair=[sentence[1] for sentence in self.paired_sentences], ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key], tf.intaa) == separated_outputs[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Tuple = tf.function(_UpperCAmelCase) for test_inputs in (self.test_sentences, self.paired_sentences): _lowerCAmelCase : List[str] = tf.constant(_UpperCAmelCase) _lowerCAmelCase : Tuple = compiled_tokenizer(_UpperCAmelCase) _lowerCAmelCase : Union[str, Any] = tf_tokenizer(_UpperCAmelCase) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Dict = ModelToSave(tokenizer=_UpperCAmelCase) _lowerCAmelCase : Tuple = tf.convert_to_tensor(self.test_sentences) _lowerCAmelCase : List[str] = model(_UpperCAmelCase) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCAmelCase : Tuple = Path(_UpperCAmelCase) / '''saved.model''' model.save(_UpperCAmelCase) _lowerCAmelCase : Tuple = tf.keras.models.load_model(_UpperCAmelCase) _lowerCAmelCase : int = loaded_model(_UpperCAmelCase) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)), 1E-5)
713
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
0
import torch from diffusers import DiffusionPipeline class UpperCAmelCase_ ( _a): def __init__( self, __a, __a): '''simple docstring''' super().__init__() self.register_modules(unet=_A, scheduler=_A) def __call__( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), ) _lowerCAmelCase : Dict = 1 _lowerCAmelCase : str = self.unet(_A, _A).sample _lowerCAmelCase : Optional[int] = self.scheduler.step(_A, _A, _A).prev_sample _lowerCAmelCase : Tuple = scheduler_output - scheduler_output + torch.ones_like(_A) return result
714
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _snake_case = 4 _snake_case = 3 class UpperCAmelCase_ ( a): pass def A ( _lowerCamelCase ): '''simple docstring''' for shard in shards: for i in range(UpperCAmelCase__ ): yield {"i": i, "shard": shard} def A ( ): '''simple docstring''' _lowerCAmelCase : Any = int(os.environ["RANK"] ) _lowerCAmelCase : int = int(os.environ["WORLD_SIZE"] ) _lowerCAmelCase : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=UpperCAmelCase__ ) parser.add_argument("--local_rank" , type=UpperCAmelCase__ ) parser.add_argument("--num_workers" , type=UpperCAmelCase__ , default=0 ) _lowerCAmelCase : int = parser.parse_args() _lowerCAmelCase : str = args.streaming _lowerCAmelCase : Optional[Any] = args.num_workers _lowerCAmelCase : int = {"shards": [F"shard_{shard_idx}" for shard_idx in range(UpperCAmelCase__ )]} _lowerCAmelCase : List[Any] = IterableDataset.from_generator(UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ ) if not streaming: _lowerCAmelCase : List[str] = Dataset.from_list(list(UpperCAmelCase__ ) ) _lowerCAmelCase : int = split_dataset_by_node(UpperCAmelCase__ , rank=UpperCAmelCase__ , world_size=UpperCAmelCase__ ) _lowerCAmelCase : List[str] = torch.utils.data.DataLoader(UpperCAmelCase__ , num_workers=UpperCAmelCase__ ) _lowerCAmelCase : Tuple = NUM_SHARDS * NUM_ITEMS_PER_SHARD _lowerCAmelCase : Dict = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _lowerCAmelCase : List[str] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
715
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
0
from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( a): lowerCamelCase__ = """SpeechT5FeatureExtractor""" lowerCamelCase__ = """SpeechT5Tokenizer""" def __init__( self, __a, __a): '''simple docstring''' super().__init__(__a, __a) def __call__( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : List[Any] = kwargs.pop("audio", __a) _lowerCAmelCase : Any = kwargs.pop("text", __a) _lowerCAmelCase : Any = kwargs.pop("text_target", __a) _lowerCAmelCase : Optional[int] = kwargs.pop("audio_target", __a) _lowerCAmelCase : Tuple = kwargs.pop("sampling_rate", __a) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?") if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?") if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.") if audio is not None: _lowerCAmelCase : str = self.feature_extractor(__a, *__a, sampling_rate=__a, **__a) elif text is not None: _lowerCAmelCase : int = self.tokenizer(__a, **__a) else: _lowerCAmelCase : List[Any] = None if audio_target is not None: _lowerCAmelCase : List[str] = self.feature_extractor(audio_target=__a, *__a, sampling_rate=__a, **__a) _lowerCAmelCase : Union[str, Any] = targets["input_values"] elif text_target is not None: _lowerCAmelCase : str = self.tokenizer(__a, **__a) _lowerCAmelCase : Any = targets["input_ids"] else: _lowerCAmelCase : Dict = None if inputs is None: return targets if targets is not None: _lowerCAmelCase : str = labels _lowerCAmelCase : Union[str, Any] = targets.get("attention_mask") if decoder_attention_mask is not None: _lowerCAmelCase : Optional[Any] = decoder_attention_mask return inputs def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : Tuple = kwargs.pop("input_values", __a) _lowerCAmelCase : int = kwargs.pop("input_ids", __a) _lowerCAmelCase : Optional[Any] = kwargs.pop("labels", __a) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs.") if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.") if input_values is not None: _lowerCAmelCase : str = self.feature_extractor.pad(__a, *__a, **__a) elif input_ids is not None: _lowerCAmelCase : int = self.tokenizer.pad(__a, **__a) else: _lowerCAmelCase : List[str] = None if labels is not None: if "input_ids" in labels or (isinstance(__a, __a) and "input_ids" in labels[0]): _lowerCAmelCase : List[Any] = self.tokenizer.pad(__a, **__a) _lowerCAmelCase : int = targets["input_ids"] else: _lowerCAmelCase : Any = self.feature_extractor.feature_size _lowerCAmelCase : Any = self.feature_extractor.num_mel_bins _lowerCAmelCase : str = self.feature_extractor.pad(__a, *__a, **__a) _lowerCAmelCase : List[Any] = feature_size_hack _lowerCAmelCase : Optional[int] = targets["input_values"] else: _lowerCAmelCase : int = None if inputs is None: return targets if targets is not None: _lowerCAmelCase : int = labels _lowerCAmelCase : List[str] = targets.get("attention_mask") if decoder_attention_mask is not None: _lowerCAmelCase : Union[str, Any] = decoder_attention_mask return inputs def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.batch_decode(*__a, **__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.decode(*__a, **__a)
716
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) _snake_case = logging.getLogger(__name__) class UpperCAmelCase_ ( __UpperCAmelCase): def snake_case__ ( self, __a, __a, __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Dict = self.layer[current_layer](__a, __a, head_mask[current_layer]) _lowerCAmelCase : Union[str, Any] = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , __UpperCAmelCase , ) class UpperCAmelCase_ ( __UpperCAmelCase): def __init__( self, __a): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : Tuple = BertEncoderWithPabee(__a) self.init_weights() _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : str = 0 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : str = 0 def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Dict = threshold def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = patience def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Optional[Any] = 0 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.inference_layers_num / self.inference_instances_num _lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(__a) @add_start_docstrings_to_model_forward(__a) def snake_case__ ( self, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=False, ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: _lowerCAmelCase : Tuple = input_ids.size() elif inputs_embeds is not None: _lowerCAmelCase : Tuple = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") _lowerCAmelCase : Optional[int] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowerCAmelCase : str = torch.ones(__a, device=__a) if token_type_ids is None: _lowerCAmelCase : Optional[int] = torch.zeros(__a, dtype=torch.long, device=__a) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowerCAmelCase : Optional[int] = self.get_extended_attention_mask(__a, __a, __a) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = encoder_hidden_states.size() _lowerCAmelCase : Optional[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _lowerCAmelCase : Any = torch.ones(__a, device=__a) _lowerCAmelCase : Union[str, Any] = self.invert_attention_mask(__a) else: _lowerCAmelCase : Optional[int] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowerCAmelCase : Optional[int] = self.get_head_mask(__a, self.config.num_hidden_layers) _lowerCAmelCase : str = self.embeddings( input_ids=__a, position_ids=__a, token_type_ids=__a, inputs_embeds=__a) _lowerCAmelCase : Union[str, Any] = embedding_output if self.training: _lowerCAmelCase : Dict = [] for i in range(self.config.num_hidden_layers): _lowerCAmelCase : str = self.encoder.adaptive_forward( __a, current_layer=__a, attention_mask=__a, head_mask=__a) _lowerCAmelCase : Dict = self.pooler(__a) _lowerCAmelCase : Tuple = output_layers[i](output_dropout(__a)) res.append(__a) elif self.patience == 0: # Use all layers for inference _lowerCAmelCase : List[str] = self.encoder( __a, attention_mask=__a, head_mask=__a, encoder_hidden_states=__a, encoder_attention_mask=__a, ) _lowerCAmelCase : Union[str, Any] = self.pooler(encoder_outputs[0]) _lowerCAmelCase : int = [output_layers[self.config.num_hidden_layers - 1](__a)] else: _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Tuple = None _lowerCAmelCase : List[Any] = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 _lowerCAmelCase : List[Any] = self.encoder.adaptive_forward( __a, current_layer=__a, attention_mask=__a, head_mask=__a) _lowerCAmelCase : int = self.pooler(__a) _lowerCAmelCase : Optional[Any] = output_layers[i](__a) if regression: _lowerCAmelCase : List[Any] = logits.detach() if patient_result is not None: _lowerCAmelCase : str = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: _lowerCAmelCase : Union[str, Any] = 0 else: _lowerCAmelCase : Any = logits.detach().argmax(dim=1) if patient_result is not None: _lowerCAmelCase : Tuple = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(__a)): patient_counter += 1 else: _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Any = logits if patient_counter == self.patience: break _lowerCAmelCase : Tuple = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , __UpperCAmelCase , ) class UpperCAmelCase_ ( __UpperCAmelCase): def __init__( self, __a): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : Any = config.num_labels _lowerCAmelCase : Optional[Any] = BertModelWithPabee(__a) _lowerCAmelCase : int = nn.Dropout(config.hidden_dropout_prob) _lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size, self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(__a) def snake_case__ ( self, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, ): '''simple docstring''' _lowerCAmelCase : Tuple = self.bert( input_ids=__a, attention_mask=__a, token_type_ids=__a, position_ids=__a, head_mask=__a, inputs_embeds=__a, output_dropout=self.dropout, output_layers=self.classifiers, regression=self.num_labels == 1, ) _lowerCAmelCase : List[str] = (logits[-1],) if labels is not None: _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : List[str] = 0 for ix, logits_item in enumerate(__a): if self.num_labels == 1: # We are doing regression _lowerCAmelCase : str = MSELoss() _lowerCAmelCase : Tuple = loss_fct(logits_item.view(-1), labels.view(-1)) else: _lowerCAmelCase : int = CrossEntropyLoss() _lowerCAmelCase : List[Any] = loss_fct(logits_item.view(-1, self.num_labels), labels.view(-1)) if total_loss is None: _lowerCAmelCase : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _lowerCAmelCase : Tuple = (total_loss / total_weights,) + outputs return outputs
717
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( __lowerCAmelCase , unittest.TestCase): lowerCamelCase__ = XGLMTokenizer lowerCamelCase__ = XGLMTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : Dict = XGLMTokenizer(lowerCamelCase__, keep_accents=lowerCamelCase__) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = '''<pad>''' _lowerCAmelCase : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__), lowerCamelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__), lowerCamelCase__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<s>") self.assertEqual(vocab_keys[1], "<pad>") self.assertEqual(len(lowerCamelCase__), 1008) def snake_case__ ( self): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1008) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = XGLMTokenizer(lowerCamelCase__, keep_accents=lowerCamelCase__) _lowerCAmelCase : int = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCamelCase__, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) _lowerCAmelCase : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCamelCase__, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) _lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(lowerCamelCase__) self.assertListEqual( lowerCamelCase__, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(lowerCamelCase__) self.assertListEqual( lowerCamelCase__, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) @cached_property def snake_case__ ( self): '''simple docstring''' return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def snake_case__ ( self): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase__, f.name) _lowerCAmelCase : Optional[int] = XGLMTokenizer(f.name, keep_accents=lowerCamelCase__) _lowerCAmelCase : Dict = pickle.dumps(lowerCamelCase__) pickle.loads(lowerCamelCase__) def snake_case__ ( self): '''simple docstring''' if not self.test_rust_tokenizer: return _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = self.get_rust_tokenizer() _lowerCAmelCase : Tuple = '''I was born in 92000, and this is falsé.''' _lowerCAmelCase : Optional[int] = tokenizer.tokenize(lowerCamelCase__) _lowerCAmelCase : Optional[Any] = rust_tokenizer.tokenize(lowerCamelCase__) self.assertListEqual(lowerCamelCase__, lowerCamelCase__) _lowerCAmelCase : Dict = tokenizer.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__) _lowerCAmelCase : List[str] = rust_tokenizer.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__) self.assertListEqual(lowerCamelCase__, lowerCamelCase__) _lowerCAmelCase : Any = self.get_rust_tokenizer() _lowerCAmelCase : str = tokenizer.encode(lowerCamelCase__) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__) self.assertListEqual(lowerCamelCase__, lowerCamelCase__) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = '''Hello World!''' _lowerCAmelCase : Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCamelCase__, self.big_tokenizer.encode(lowerCamelCase__)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off _lowerCAmelCase : int = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCamelCase__, self.big_tokenizer.encode(lowerCamelCase__)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = { '''input_ids''': [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__, model_name="facebook/xglm-564M", padding=lowerCamelCase__, )
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _snake_case = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _snake_case = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _snake_case = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), ) def snake_case__ ( self, __a, __a, __a = 1, __a = 4, ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a, hypotheses=__a, min_len=__a, max_len=__a) }
719
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _snake_case = 0b101_100_111_110_110_010_010_000_011_110_111_011_000_110_011_110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _snake_case = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = WATERMARK_BITS _lowerCAmelCase : Optional[Any] = WatermarkEncoder() self.encoder.set_watermark("bits", self.watermark) def snake_case__ ( self, __a): '''simple docstring''' if images.shape[-1] < 256: return images _lowerCAmelCase : int = (255 * (images / 2 + 0.5)).cpu().permute(0, 2, 3, 1).float().numpy() _lowerCAmelCase : Any = [self.encoder.encode(__a, "dwtDct") for image in images] _lowerCAmelCase : Tuple = torch.from_numpy(np.array(__a)).permute(0, 3, 1, 2) _lowerCAmelCase : List[Any] = torch.clamp(2 * (images / 255 - 0.5), min=-1.0, max=1.0) return images
720
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _snake_case = ["gpt2"] _snake_case = "gpt2" if is_tf_available(): class UpperCAmelCase_ ( tf.Module): def __init__( self, __a): '''simple docstring''' super().__init__() _lowerCAmelCase : Dict = tokenizer _lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(__a) _lowerCAmelCase : Union[str, Any] = TFGPTaLMHeadModel.from_config(__a) @tf.function(input_signature=(tf.TensorSpec((None,), tf.string, name="text"),)) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(__a) _lowerCAmelCase : List[Any] = tokenized["input_ids"].to_tensor() _lowerCAmelCase : Any = tf.cast(input_ids_dense > 0, tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _lowerCAmelCase : int = self.model(input_ids=__a, attention_mask=__a)["logits"] return outputs @require_tf @require_keras_nlp class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : List[Any] = [GPTaTokenizer.from_pretrained(__a) for checkpoint in (TOKENIZER_CHECKPOINTS)] _lowerCAmelCase : Any = [TFGPTaTokenizer.from_pretrained(__a) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) _lowerCAmelCase : Optional[Any] = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we\'re going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] _lowerCAmelCase : Tuple = list(zip(self.test_sentences, self.test_sentences[::-1])) def snake_case__ ( self): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers): for test_inputs in self.test_sentences: _lowerCAmelCase : Dict = tokenizer([test_inputs], return_tensors="tf") _lowerCAmelCase : Union[str, Any] = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _lowerCAmelCase : str = python_outputs[key].numpy() _lowerCAmelCase : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(__a, tf.intaa) == tf_outputs_values)) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Tuple = tf.function(__a) for test_inputs in self.test_sentences: _lowerCAmelCase : Dict = tf.constant(__a) _lowerCAmelCase : List[Any] = compiled_tokenizer(__a) _lowerCAmelCase : Any = tf_tokenizer(__a) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : List[Any] = ModelToSave(tokenizer=__a) _lowerCAmelCase : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]]) _lowerCAmelCase : Optional[int] = model.serving(__a) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCAmelCase : Any = Path(__a) / "saved.model" tf.saved_model.save(__a, __a, signatures={"serving_default": model.serving}) _lowerCAmelCase : List[Any] = tf.saved_model.load(__a) _lowerCAmelCase : Any = loaded_model.signatures["serving_default"](__a)["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]]) _lowerCAmelCase : str = tf_tokenizer(__a) # Build model with some sample inputs _lowerCAmelCase : Tuple = tf_tokenizer.get_config() _lowerCAmelCase : Union[str, Any] = TFGPTaTokenizer.from_config(__a) _lowerCAmelCase : Any = model_from_config(__a) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _lowerCAmelCase : Tuple = 12_3123 for max_length in [3, 5, 1024]: _lowerCAmelCase : int = tf.convert_to_tensor([self.test_sentences[0]]) _lowerCAmelCase : Optional[int] = tf_tokenizer(__a, max_length=__a) _lowerCAmelCase : str = out["input_ids"].numpy().shape[1] assert out_length == max_length
721
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("-f" ) _lowerCAmelCase : Optional[Any] = parser.parse_args() return args.f def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , "all_results.json" ) if os.path.exists(_lowerCamelCase ): with open(_lowerCamelCase , "r" ) as f: _lowerCAmelCase : str = json.load(_lowerCamelCase ) else: raise ValueError(F"can't find {path}" ) return results def A ( ): '''simple docstring''' _lowerCAmelCase : str = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() _snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( a): @classmethod def snake_case__ ( cls): '''simple docstring''' _lowerCAmelCase : str = tempfile.mkdtemp() _lowerCAmelCase : int = os.path.join(cls.tmpdir, "default_config.yml") write_basic_config(save_location=cls.configPath) _lowerCAmelCase : int = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def snake_case__ ( cls): '''simple docstring''' shutil.rmtree(cls.tmpdir) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Union[str, Any] = f"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16") run_command(self._launch_args + testargs) _lowerCAmelCase : List[Any] = get_results(__a) self.assertGreaterEqual(result["eval_accuracy"], 0.75) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "glue_no_trainer"))) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs) _lowerCAmelCase : Optional[Any] = get_results(__a) self.assertLess(result["perplexity"], 100) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "clm_no_trainer"))) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : List[str] = f"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : Union[str, Any] = get_results(__a) self.assertLess(result["perplexity"], 42) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "mlm_no_trainer"))) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = 7 if get_gpu_count() > 1 else 2 _lowerCAmelCase : int = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Any = f"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : List[str] = get_results(__a) self.assertGreaterEqual(result["eval_accuracy"], 0.75) self.assertLess(result["train_loss"], 0.5) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "ner_no_trainer"))) @unittest.skip(reason="Fix me @muellerzr") @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : Optional[int] = get_results(__a) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"], 28) self.assertGreaterEqual(result["eval_exact"], 28) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "qa_no_trainer"))) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Tuple = f"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : Dict = get_results(__a) self.assertGreaterEqual(result["eval_accuracy"], 0.8) self.assertTrue(os.path.exists(os.path.join(__a, "swag_no_trainer"))) @slow @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : List[str] = get_results(__a) self.assertGreaterEqual(result["eval_rouge1"], 10) self.assertGreaterEqual(result["eval_rouge2"], 2) self.assertGreaterEqual(result["eval_rougeL"], 7) self.assertGreaterEqual(result["eval_rougeLsum"], 7) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "summarization_no_trainer"))) @slow @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Tuple = f"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : List[str] = get_results(__a) self.assertGreaterEqual(result["eval_bleu"], 30) self.assertTrue(os.path.exists(os.path.join(__a, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(__a, "translation_no_trainer"))) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(__a) _lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : int = f"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs) _lowerCAmelCase : Union[str, Any] = get_results(__a) self.assertGreaterEqual(result["eval_overall_accuracy"], 0.10) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() _lowerCAmelCase : List[Any] = f"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16") run_command(self._launch_args + testargs) _lowerCAmelCase : int = get_results(__a) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"], 0.6) self.assertTrue(os.path.exists(os.path.join(__a, "step_1"))) self.assertTrue(os.path.exists(os.path.join(__a, "image_classification_no_trainer")))
700
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
0
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( a): lowerCamelCase__ = (IPNDMScheduler,) lowerCamelCase__ = (('num_inference_steps', 50),) def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : Optional[int] = {"num_train_timesteps": 1000} config.update(**__a) return config def snake_case__ ( self, __a=0, **__a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs) _lowerCAmelCase : str = kwargs.pop("num_inference_steps", __a) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Optional[int] = 0.1 * sample _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config(**__a) _lowerCAmelCase : List[str] = scheduler_class(**__a) scheduler.set_timesteps(__a) # copy over dummy past residuals _lowerCAmelCase : Any = dummy_past_residuals[:] if time_step is None: _lowerCAmelCase : int = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a) _lowerCAmelCase : int = scheduler_class.from_pretrained(__a) new_scheduler.set_timesteps(__a) # copy over dummy past residuals _lowerCAmelCase : List[Any] = dummy_past_residuals[:] _lowerCAmelCase : Any = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : Dict = new_scheduler.step(__a, __a, __a, **__a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" _lowerCAmelCase : List[Any] = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : int = new_scheduler.step(__a, __a, __a, **__a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self, __a=0, **__a): '''simple docstring''' _lowerCAmelCase : str = dict(self.forward_default_kwargs) _lowerCAmelCase : str = kwargs.pop("num_inference_steps", __a) _lowerCAmelCase : Tuple = self.dummy_sample _lowerCAmelCase : str = 0.1 * sample _lowerCAmelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**__a) scheduler.set_timesteps(__a) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : Optional[int] = dummy_past_residuals[:] if time_step is None: _lowerCAmelCase : int = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a) _lowerCAmelCase : List[Any] = scheduler_class.from_pretrained(__a) # copy over dummy past residuals new_scheduler.set_timesteps(__a) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[:] _lowerCAmelCase : Dict = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : int = new_scheduler.step(__a, __a, __a, **__a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" _lowerCAmelCase : Optional[Any] = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : Tuple = new_scheduler.step(__a, __a, __a, **__a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Any = self.get_scheduler_config(**__a) _lowerCAmelCase : Dict = scheduler_class(**__a) _lowerCAmelCase : Dict = 10 _lowerCAmelCase : Optional[int] = self.dummy_model() _lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(__a) for i, t in enumerate(scheduler.timesteps): _lowerCAmelCase : List[str] = model(__a, __a) _lowerCAmelCase : List[Any] = scheduler.step(__a, __a, __a).prev_sample for i, t in enumerate(scheduler.timesteps): _lowerCAmelCase : Union[str, Any] = model(__a, __a) _lowerCAmelCase : Union[str, Any] = scheduler.step(__a, __a, __a).prev_sample return sample def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs) _lowerCAmelCase : str = kwargs.pop("num_inference_steps", __a) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Dict = scheduler_class(**__a) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(__a, "set_timesteps"): scheduler.set_timesteps(__a) elif num_inference_steps is not None and not hasattr(__a, "set_timesteps"): _lowerCAmelCase : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCAmelCase : Optional[int] = dummy_past_residuals[:] _lowerCAmelCase : str = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : Union[str, Any] = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : Union[str, Any] = scheduler.step(__a, __a, __a, **__a).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) _lowerCAmelCase : Union[str, Any] = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : Optional[Any] = scheduler.step(__a, __a, __a, **__a).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) def snake_case__ ( self): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__a, time_step=__a) def snake_case__ ( self): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]): self.check_over_forward(num_inference_steps=__a, time_step=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.full_loop() _lowerCAmelCase : Any = torch.mean(torch.abs(__a)) assert abs(result_mean.item() - 254_0529) < 10
701
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = FunnelConfig.from_json_file(_lowerCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) _lowerCAmelCase : List[str] = FunnelBaseModel(_lowerCamelCase ) if base_model else FunnelModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
702
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
0
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) // 2 # choose the middle 3 elements _lowerCAmelCase : Any = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
703
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=2, __a=24, __a=16, __a=True, __a=True, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=10, __a=0.02, __a=None, __a=2, __a=2, ): '''simple docstring''' _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : int = max_length _lowerCAmelCase : str = num_mel_bins _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : List[str] = use_labels _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = type_sequence_label_size _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = scope _lowerCAmelCase : Any = frequency_stride _lowerCAmelCase : Optional[Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase : str = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _lowerCAmelCase : Optional[Any] = (self.max_length - self.patch_size) // self.time_stride + 1 _lowerCAmelCase : List[str] = frequency_out_dimension * time_out_dimension _lowerCAmelCase : Any = num_patches + 2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Any = self.get_config() return config, input_values, labels def snake_case__ ( self): '''simple docstring''' return ASTConfig( patch_size=self.patch_size, max_length=self.max_length, num_mel_bins=self.num_mel_bins, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__a, initializer_range=self.initializer_range, frequency_stride=self.frequency_stride, time_stride=self.time_stride, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = ASTModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : List[Any] = config_and_inputs _lowerCAmelCase : Union[str, Any] = {"input_values": input_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = ASTModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(__a) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) _lowerCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a, nn.Linear)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(__a) _lowerCAmelCase : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : int = ["input_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = ASTModel.from_pretrained(__a) self.assertIsNotNone(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) _lowerCAmelCase : Union[str, Any] = torchaudio.load(_lowerCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593") if is_torchaudio_available() else None ) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.default_feature_extractor _lowerCAmelCase : Optional[Any] = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593").to(__a) _lowerCAmelCase : Any = self.default_feature_extractor _lowerCAmelCase : Dict = prepare_audio() _lowerCAmelCase : str = audio.squeeze().numpy() _lowerCAmelCase : str = feature_extractor(__a, sampling_rate=__a, return_tensors="pt").to(__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**__a) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 527)) self.assertEqual(outputs.logits.shape, __a) _lowerCAmelCase : List[Any] = torch.tensor([-0.8_760, -7.0_042, -8.6_602]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3], __a, atol=1E-4))
704
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, **__a): '''simple docstring''' requires_backends(self, ["bs4"]) super().__init__(**__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Dict = [] _lowerCAmelCase : int = [] _lowerCAmelCase : Optional[Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _lowerCAmelCase : Union[str, Any] = parent.find_all(child.name, recursive=__a) xpath_tags.append(child.name) xpath_subscripts.append( 0 if 1 == len(__a) else next(i for i, s in enumerate(__a, 1) if s is child)) _lowerCAmelCase : Union[str, Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(__a, "html.parser") _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[str] = [] _lowerCAmelCase : List[Any] = [] for element in html_code.descendants: if type(__a) == bsa.element.NavigableString: if type(element.parent) != bsa.element.Tag: continue _lowerCAmelCase : Dict = html.unescape(__a).strip() if not text_in_this_tag: continue all_doc_strings.append(__a) _lowerCAmelCase : List[str] = self.xpath_soup(__a) stringaxtag_seq.append(__a) stringaxsubs_seq.append(__a) if len(__a) != len(__a): raise ValueError("Number of doc strings and xtags does not correspond") if len(__a) != len(__a): raise ValueError("Number of doc strings and xsubs does not correspond") return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : int = "" for tagname, subs in zip(__a, __a): xpath += f"/{tagname}" if subs != 0: xpath += f"[{subs}]" return xpath def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = False # Check that strings has a valid type if isinstance(__a, __a): _lowerCAmelCase : Dict = True elif isinstance(__a, (list, tuple)): if len(__a) == 0 or isinstance(html_strings[0], __a): _lowerCAmelCase : str = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " f"but is of type {type(__a)}.") _lowerCAmelCase : Optional[Any] = bool(isinstance(__a, (list, tuple)) and (isinstance(html_strings[0], __a))) if not is_batched: _lowerCAmelCase : Tuple = [html_strings] # Get nodes + xpaths _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Union[str, Any] = [] for html_string in html_strings: _lowerCAmelCase : Optional[Any] = self.get_three_from_single(__a) nodes.append(__a) _lowerCAmelCase : int = [] for node, tag_list, sub_list in zip(__a, __a, __a): _lowerCAmelCase : Optional[Any] = self.construct_xpath(__a, __a) xpath_strings.append(__a) xpaths.append(__a) # return as Dict _lowerCAmelCase : int = {"nodes": nodes, "xpaths": xpaths} _lowerCAmelCase : Optional[Any] = BatchFeature(data=__a, tensor_type=__a) return encoded_inputs
705
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
0
'''simple docstring''' def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = len(set_a.intersection(_lowerCamelCase ) ) if alternative_union: _lowerCAmelCase : Dict = len(_lowerCamelCase ) + len(_lowerCamelCase ) else: _lowerCAmelCase : Optional[Any] = len(set_a.union(_lowerCamelCase ) ) return intersection / union if isinstance(_lowerCamelCase , (list, tuple) ) and isinstance(_lowerCamelCase , (list, tuple) ): _lowerCAmelCase : Optional[Any] = [element for element in set_a if element in set_b] if alternative_union: _lowerCAmelCase : Optional[Any] = len(_lowerCamelCase ) + len(_lowerCamelCase ) return len(_lowerCamelCase ) / union else: _lowerCAmelCase : List[str] = set_a + [element for element in set_b if element not in set_a] return len(_lowerCamelCase ) / len(_lowerCamelCase ) return len(_lowerCamelCase ) / len(_lowerCamelCase ) return None if __name__ == "__main__": _snake_case = {"a", "b", "c", "d", "e"} _snake_case = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
706
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
0
from __future__ import annotations _snake_case = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _snake_case = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Tuple = len(_lowerCamelCase ) for i in range(_lowerCamelCase ): _lowerCAmelCase : float = -1 for j in range(i + 1 , _lowerCamelCase ): if arr[i] < arr[j]: _lowerCAmelCase : Union[str, Any] = arr[j] break result.append(_lowerCamelCase ) return result def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = [] for i, outer in enumerate(_lowerCamelCase ): _lowerCAmelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _lowerCAmelCase : str = inner break result.append(_lowerCamelCase ) return result def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = len(_lowerCamelCase ) _lowerCAmelCase : list[float] = [] _lowerCAmelCase : list[float] = [-1] * arr_size for index in reversed(range(_lowerCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _lowerCAmelCase : List[str] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _snake_case = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
707
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
708
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _snake_case = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'facebook/nllb-200-distilled-600M' lowerCamelCase__ = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) lowerCamelCase__ = 'translator' lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ['text', 'text', 'text'] lowerCamelCase__ = ['text'] def snake_case__ ( self, __a, __a, __a): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language.") if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language.") _lowerCAmelCase : str = self.lang_to_code[src_lang] _lowerCAmelCase : Optional[int] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __a, return_tensors="pt", src_lang=__a, tgt_lang=__a) def snake_case__ ( self, __a): '''simple docstring''' return self.model.generate(**__a) def snake_case__ ( self, __a): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=__a)
709
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
0
_snake_case = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _snake_case = ["a", "b", "c", "d", "e"] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = start # add current to visited visited.append(_lowerCamelCase ) _lowerCAmelCase : str = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _lowerCAmelCase : Optional[int] = topological_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # if all neighbors visited add current to sort sort.append(_lowerCamelCase ) # if all vertices haven't been visited select a new one to visit if len(_lowerCamelCase ) != len(_lowerCamelCase ): for vertice in vertices: if vertice not in visited: _lowerCAmelCase : Tuple = topological_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # return sort return sort if __name__ == "__main__": _snake_case = topological_sort("a", [], []) print(sort)
710
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
0
from math import ceil def A ( _lowerCamelCase = 1_001 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): _lowerCAmelCase : Dict = 2 * i + 1 _lowerCAmelCase : Optional[int] = 2 * i _lowerCAmelCase : List[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _snake_case = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
711
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( nn.Module): lowerCamelCase__ = 42 lowerCamelCase__ = (16, 32, 96, 256) lowerCamelCase__ = jnp.floataa def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = nn.Conv( self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) _lowerCAmelCase : List[Any] = [] for i in range(len(self.block_out_channels) - 1): _lowerCAmelCase : List[Any] = self.block_out_channels[i] _lowerCAmelCase : Dict = self.block_out_channels[i + 1] _lowerCAmelCase : Any = nn.Conv( __a, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(__a) _lowerCAmelCase : Any = nn.Conv( __a, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(__a) _lowerCAmelCase : Tuple = blocks _lowerCAmelCase : Union[str, Any] = nn.Conv( self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.conv_in(__a) _lowerCAmelCase : str = nn.silu(__a) for block in self.blocks: _lowerCAmelCase : str = block(__a) _lowerCAmelCase : Dict = nn.silu(__a) _lowerCAmelCase : str = self.conv_out(__a) return embedding @flax_register_to_config class UpperCAmelCase_ ( nn.Module , a , a): lowerCamelCase__ = 32 lowerCamelCase__ = 4 lowerCamelCase__ = ( 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D', ) lowerCamelCase__ = False lowerCamelCase__ = (320, 640, 1280, 1280) lowerCamelCase__ = 2 lowerCamelCase__ = 8 lowerCamelCase__ = None lowerCamelCase__ = 1280 lowerCamelCase__ = 0.0 lowerCamelCase__ = False lowerCamelCase__ = jnp.floataa lowerCamelCase__ = True lowerCamelCase__ = 0 lowerCamelCase__ = 'rgb' lowerCamelCase__ = (16, 32, 96, 256) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = (1, self.in_channels, self.sample_size, self.sample_size) _lowerCAmelCase : Dict = jnp.zeros(__a, dtype=jnp.floataa) _lowerCAmelCase : Any = jnp.ones((1,), dtype=jnp.intaa) _lowerCAmelCase : int = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa) _lowerCAmelCase : List[Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) _lowerCAmelCase : List[str] = jnp.zeros(__a, dtype=jnp.floataa) _lowerCAmelCase : Union[str, Any] = jax.random.split(__a) _lowerCAmelCase : List[str] = {"params": params_rng, "dropout": dropout_rng} return self.init(__a, __a, __a, __a, __a)["params"] def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.block_out_channels _lowerCAmelCase : Any = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _lowerCAmelCase : Union[str, Any] = self.num_attention_heads or self.attention_head_dim # input _lowerCAmelCase : Dict = nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time _lowerCAmelCase : List[str] = FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift) _lowerCAmelCase : Tuple = FlaxTimestepEmbedding(__a, dtype=self.dtype) _lowerCAmelCase : List[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, ) _lowerCAmelCase : List[str] = self.only_cross_attention if isinstance(__a, __a): _lowerCAmelCase : List[str] = (only_cross_attention,) * len(self.down_block_types) if isinstance(__a, __a): _lowerCAmelCase : Any = (num_attention_heads,) * len(self.down_block_types) # down _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Any = block_out_channels[0] _lowerCAmelCase : Any = nn.Conv( __a, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(__a) for i, down_block_type in enumerate(self.down_block_types): _lowerCAmelCase : Optional[Any] = output_channel _lowerCAmelCase : Optional[int] = block_out_channels[i] _lowerCAmelCase : List[Any] = i == len(__a) - 1 if down_block_type == "CrossAttnDownBlock2D": _lowerCAmelCase : Dict = FlaxCrossAttnDownBlockaD( in_channels=__a, out_channels=__a, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, ) else: _lowerCAmelCase : Optional[Any] = FlaxDownBlockaD( in_channels=__a, out_channels=__a, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(__a) for _ in range(self.layers_per_block): _lowerCAmelCase : str = nn.Conv( __a, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(__a) if not is_final_block: _lowerCAmelCase : int = nn.Conv( __a, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(__a) _lowerCAmelCase : Optional[int] = down_blocks _lowerCAmelCase : int = controlnet_down_blocks # mid _lowerCAmelCase : Dict = block_out_channels[-1] _lowerCAmelCase : Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=__a, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, ) _lowerCAmelCase : str = nn.Conv( __a, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, __a, __a, __a, __a, __a = 1.0, __a = True, __a = False, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.controlnet_conditioning_channel_order if channel_order == "bgr": _lowerCAmelCase : List[str] = jnp.flip(__a, axis=1) # 1. time if not isinstance(__a, jnp.ndarray): _lowerCAmelCase : List[str] = jnp.array([timesteps], dtype=jnp.intaa) elif isinstance(__a, jnp.ndarray) and len(timesteps.shape) == 0: _lowerCAmelCase : Optional[int] = timesteps.astype(dtype=jnp.floataa) _lowerCAmelCase : int = jnp.expand_dims(__a, 0) _lowerCAmelCase : Union[str, Any] = self.time_proj(__a) _lowerCAmelCase : Optional[int] = self.time_embedding(__a) # 2. pre-process _lowerCAmelCase : List[str] = jnp.transpose(__a, (0, 2, 3, 1)) _lowerCAmelCase : int = self.conv_in(__a) _lowerCAmelCase : Optional[Any] = jnp.transpose(__a, (0, 2, 3, 1)) _lowerCAmelCase : Tuple = self.controlnet_cond_embedding(__a) sample += controlnet_cond # 3. down _lowerCAmelCase : Any = (sample,) for down_block in self.down_blocks: if isinstance(__a, __a): _lowerCAmelCase : Tuple = down_block(__a, __a, __a, deterministic=not train) else: _lowerCAmelCase : Optional[int] = down_block(__a, __a, deterministic=not train) down_block_res_samples += res_samples # 4. mid _lowerCAmelCase : Any = self.mid_block(__a, __a, __a, deterministic=not train) # 5. contronet blocks _lowerCAmelCase : str = () for down_block_res_sample, controlnet_block in zip(__a, self.controlnet_down_blocks): _lowerCAmelCase : str = controlnet_block(__a) controlnet_down_block_res_samples += (down_block_res_sample,) _lowerCAmelCase : int = controlnet_down_block_res_samples _lowerCAmelCase : List[Any] = self.controlnet_mid_block(__a) # 6. scaling _lowerCAmelCase : List[str] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__a, mid_block_res_sample=__a)
712
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
0
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
713
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = os.path.join(args.tf_model_dir , "parameters.json" ) _lowerCAmelCase : Optional[Any] = json.loads(open(_lowerCamelCase ).read() ) if not params: raise ValueError( F"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith(".pt" ): _lowerCAmelCase : Dict = args.output + ".pt" _lowerCAmelCase : Any = OrderedDict() with tf.device("/CPU:0" ): _lowerCAmelCase : List[Any] = tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase : Dict = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase : Tuple = reader.get_tensor(_lowerCamelCase ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): _lowerCAmelCase : Any = int(key_name[9] ) elif key_name.startswith("pasts/out" ): _lowerCAmelCase : Union[str, Any] = 8 _lowerCAmelCase : Union[str, Any] = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Tuple = torch.tensor(_lowerCamelCase ) elif key_name.startswith("model/moe" ): _lowerCAmelCase : Optional[int] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): _lowerCAmelCase : List[str] = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player _lowerCAmelCase : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Optional[int] = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/softmlp/kernel" ): _lowerCAmelCase : int = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player _lowerCAmelCase : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : List[Any] = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): _lowerCAmelCase : List[Any] = key_name[-9:-7] for i in range(16 ): _lowerCAmelCase : Tuple = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) _lowerCAmelCase : Any = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ) elif key_name.startswith("model/mlp" ): _lowerCAmelCase : List[Any] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): _lowerCAmelCase : Optional[int] = "model.blocks.%d.feed_forward.mlp.wi.weight" % player _lowerCAmelCase : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : List[Any] = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/p1/bias" ): _lowerCAmelCase : str = "model.blocks.%d.feed_forward.mlp.wi.bias" % player _lowerCAmelCase : List[Any] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : int = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/p2/kernel" ): _lowerCAmelCase : Union[str, Any] = "model.blocks.%d.feed_forward.mlp.wo.weight" % player _lowerCAmelCase : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/p2/bias" ): _lowerCAmelCase : Union[str, Any] = "model.blocks.%d.feed_forward.mlp.wo.bias" % player _lowerCAmelCase : List[str] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Dict = torch.tensor(_lowerCamelCase ) elif key_name.startswith("model/ln" ): _lowerCAmelCase : Tuple = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _lowerCAmelCase : Dict = "model.blocks.%d.feed_forward.norm.bias" % player _lowerCAmelCase : Dict = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Union[str, Any] = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/g" ): _lowerCAmelCase : str = "model.blocks.%d.feed_forward.norm.weight" % player _lowerCAmelCase : Any = vnp.copy() # same because it is one dimensional _lowerCAmelCase : str = torch.tensor(_lowerCamelCase ) elif key_name.startswith("model/att" ): _lowerCAmelCase : Union[str, Any] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): _lowerCAmelCase : Any = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase : Tuple = state[:, 0, :, :] _lowerCAmelCase : int = state[:, 1, :, :] _lowerCAmelCase : List[str] = state[:, 2, :, :] _lowerCAmelCase : Dict = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Any = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Optional[Any] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : str = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ) _lowerCAmelCase : Any = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player _lowerCAmelCase : Optional[Any] = torch.tensor(_lowerCamelCase ) _lowerCAmelCase : Tuple = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/o/kernel" ): _lowerCAmelCase : str = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player _lowerCAmelCase : Dict = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : int = torch.tensor(_lowerCamelCase ) elif key_name.startswith("model/an" ): _lowerCAmelCase : Union[str, Any] = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _lowerCAmelCase : Optional[int] = "model.blocks.%d.self_attn.norm.bias" % player _lowerCAmelCase : Optional[Any] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Union[str, Any] = torch.tensor(_lowerCamelCase ) elif key_name.endswith("/g" ): _lowerCAmelCase : Tuple = "model.blocks.%d.self_attn.norm.weight" % player _lowerCAmelCase : Dict = vnp.copy() # same because it is one dimensional _lowerCAmelCase : int = torch.tensor(_lowerCamelCase ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): _lowerCAmelCase : Tuple = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] _lowerCAmelCase : Union[str, Any] = "model.%s.weight" % nlayer _lowerCAmelCase : Union[str, Any] = vnp.copy() # same in embedded _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ) if key_name.startswith("model/wte" ): _lowerCAmelCase : Any = "lm_head.weight" _lowerCAmelCase : str = vnp.copy() # same in embedded _lowerCAmelCase : Optional[int] = torch.tensor(_lowerCamelCase ) elif key_name.startswith("model/wob" ): _lowerCAmelCase : Optional[int] = "final_logits_bias" _lowerCAmelCase : Dict = vnp.copy() # same in embedded _lowerCAmelCase : List[str] = state.reshape((1, -1) ) _lowerCAmelCase : Union[str, Any] = torch.tensor(_lowerCamelCase ) elif key_name == "model/dense/kernel": _lowerCAmelCase : Union[str, Any] = "model.last_project.weight" _lowerCAmelCase : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ) elif key_name == "model/dense_1/bias": _lowerCAmelCase : Optional[Any] = "model.last_project.bias" _lowerCAmelCase : Optional[int] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Dict = torch.tensor(_lowerCamelCase ) torch.save(_lowerCamelCase , args.output ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") _snake_case = parser.parse_args() convert_tf_gptsan_to_pt(args)
714
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
715
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'swin2sr' lowerCamelCase__ = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self, __a=64, __a=1, __a=3, __a=180, __a=[6, 6, 6, 6, 6, 6], __a=[6, 6, 6, 6, 6, 6], __a=8, __a=2.0, __a=True, __a=0.0, __a=0.0, __a=0.1, __a="gelu", __a=False, __a=0.02, __a=1E-5, __a=2, __a=1.0, __a="1conv", __a="pixelshuffle", **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : Dict = embed_dim _lowerCAmelCase : Dict = depths _lowerCAmelCase : Optional[int] = len(__a) _lowerCAmelCase : Tuple = num_heads _lowerCAmelCase : int = window_size _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Tuple = qkv_bias _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Optional[Any] = use_absolute_embeddings _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Dict = upscale _lowerCAmelCase : Optional[int] = img_range _lowerCAmelCase : str = resi_connection _lowerCAmelCase : Optional[int] = upsampler
716
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _snake_case = logging.get_logger(__name__) _snake_case = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'bloom' lowerCamelCase__ = ['past_key_values'] lowerCamelCase__ = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self, __a=25_0880, __a=64, __a=2, __a=8, __a=1E-5, __a=0.02, __a=True, __a=1, __a=2, __a=False, __a=0.0, __a=0.0, __a=1, __a=False, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase : Tuple = kwargs.pop("n_embed", __a) _lowerCAmelCase : List[str] = hidden_size if n_embed is None else n_embed _lowerCAmelCase : Any = n_layer _lowerCAmelCase : Dict = n_head _lowerCAmelCase : List[str] = layer_norm_epsilon _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Optional[int] = use_cache _lowerCAmelCase : Tuple = pretraining_tp _lowerCAmelCase : Optional[Any] = apply_residual_connection_post_layernorm _lowerCAmelCase : Optional[int] = hidden_dropout _lowerCAmelCase : str = attention_dropout _lowerCAmelCase : Optional[int] = bos_token_id _lowerCAmelCase : str = eos_token_id _lowerCAmelCase : int = slow_but_exact super().__init__(bos_token_id=__a, eos_token_id=__a, **__a) class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.12') def __init__( self, __a, __a = "default", __a = None, __a = False, ): '''simple docstring''' super().__init__(__a, task=__a, patching_specs=__a, use_past=__a) if not getattr(self._config, "pad_token_id", __a): # TODO: how to do that better? _lowerCAmelCase : str = 0 @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__a, direction="inputs", inverted_values_shape=__a) _lowerCAmelCase : Optional[int] = {0: "batch", 1: "past_sequence + sequence"} else: _lowerCAmelCase : List[str] = {0: "batch", 1: "sequence"} return common_inputs @property def snake_case__ ( self): '''simple docstring''' return self._config.n_layer @property def snake_case__ ( self): '''simple docstring''' return self._config.n_head @property def snake_case__ ( self): '''simple docstring''' return 1E-3 def snake_case__ ( self, __a, __a = -1, __a = -1, __a = False, __a = None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = super(__a, self).generate_dummy_inputs( __a, batch_size=__a, seq_length=__a, is_pair=__a, framework=__a) # We need to order the input in the way they appears in the forward() _lowerCAmelCase : List[Any] = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch _lowerCAmelCase : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase : Union[str, Any] = seqlen + 2 _lowerCAmelCase : Any = self._config.hidden_size // self.num_attention_heads _lowerCAmelCase : Tuple = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _lowerCAmelCase : str = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _lowerCAmelCase : Optional[Any] = [ (torch.zeros(__a), torch.zeros(__a)) for _ in range(self.num_layers) ] _lowerCAmelCase : Dict = common_inputs["attention_mask"] if self.use_past: _lowerCAmelCase : List[str] = ordered_inputs["attention_mask"].dtype _lowerCAmelCase : Optional[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__a, __a, dtype=__a)], dim=1) return ordered_inputs @property def snake_case__ ( self): '''simple docstring''' return 13
717
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCAmelCase_ : def snake_case__ ( self, __a, __a, __a): '''simple docstring''' return None class UpperCAmelCase_ : def snake_case__ ( self, __a, __a, __a, __a): '''simple docstring''' return None class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def snake_case__ ( self): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__a, "tf", 12, **__a) @require_torch @slow def snake_case__ ( self): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__a, "pt", 12, **__a) @require_torch @slow def snake_case__ ( self): '''simple docstring''' from transformers import BertModel _lowerCAmelCase : List[str] = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t") as vocab_file: vocab_file.write("\n".join(__a)) vocab_file.flush() _lowerCAmelCase : Optional[Any] = BertTokenizerFast(vocab_file.name) with TemporaryDirectory() as bert_save_dir: _lowerCAmelCase : Any = BertModel(BertConfig(vocab_size=len(__a))) model.save_pretrained(__a) self._test_export(__a, "pt", 12, __a) @require_tf @slow def snake_case__ ( self): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCAmelCase : Tuple = self._test_export(__a, "tf", 12, **__a) _lowerCAmelCase : int = quantize(Path(__a)) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__a).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model") @require_torch @slow def snake_case__ ( self): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCAmelCase : str = self._test_export(__a, "pt", 12, **__a) _lowerCAmelCase : int = quantize(__a) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__a).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model") def snake_case__ ( self, __a, __a, __a, __a=None, **__a): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: _lowerCAmelCase : Optional[Any] = Path(__a).joinpath("model.onnx") # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__a, __a, __a, __a, __a, **__a) return path except Exception as e: self.fail(__a) @require_torch @require_tokenizers @slow def snake_case__ ( self): '''simple docstring''' from transformers import BertModel _lowerCAmelCase : Dict = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random")) _lowerCAmelCase : Any = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random") self._test_infer_dynamic_axis(__a, __a, "pt") @require_tf @require_tokenizers @slow def snake_case__ ( self): '''simple docstring''' from transformers import TFBertModel _lowerCAmelCase : int = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random")) _lowerCAmelCase : Optional[Any] = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random") self._test_infer_dynamic_axis(__a, __a, "tf") def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = FeatureExtractionPipeline(__a, __a) _lowerCAmelCase : Any = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] _lowerCAmelCase : Optional[int] = infer_shapes(__a, __a) # Assert all variables are present self.assertEqual(len(__a), len(__a)) self.assertTrue(all(var_name in shapes for var_name in variable_names)) self.assertSequenceEqual(variable_names[:3], __a) self.assertSequenceEqual(variable_names[3:], __a) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: "batch", 1: "sequence"}) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"], {0: "batch", 1: "sequence"}) self.assertDictEqual(shapes["output_1"], {0: "batch"}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = ["input_ids", "attention_mask", "token_type_ids"] _lowerCAmelCase : Optional[Any] = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} _lowerCAmelCase : Union[str, Any] = ensure_valid_input(FuncContiguousArgs(), __a, __a) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__a), 3) # Should have exactly the same input names self.assertEqual(set(__a), set(__a)) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__a, (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"])) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _lowerCAmelCase : List[Any] = ensure_valid_input(FuncNonContiguousArgs(), __a, __a) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__a), 1) self.assertEqual(len(__a), 1) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens["input_ids"]) self.assertEqual(ordered_input_names[0], "input_ids") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = generate_identified_filename(Path("/home/something/my_fake_model.onnx"), "-test") self.assertEqual("/home/something/my_fake_model-test.onnx", generated.as_posix())
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.model"} _snake_case = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } _snake_case = { "google/rembert": 256, } class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, __a, __a=False, __a=True, __a=True, __a="[CLS]", __a="[SEP]", __a="[UNK]", __a="[SEP]", __a="[PAD]", __a="[CLS]", __a="[MASK]", **__a, ): '''simple docstring''' super().__init__( do_lower_case=__a, remove_space=__a, keep_accents=__a, bos_token=__a, eos_token=__a, unk_token=__a, sep_token=__a, pad_token=__a, cls_token=__a, mask_token=__a, **__a, ) _lowerCAmelCase : str = do_lower_case _lowerCAmelCase : Union[str, Any] = remove_space _lowerCAmelCase : Any = keep_accents _lowerCAmelCase : Any = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor() self.sp_model.Load(__a) @property def snake_case__ ( self): '''simple docstring''' return len(self.sp_model) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = {self.convert_ids_to_tokens(__a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = d _lowerCAmelCase : str = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def snake_case__ ( self, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(__a) return pieces def snake_case__ ( self, __a): '''simple docstring''' return self.sp_model.PieceToId(__a) def snake_case__ ( self, __a): '''simple docstring''' return self.sp_model.IdToPiece(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.sp_model.decode_pieces(__a) return out_string def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Tuple = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model.") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__a)) + [1] + ([0] * len(__a)) + [1] return [1] + ([0] * len(__a)) + [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : int = [self.sep_token_id] _lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(__a): logger.error("Vocabulary path ({}) should be a directory".format(__a)) return _lowerCAmelCase : Union[str, Any] = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__a): copyfile(self.vocab_file, __a) return (out_vocab_file,)
719
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _snake_case = trt.Logger(trt.Logger.WARNING) _snake_case = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _snake_case = logging.getLogger(__name__) _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) _snake_case = parser.parse_args() if args.tokenizer_name: _snake_case = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) _snake_case = args.per_device_eval_batch_size _snake_case = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _snake_case = True _snake_case = "temp_engine/bert-fp32.engine" if args.fpaa: _snake_case = "temp_engine/bert-fp16.engine" if args.inta: _snake_case = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") _snake_case = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _snake_case = [network.get_input(i) for i in range(network.num_inputs)] _snake_case = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _snake_case = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _snake_case = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _snake_case = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = np.asarray(inputs["input_ids"] , dtype=np.intaa ) _lowerCAmelCase : List[str] = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) _lowerCAmelCase : Dict = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _lowerCamelCase ) # start time _lowerCAmelCase : Any = time.time() # Run inference context.execute_async( bindings=[int(_lowerCamelCase ) for d_inp in d_inputs] + [int(_lowerCamelCase ), int(_lowerCamelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) cuda.memcpy_dtoh_async(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Synchronize the stream and take time stream.synchronize() # end time _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Any = end_time - start_time _lowerCAmelCase : List[Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _snake_case = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _snake_case = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _snake_case = raw_datasets["validation"].column_names _snake_case = "question" if "question" in column_names else column_names[0] _snake_case = "context" if "context" in column_names else column_names[1] _snake_case = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _snake_case = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _snake_case = min(args.max_seq_length, tokenizer.model_max_length) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=_lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _lowerCAmelCase : List[Any] = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _lowerCAmelCase : str = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _lowerCAmelCase : Optional[int] = tokenized_examples.sequence_ids(_lowerCamelCase ) _lowerCAmelCase : str = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _lowerCAmelCase : Any = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _lowerCAmelCase : int = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples _snake_case = raw_datasets["validation"] # Validation Feature Creation _snake_case = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) _snake_case = default_data_collator _snake_case = eval_dataset.remove_columns(["example_id", "offset_mapping"]) _snake_case = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="eval" ): '''simple docstring''' _lowerCAmelCase : Optional[int] = postprocess_qa_predictions( examples=_lowerCamelCase , features=_lowerCamelCase , predictions=_lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _lowerCAmelCase : Any = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: _lowerCAmelCase : Any = [{"id": k, "prediction_text": v} for k, v in predictions.items()] _lowerCAmelCase : int = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_lowerCamelCase , label_ids=_lowerCamelCase ) _snake_case = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def A ( _lowerCamelCase ): '''simple docstring''' return trt.volume(engine.get_binding_shape(_lowerCamelCase ) ) * engine.get_binding_dtype(_lowerCamelCase ).itemsize # Allocate device memory for inputs and outputs. _snake_case = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _snake_case = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _snake_case = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _snake_case = cuda.mem_alloc(h_outputa.nbytes) _snake_case = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _snake_case = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') _snake_case = 0.0 _snake_case = 0 _snake_case = timeit.default_timer() _snake_case = None for step, batch in enumerate(eval_dataloader): _snake_case, _snake_case = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _snake_case, _snake_case = outputs _snake_case = torch.tensor(start_logits) _snake_case = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _snake_case = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _snake_case = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _snake_case = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _snake_case = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _snake_case = nested_truncate(all_preds, len(eval_dataset)) _snake_case = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) logger.info("Total Number of Inference = %d", niter) _snake_case = post_processing_function(eval_examples, eval_dataset, all_preds) _snake_case = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
720
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 16_000 ): '''simple docstring''' _lowerCAmelCase : str = int(round(sample_rate * max_length ) ) if len(_lowerCamelCase ) <= sample_length: return wav _lowerCAmelCase : str = randint(0 , len(_lowerCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field(default=a , metadata={'help': 'Name of a dataset from the datasets package'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A file containing the training audio paths and labels.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A file containing the validation audio paths and labels.'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) lowerCamelCase__ = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) lowerCamelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Name or path of preprocessor config.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def snake_case__ ( self): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", __a, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`.") def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase : str = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _lowerCAmelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. _lowerCAmelCase : Tuple = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--label_column_name` to the correct text column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _lowerCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _lowerCAmelCase : Tuple = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _lowerCAmelCase : Dict = feature_extractor.model_input_names[0] def train_transforms(_lowerCamelCase ): _lowerCAmelCase : Dict = [] for audio in batch[data_args.audio_column_name]: _lowerCAmelCase : Tuple = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : str = {model_input_name: inputs.get(_lowerCamelCase )} _lowerCAmelCase : Any = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_lowerCamelCase ): _lowerCAmelCase : List[str] = [audio["array"] for audio in batch[data_args.audio_column_name]] _lowerCAmelCase : Union[str, Any] = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : Tuple = {model_input_name: inputs.get(_lowerCamelCase )} _lowerCAmelCase : Dict = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _lowerCAmelCase : Optional[int] = raw_datasets["train"].features[data_args.label_column_name].names _lowerCAmelCase : Optional[int] = {}, {} for i, label in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = str(_lowerCamelCase ) _lowerCAmelCase : List[Any] = label # Load the accuracy metric from the datasets package _lowerCAmelCase : Optional[int] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase ): _lowerCAmelCase : List[Any] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_lowerCamelCase , references=eval_pred.label_ids ) _lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel=_lowerCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Union[str, Any] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _lowerCAmelCase : Optional[int] = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowerCAmelCase : List[Any] = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) # Initialize our trainer _lowerCAmelCase : str = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , ) # Training if training_args.do_train: _lowerCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase : Optional[int] = last_checkpoint _lowerCAmelCase : int = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCAmelCase : List[str] = trainer.evaluate() trainer.log_metrics("eval" , _lowerCamelCase ) trainer.save_metrics("eval" , _lowerCamelCase ) # Write model card and (optionally) push to hub _lowerCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) if __name__ == "__main__": main()
721
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = UnCLIPImageVariationPipeline lowerCamelCase__ = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowerCamelCase__ = IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowerCamelCase__ = False @property def snake_case__ ( self): '''simple docstring''' return 32 @property def snake_case__ ( self): '''simple docstring''' return 32 @property def snake_case__ ( self): '''simple docstring''' return self.time_input_dim @property def snake_case__ ( self): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case__ ( self): '''simple docstring''' return 100 @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(__a) @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) return CLIPVisionModelWithProjection(__a) @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Union[str, Any] = { "clip_embeddings_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "cross_attention_dim": self.cross_attention_dim, } _lowerCAmelCase : Union[str, Any] = UnCLIPTextProjModel(**__a) return model @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Optional[int] = { "sample_size": 32, # RGB in channels "in_channels": 3, # Out channels is double in channels because predicts mean and variance "out_channels": 6, "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": "identity", } _lowerCAmelCase : Tuple = UNetaDConditionModel(**__a) return model @property def snake_case__ ( self): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : str = UNetaDModel(**self.dummy_super_res_kwargs) return model @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(1) _lowerCAmelCase : Union[str, Any] = UNetaDModel(**self.dummy_super_res_kwargs) return model def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.dummy_decoder _lowerCAmelCase : int = self.dummy_text_proj _lowerCAmelCase : Tuple = self.dummy_text_encoder _lowerCAmelCase : str = self.dummy_tokenizer _lowerCAmelCase : Optional[Any] = self.dummy_super_res_first _lowerCAmelCase : List[Any] = self.dummy_super_res_last _lowerCAmelCase : Tuple = UnCLIPScheduler( variance_type="learned_range", prediction_type="epsilon", num_train_timesteps=1000, ) _lowerCAmelCase : Any = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="epsilon", num_train_timesteps=1000, ) _lowerCAmelCase : Dict = CLIPImageProcessor(crop_size=32, size=32) _lowerCAmelCase : str = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def snake_case__ ( self, __a, __a=0, __a=True): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, 3, 32, 32), rng=random.Random(__a)).to(__a) if str(__a).startswith("mps"): _lowerCAmelCase : List[Any] = torch.manual_seed(__a) else: _lowerCAmelCase : Dict = torch.Generator(device=__a).manual_seed(__a) if pil_image: _lowerCAmelCase : Any = input_image * 0.5 + 0.5 _lowerCAmelCase : int = input_image.clamp(0, 1) _lowerCAmelCase : Optional[Any] = input_image.cpu().permute(0, 2, 3, 1).float().numpy() _lowerCAmelCase : Dict = DiffusionPipeline.numpy_to_pil(__a)[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : int = self.pipeline_class(**__a) _lowerCAmelCase : int = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : List[str] = pipe(**__a) _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : str = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : Optional[int] = pipe( **__a, return_dict=__a, )[0] _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : str = np.array( [ 0.9_997, 0.0_002, 0.9_997, 0.9_997, 0.9_969, 0.0_023, 0.9_997, 0.9_969, 0.9_970, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : int = self.pipeline_class(**__a) _lowerCAmelCase : Tuple = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : Optional[int] = pipe(**__a) _lowerCAmelCase : Any = output.images _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : Optional[Any] = pipe( **__a, return_dict=__a, )[0] _lowerCAmelCase : str = image[0, -3:, -3:, -1] _lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Any = np.array([0.9_997, 0.0_003, 0.9_997, 0.9_997, 0.9_970, 0.0_024, 0.9_997, 0.9_971, 0.9_971]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "cpu" _lowerCAmelCase : List[str] = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**__a) _lowerCAmelCase : List[str] = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : int = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : List[str] = [ pipeline_inputs["image"], pipeline_inputs["image"], ] _lowerCAmelCase : Union[str, Any] = pipe(**__a) _lowerCAmelCase : Optional[Any] = output.images _lowerCAmelCase : Any = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : Tuple = [ tuple_pipeline_inputs["image"], tuple_pipeline_inputs["image"], ] _lowerCAmelCase : Dict = pipe( **__a, return_dict=__a, )[0] _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) _lowerCAmelCase : Dict = np.array( [ 0.9_997, 0.9_989, 0.0_008, 0.0_021, 0.9_960, 0.0_018, 0.0_014, 0.0_002, 0.9_933, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = torch.device("cpu") class UpperCAmelCase_ : lowerCamelCase__ = 1 _lowerCAmelCase : Optional[int] = self.get_dummy_components() _lowerCAmelCase : Union[str, Any] = self.pipeline_class(**__a) _lowerCAmelCase : Dict = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = torch.Generator(device=__a).manual_seed(0) _lowerCAmelCase : List[str] = pipe.decoder.dtype _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : List[Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) _lowerCAmelCase : List[Any] = pipe.prepare_latents( __a, dtype=__a, device=__a, generator=__a, latents=__a, scheduler=DummyScheduler()) _lowerCAmelCase : Union[str, Any] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) _lowerCAmelCase : int = pipe.prepare_latents( __a, dtype=__a, device=__a, generator=__a, latents=__a, scheduler=DummyScheduler()) _lowerCAmelCase : str = self.get_dummy_inputs(__a, pil_image=__a) _lowerCAmelCase : Dict = pipe( **__a, decoder_latents=__a, super_res_latents=__a).images _lowerCAmelCase : int = self.get_dummy_inputs(__a, pil_image=__a) # Don't pass image, instead pass embedding _lowerCAmelCase : Union[str, Any] = pipeline_inputs.pop("image") _lowerCAmelCase : Dict = pipe.image_encoder(__a).image_embeds _lowerCAmelCase : str = pipe( **__a, decoder_latents=__a, super_res_latents=__a, image_embeddings=__a, ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a).max() < 1E-4 @skip_mps def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = torch_device == "cpu" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor _lowerCAmelCase : Optional[int] = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=__a, expected_max_diff=__a) @skip_mps def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch_device == "cpu" _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : List[str] = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] self._test_inference_batch_single_identical( test_max_difference=__a, relax_max_difference=__a, additional_params_copy_to_batched_inputs=__a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes _lowerCAmelCase : Optional[int] = [2, 3] self._test_inference_batch_consistent( batch_sizes=__a, additional_params_copy_to_batched_inputs=__a, ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__a) @skip_mps def snake_case__ ( self): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def snake_case__ ( self): '''simple docstring''' return super().test_save_load_local() @skip_mps def snake_case__ ( self): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy") _lowerCAmelCase : Any = UnCLIPImageVariationPipeline.from_pretrained( "kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.floataa) _lowerCAmelCase : Dict = pipeline.to(__a) pipeline.set_progress_bar_config(disable=__a) _lowerCAmelCase : Dict = torch.Generator(device="cpu").manual_seed(0) _lowerCAmelCase : Tuple = pipeline( __a, generator=__a, output_type="np", ) _lowerCAmelCase : Any = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__a, __a, 15)
700
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _snake_case = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def A ( _lowerCamelCase ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return max(metric_fn(_lowerCamelCase , _lowerCamelCase ) for gt in ground_truths ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [line.strip() for line in open(_lowerCamelCase , "r" ).readlines()] _lowerCAmelCase : Optional[Any] = [] if args.gold_data_mode == "qa": _lowerCAmelCase : str = pd.read_csv(_lowerCamelCase , sep="\t" , header=_lowerCamelCase ) for answer_list in data[1]: _lowerCAmelCase : List[Any] = ast.literal_eval(_lowerCamelCase ) answers.append(_lowerCamelCase ) else: _lowerCAmelCase : Optional[int] = [line.strip() for line in open(_lowerCamelCase , "r" ).readlines()] _lowerCAmelCase : List[Any] = [[reference] for reference in references] _lowerCAmelCase : List[str] = 0 for prediction, ground_truths in zip(_lowerCamelCase , _lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) fa += metric_max_over_ground_truths(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = 100.0 * em / total _lowerCAmelCase : Any = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = args.k _lowerCAmelCase : Union[str, Any] = [line.strip() for line in open(_lowerCamelCase , "r" ).readlines()] _lowerCAmelCase : Optional[int] = [line.strip() for line in open(_lowerCamelCase , "r" ).readlines()] _lowerCAmelCase : List[str] = 0 for hypo, reference in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Dict = set(hypo.split("\t" )[:k] ) _lowerCAmelCase : str = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCAmelCase : str = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def strip_title(_lowerCamelCase ): if title.startswith("\"" ): _lowerCAmelCase : Any = title[1:] if title.endswith("\"" ): _lowerCAmelCase : Any = title[:-1] return title _lowerCAmelCase : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCamelCase , return_tensors="pt" , padding=_lowerCamelCase , truncation=_lowerCamelCase , )["input_ids"].to(args.device ) _lowerCAmelCase : int = rag_model.rag.question_encoder(_lowerCamelCase ) _lowerCAmelCase : List[Any] = question_enc_outputs[0] _lowerCAmelCase : Any = rag_model.retriever( _lowerCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) _lowerCAmelCase : int = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCAmelCase : Tuple = [] for docs in all_docs: _lowerCAmelCase : str = [strip_title(_lowerCamelCase ) for title in docs["title"]] provenance_strings.append("\t".join(_lowerCamelCase ) ) return provenance_strings def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCamelCase , return_tensors="pt" , padding=_lowerCamelCase , truncation=_lowerCamelCase ) _lowerCAmelCase : Any = inputs_dict.input_ids.to(args.device ) _lowerCAmelCase : Optional[int] = inputs_dict.attention_mask.to(args.device ) _lowerCAmelCase : Tuple = rag_model.generate( # rag_model overwrites generate _lowerCamelCase , attention_mask=_lowerCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowerCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCAmelCase : Dict = rag_model.retriever.generator_tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) if args.print_predictions: for q, a in zip(_lowerCamelCase , _lowerCamelCase ): logger.info("Q: {} - A: {}".format(_lowerCamelCase , _lowerCamelCase ) ) return answers def A ( ): '''simple docstring''' _lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=_lowerCamelCase , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=_lowerCamelCase , choices=["exact", "compressed", "legacy"] , type=_lowerCamelCase , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=_lowerCamelCase , type=_lowerCamelCase , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=_lowerCamelCase , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=_lowerCamelCase , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=_lowerCamelCase , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=_lowerCamelCase , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=_lowerCamelCase , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=_lowerCamelCase , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=_lowerCamelCase , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=_lowerCamelCase , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=_lowerCamelCase , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() _lowerCAmelCase : int = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = {} if args.model_type is None: _lowerCAmelCase : Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): _lowerCAmelCase : Tuple = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration _lowerCAmelCase : Any = args.n_docs if args.index_name is not None: _lowerCAmelCase : Optional[Any] = args.index_name if args.index_path is not None: _lowerCAmelCase : List[Any] = args.index_path else: _lowerCAmelCase : List[Any] = BartForConditionalGeneration _lowerCAmelCase : Union[str, Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , _lowerCamelCase ) _lowerCAmelCase : str = get_scores if args.eval_mode == "e2e" else get_precision_at_k _lowerCAmelCase : int = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(_lowerCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(_lowerCamelCase ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): _lowerCAmelCase : Optional[Any] = RagRetriever.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = model_class.from_pretrained(_lowerCamelCase , retriever=_lowerCamelCase , **_lowerCamelCase ) model.retriever.init_retrieval() else: _lowerCAmelCase : str = model_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: _lowerCAmelCase : Optional[Any] = [] for line in tqdm(_lowerCamelCase ): questions.append(line.strip() ) if len(_lowerCamelCase ) == args.eval_batch_size: _lowerCAmelCase : Any = evaluate_batch_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) preds_file.write("\n".join(_lowerCamelCase ) + "\n" ) preds_file.flush() _lowerCAmelCase : Dict = [] if len(_lowerCamelCase ) > 0: _lowerCAmelCase : Optional[int] = evaluate_batch_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) preds_file.write("\n".join(_lowerCamelCase ) ) preds_file.flush() score_fn(_lowerCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _snake_case = get_args() main(args)
701
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = "▁" _snake_case = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = BigBirdTokenizer lowerCamelCase__ = BigBirdTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : List[str] = self.tokenizer_class(__a, keep_accents=__a) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = "<s>" _lowerCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a), __a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<unk>") self.assertEqual(vocab_keys[1], "<s>") self.assertEqual(vocab_keys[-1], "[MASK]") self.assertEqual(len(__a), 1004) def snake_case__ ( self): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1000) def snake_case__ ( self): '''simple docstring''' if not self.test_rust_tokenizer: return _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = self.get_rust_tokenizer() _lowerCAmelCase : List[Any] = "I was born in 92000, and this is falsé." _lowerCAmelCase : Optional[int] = tokenizer.tokenize(__a) _lowerCAmelCase : Any = rust_tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : int = tokenizer.encode(__a, add_special_tokens=__a) _lowerCAmelCase : Dict = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : str = self.get_rust_tokenizer() _lowerCAmelCase : List[Any] = tokenizer.encode(__a) _lowerCAmelCase : Any = rust_tokenizer.encode(__a) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = BigBirdTokenizer(__a, keep_accents=__a) _lowerCAmelCase : List[Any] = tokenizer.tokenize("This is a test") self.assertListEqual(__a, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a), [285, 46, 10, 170, 382], ) _lowerCAmelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __a, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) _lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(__a) self.assertListEqual( __a, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], ) _lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual( __a, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) @cached_property def snake_case__ ( self): '''simple docstring''' return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = "Hello World!" _lowerCAmelCase : Any = [65, 1_8536, 2260, 101, 66] self.assertListEqual(__a, self.big_tokenizer.encode(__a)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off _lowerCAmelCase : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(__a, self.big_tokenizer.encode(__a)) @require_torch @slow def snake_case__ ( self): '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _lowerCAmelCase : Any = list(self.big_tokenizer.get_vocab().keys())[:10] _lowerCAmelCase : str = " ".join(__a) _lowerCAmelCase : int = self.big_tokenizer.encode_plus(__a, return_tensors="pt", return_token_type_ids=__a) _lowerCAmelCase : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence], return_tensors="pt", return_token_type_ids=__a) _lowerCAmelCase : Tuple = BigBirdConfig(attention_type="original_full") _lowerCAmelCase : List[Any] = BigBirdModel(__a) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a) model(**__a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") _lowerCAmelCase : Tuple = tokenizer.decode(tokenizer("Paris is the [MASK].").input_ids) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]") @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = {"input_ids": [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a, model_name="google/bigbird-roberta-base", revision="215c99f1600e06f83acce68422f2035b2b5c3510", )
702
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = None # Automatically constructed lowerCamelCase__ = 'dict' lowerCamelCase__ = None lowerCamelCase__ = field(default='Translation' , init=a , repr=a) def __call__( self): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def snake_case__ ( self): '''simple docstring''' from .features import Value return {k: Value("string") for k in sorted(self.languages)} @dataclass class UpperCAmelCase_ : lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None # Automatically constructed lowerCamelCase__ = 'dict' lowerCamelCase__ = None lowerCamelCase__ = field(default='TranslationVariableLanguages' , init=a , repr=a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = sorted(set(self.languages)) if self.languages else None _lowerCAmelCase : str = len(self.languages) if self.languages else None def __call__( self): '''simple docstring''' return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = set(self.languages) if self.languages and set(__a) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__a) - lang_set))}) are not in valid set ({', '.join(__a)}).") # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase : List[str] = [] for lang, text in translation_dict.items(): if isinstance(__a, __a): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. _lowerCAmelCase : List[str] = zip(*sorted(__a)) return {"language": languages, "translation": translations} def snake_case__ ( self): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("string")), "translation": Sequence(Value("string")), }
703
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
0
from copy import deepcopy class UpperCAmelCase_ : def __init__( self, __a = None, __a = None): '''simple docstring''' if arr is None and size is not None: _lowerCAmelCase : int = size _lowerCAmelCase : Any = [0] * size elif arr is not None: self.init(__a) else: raise ValueError("Either arr or size must be specified") def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Dict = len(__a) _lowerCAmelCase : List[str] = deepcopy(__a) for i in range(1, self.size): _lowerCAmelCase : List[Any] = self.next_(__a) if j < self.size: self.tree[j] += self.tree[i] def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tree[:] for i in range(self.size - 1, 0, -1): _lowerCAmelCase : Union[str, Any] = self.next_(__a) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def snake_case__ ( __a): '''simple docstring''' return index + (index & (-index)) @staticmethod def snake_case__ ( __a): '''simple docstring''' return index - (index & (-index)) def snake_case__ ( self, __a, __a): '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _lowerCAmelCase : List[str] = self.next_(__a) def snake_case__ ( self, __a, __a): '''simple docstring''' self.add(__a, value - self.get(__a)) def snake_case__ ( self, __a): '''simple docstring''' if right == 0: return 0 _lowerCAmelCase : int = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _lowerCAmelCase : Any = self.prev(__a) return result def snake_case__ ( self, __a, __a): '''simple docstring''' return self.prefix(__a) - self.prefix(__a) def snake_case__ ( self, __a): '''simple docstring''' return self.query(__a, index + 1) def snake_case__ ( self, __a): '''simple docstring''' value -= self.tree[0] if value < 0: return -1 _lowerCAmelCase : int = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _lowerCAmelCase : Optional[Any] = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
704
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F"{torch_layer} layer.weight does not match" _lowerCAmelCase : Optional[Any] = nn.Parameter(_lowerCamelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"{torch_layer} layer.bias does not match" _lowerCAmelCase : Dict = nn.Parameter(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = np.asarray(weights[0] ) _lowerCAmelCase : List[Any] = np.asarray(weights[1] ) _lowerCAmelCase : Optional[int] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowerCamelCase ).view(-1 , _lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.asarray(weights[0] ) _lowerCAmelCase : Any = np.asarray(weights[1] ) _lowerCAmelCase : List[str] = np.asarray(weights[2] ) _lowerCAmelCase : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCamelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowerCamelCase ).view(-1 , _lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = weights[0][0][0] _lowerCAmelCase : str = np.asarray(layer_norm_a[0] ) _lowerCAmelCase : Tuple = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_lowerCamelCase ) , torch.tensor(_lowerCamelCase ) , ) # lsh weights + output _lowerCAmelCase : str = weights[0][1] if len(_lowerCamelCase ) < 4: set_layer_weights_in_torch_lsh(_lowerCamelCase , torch_block.attention , _lowerCamelCase ) else: set_layer_weights_in_torch_local(_lowerCamelCase , torch_block.attention , _lowerCamelCase ) # intermediate weighs _lowerCAmelCase : List[str] = weights[2][0][1][2] # Chunked Feed Forward if len(_lowerCamelCase ) == 4: _lowerCAmelCase : Union[str, Any] = intermediate_weights[2] # layernorm 2 _lowerCAmelCase : Union[str, Any] = np.asarray(intermediate_weights[0][0] ) _lowerCAmelCase : int = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_lowerCamelCase ) , torch.tensor(_lowerCamelCase ) , ) # intermediate dense _lowerCAmelCase : List[Any] = np.asarray(intermediate_weights[1][0] ) _lowerCAmelCase : Optional[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowerCamelCase ) , ) # intermediate out _lowerCAmelCase : str = np.asarray(intermediate_weights[4][0] ) _lowerCAmelCase : Optional[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowerCamelCase ) , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch_model.reformer # word embeds _lowerCAmelCase : str = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_lowerCamelCase ) , ) if isinstance(weights[3] , _lowerCamelCase ): _lowerCAmelCase : Dict = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _lowerCAmelCase : Tuple = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"{position_embeddings[emb_idx]} emb does not match" _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.tensor(_lowerCamelCase ) ) _lowerCAmelCase : int = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _lowerCamelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _lowerCAmelCase : Dict = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # output layer norm _lowerCAmelCase : List[Any] = np.asarray(weights[7][0] ) _lowerCAmelCase : List[str] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_lowerCamelCase ) , torch.tensor(_lowerCamelCase ) , ) # output embeddings _lowerCAmelCase : str = np.asarray(weights[9][0] ) _lowerCAmelCase : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowerCamelCase ) , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ReformerConfig.from_json_file(_lowerCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) _lowerCAmelCase : str = ReformerModelWithLMHead(_lowerCamelCase ) with open(_lowerCamelCase , "rb" ) as f: _lowerCAmelCase : Any = pickle.load(_lowerCamelCase )["weights"] set_model_weights_in_torch(_lowerCamelCase , _lowerCamelCase , config.hidden_size ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
706
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
0
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = checkpoints.load_tax_checkpoint(_lowerCamelCase ) _lowerCAmelCase : Dict = flatten_dict(_lowerCamelCase ) return flax_params def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : str = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } _lowerCAmelCase : int = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _lowerCAmelCase : Optional[int] = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _lowerCAmelCase : Any = new_key.replace(_lowerCamelCase , _lowerCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _lowerCAmelCase : List[Any] = new_key.replace(_lowerCamelCase , _lowerCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _lowerCAmelCase : Dict = re.sub(r"layers_(\d+)" , r"layer.\1" , _lowerCamelCase ) _lowerCAmelCase : Dict = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _lowerCAmelCase : Optional[int] = re.sub(r"layers_(\d+)" , r"layer.\1" , _lowerCamelCase ) _lowerCAmelCase : Dict = flax_dict[key] _lowerCAmelCase : Optional[int] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _lowerCAmelCase : Any = torch.from_numpy(converted_dict[key].T ) else: _lowerCAmelCase : List[str] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : str = get_flax_param(_lowerCamelCase ) if not use_large: _lowerCAmelCase : Optional[Any] = PixaStructVisionConfig() _lowerCAmelCase : Optional[int] = PixaStructTextConfig() else: _lowerCAmelCase : Optional[int] = PixaStructVisionConfig( hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 ) _lowerCAmelCase : Dict = PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 ) _lowerCAmelCase : Union[str, Any] = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_lowerCamelCase ) _lowerCAmelCase : List[str] = PixaStructForConditionalGeneration(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = rename_and_convert_flax_params(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) _lowerCAmelCase : Tuple = PixaStructImageProcessor() _lowerCAmelCase : Dict = PixaStructProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) if use_large: _lowerCAmelCase : Tuple = 4_096 _lowerCAmelCase : Union[str, Any] = True # mkdir if needed os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) print("Model saved in {}".format(_lowerCamelCase ) ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _snake_case = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
707
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def A ( _lowerCamelCase ): '''simple docstring''' if "model" in orig_key: _lowerCAmelCase : Union[str, Any] = orig_key.replace("model." , "" ) if "norm1" in orig_key: _lowerCAmelCase : Any = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: _lowerCAmelCase : int = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: _lowerCAmelCase : Optional[int] = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: _lowerCAmelCase : Optional[int] = orig_key.split("." )[0].split("_" )[-1] _lowerCAmelCase : Dict = orig_key.replace(F"transformer_{layer_num}" , F"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: _lowerCAmelCase : Dict = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: _lowerCAmelCase : str = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: _lowerCAmelCase : Union[str, Any] = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: _lowerCAmelCase : Any = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: _lowerCAmelCase : Union[str, Any] = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: _lowerCAmelCase : List[str] = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: _lowerCAmelCase : Optional[Any] = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: _lowerCAmelCase : List[Any] = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: _lowerCAmelCase : Dict = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: _lowerCAmelCase : Any = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: _lowerCAmelCase : Any = "yoso." + orig_key return orig_key def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCAmelCase : List[Any] = orig_state_dict.pop(_lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: _lowerCAmelCase : Any = val _lowerCAmelCase : Any = orig_state_dict["cls.predictions.decoder.bias"] _lowerCAmelCase : Optional[int] = torch.arange(_lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" )["model_state_dict"] _lowerCAmelCase : Optional[int] = YosoConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : List[str] = YosoForMaskedLM(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , _lowerCamelCase ) print(model.load_state_dict(_lowerCamelCase ) ) model.eval() model.save_pretrained(_lowerCamelCase ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
708
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase_ : def __init__( self, __a, __a=2, __a=32, __a=16, __a=3, __a=True, __a=True, __a=32, __a=4, __a=[0, 1, 2, 3], __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=0.02, __a=3, __a=[1, 384, 24, 24], __a=True, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : Optional[int] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Dict = is_training _lowerCAmelCase : Tuple = use_labels _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : int = backbone_out_indices _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Any = num_labels _lowerCAmelCase : Union[str, Any] = backbone_featmap_shape _lowerCAmelCase : List[str] = scope _lowerCAmelCase : str = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Any = (image_size // patch_size) ** 2 _lowerCAmelCase : Optional[int] = num_patches + 1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : str = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__a, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=__a, backbone_featmap_shape=self.backbone_featmap_shape, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = DPTModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Tuple = DPTForDepthEstimation(__a) model.to(__a) model.eval() _lowerCAmelCase : int = model(__a) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : str = DPTForSemanticSegmentation(__a) model.to(__a) model.eval() _lowerCAmelCase : Tuple = model(__a, labels=__a) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() _lowerCAmelCase : List[str] = config_and_inputs _lowerCAmelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase__ = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = DPTModelTester(self) _lowerCAmelCase : int = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(__a) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a, nn.Linear)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(__a) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Tuple = [*signature.parameters.keys()] _lowerCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) def snake_case__ ( self): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = True if model_class in get_values(__a): continue _lowerCAmelCase : Any = model_class(__a) model.to(__a) model.train() _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(__a, __a, return_labels=__a) _lowerCAmelCase : int = model(**__a).loss loss.backward() def snake_case__ ( self): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = False _lowerCAmelCase : Any = True if model_class in get_values(__a) or not model_class.supports_gradient_checkpointing: continue _lowerCAmelCase : Optional[Any] = model_class(__a) model.to(__a) model.gradient_checkpointing_enable() model.train() _lowerCAmelCase : List[str] = self._prepare_for_class(__a, __a, return_labels=__a) _lowerCAmelCase : List[Any] = model(**__a).loss loss.backward() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Union[str, Any] = _config_zero_init(__a) for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(config=__a) # Skip the check for the backbone _lowerCAmelCase : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _lowerCAmelCase : Dict = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _lowerCAmelCase : List[Any] = DPTModel.from_pretrained(__a) self.assertIsNotNone(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = "add" with self.assertRaises(__a): _lowerCAmelCase : Dict = DPTForDepthEstimation(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas") _lowerCAmelCase : Optional[int] = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(__a) _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=__a, return_tensors="pt").to(__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**__a) _lowerCAmelCase : Optional[Any] = outputs.predicted_depth # verify the predicted depth _lowerCAmelCase : List[str] = torch.Size((1, 384, 384)) self.assertEqual(predicted_depth.shape, __a) _lowerCAmelCase : Tuple = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]]).to(__a) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100, __a, atol=1E-4))
709
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
0
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : def __init__( self, __a, __a=2, __a=3, __a=4, __a=2, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=36, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=6, __a=6, __a=3, __a=4, __a=None, __a=1000, ): '''simple docstring''' _lowerCAmelCase : int = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : int = image_size _lowerCAmelCase : Tuple = patch_size _lowerCAmelCase : Any = is_training _lowerCAmelCase : str = use_input_mask _lowerCAmelCase : int = use_token_type_ids _lowerCAmelCase : Any = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : Optional[int] = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : List[str] = type_sequence_label_size _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Dict = coordinate_size _lowerCAmelCase : Any = shape_size _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : int = num_choices _lowerCAmelCase : Any = scope _lowerCAmelCase : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCAmelCase : int = text_seq_length _lowerCAmelCase : str = (image_size // patch_size) ** 2 + 1 _lowerCAmelCase : Optional[Any] = self.text_seq_length + self.image_seq_length def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox) _lowerCAmelCase : Dict = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : str = bbox[i, j, 3] _lowerCAmelCase : Tuple = bbox[i, j, 1] _lowerCAmelCase : Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : List[Any] = bbox[i, j, 2] _lowerCAmelCase : Any = bbox[i, j, 0] _lowerCAmelCase : Tuple = tmp_coordinate _lowerCAmelCase : Dict = tf.constant(__a) _lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : int = None if self.use_input_mask: _lowerCAmelCase : str = random_attention_mask([self.batch_size, self.text_seq_length]) _lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size) _lowerCAmelCase : Any = None _lowerCAmelCase : List[Any] = None if self.use_labels: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels) _lowerCAmelCase : Optional[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = TFLayoutLMvaModel(config=__a) # text + image _lowerCAmelCase : Tuple = model(__a, pixel_values=__a, training=__a) _lowerCAmelCase : Optional[Any] = model( __a, bbox=__a, pixel_values=__a, attention_mask=__a, token_type_ids=__a, training=__a, ) _lowerCAmelCase : List[str] = model(__a, bbox=__a, pixel_values=__a, training=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # text only _lowerCAmelCase : int = model(__a, training=__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size)) # image only _lowerCAmelCase : Any = model({"pixel_values": pixel_values}, training=__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : List[Any] = TFLayoutLMvaForSequenceClassification(config=__a) _lowerCAmelCase : List[str] = model( __a, bbox=__a, pixel_values=__a, attention_mask=__a, token_type_ids=__a, labels=__a, training=__a, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : str = TFLayoutLMvaForTokenClassification(config=__a) _lowerCAmelCase : Any = model( __a, bbox=__a, pixel_values=__a, attention_mask=__a, token_type_ids=__a, labels=__a, training=__a, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = 2 _lowerCAmelCase : List[str] = TFLayoutLMvaForQuestionAnswering(config=__a) _lowerCAmelCase : Any = model( __a, bbox=__a, pixel_values=__a, attention_mask=__a, token_type_ids=__a, start_positions=__a, end_positions=__a, training=__a, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() (_lowerCAmelCase) : Tuple = config_and_inputs _lowerCAmelCase : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__ = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' return True def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : int = copy.deepcopy(__a) if model_class in get_values(__a): _lowerCAmelCase : int = { k: tf.tile(tf.expand_dims(__a, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) if isinstance(__a, tf.Tensor) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Dict = tf.ones(self.model_tester.batch_size, dtype=tf.intaa) elif model_class in get_values(__a): _lowerCAmelCase : List[Any] = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) _lowerCAmelCase : Any = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) elif model_class in get_values(__a): _lowerCAmelCase : Union[str, Any] = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) elif model_class in get_values(__a): _lowerCAmelCase : Optional[int] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.intaa) return inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = TFLayoutLMvaModelTester(self) _lowerCAmelCase : Any = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(__a) if getattr(__a, "hf_compute_loss", __a): # The number of elements in the loss should be the same as the number of elements in the label _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) _lowerCAmelCase : Union[str, Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=__a)[0] ] _lowerCAmelCase : Any = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _lowerCAmelCase : str = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) _lowerCAmelCase : List[str] = prepared_for_class.pop("input_ids") _lowerCAmelCase : Tuple = model(__a, **__a)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss when we mask some positions _lowerCAmelCase : Dict = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) _lowerCAmelCase : Union[str, Any] = prepared_for_class.pop("input_ids") if "labels" in prepared_for_class: _lowerCAmelCase : Union[str, Any] = prepared_for_class["labels"].numpy() if len(labels.shape) > 1 and labels.shape[1] != 1: _lowerCAmelCase : int = -100 _lowerCAmelCase : Optional[int] = tf.convert_to_tensor(__a) _lowerCAmelCase : int = model(__a, **__a)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) self.assertTrue(not np.any(np.isnan(loss.numpy()))) # Test that model correctly compute the loss with a dict _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) _lowerCAmelCase : int = model(__a)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss with a tuple _lowerCAmelCase : Tuple = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) # Get keys that were added with the _prepare_for_class function _lowerCAmelCase : Any = prepared_for_class.keys() - inputs_dict.keys() _lowerCAmelCase : List[str] = inspect.signature(model.call).parameters _lowerCAmelCase : List[Any] = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple _lowerCAmelCase : str = {0: "input_ids"} for label_key in label_keys: _lowerCAmelCase : int = signature_names.index(__a) _lowerCAmelCase : str = label_key _lowerCAmelCase : Tuple = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple _lowerCAmelCase : Optional[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: _lowerCAmelCase : Tuple = prepared_for_class[value] _lowerCAmelCase : Any = tuple(__a) # Send to model _lowerCAmelCase : Tuple = model(tuple_input[:-1])[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) def snake_case__ ( self): '''simple docstring''' ( _lowerCAmelCase ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a, __a, __a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' ( _lowerCAmelCase ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : Union[str, Any] = type self.model_tester.create_and_check_model(__a, __a, __a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' ( _lowerCAmelCase ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __a, __a, __a, __a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' ( _lowerCAmelCase ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __a, __a, __a, __a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' ( _lowerCAmelCase ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __a, __a, __a, __a, __a, __a, __a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[str] = TFLayoutLMvaModel.from_pretrained(__a) self.assertIsNotNone(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=__a) if is_vision_available() else None @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base") _lowerCAmelCase : str = self.default_image_processor _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=__a, return_tensors="tf").pixel_values _lowerCAmelCase : Tuple = tf.constant([[1, 2]]) _lowerCAmelCase : Dict = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]]), axis=0) # forward pass _lowerCAmelCase : int = model(input_ids=__a, bbox=__a, pixel_values=__a, training=__a) # verify the logits _lowerCAmelCase : List[Any] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape, __a) _lowerCAmelCase : int = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]]) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], __a, atol=1E-4))
710
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
0
from __future__ import annotations from math import pi def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
711
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = inspect.getfile(accelerate.test_utils) lowerCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_cli.py']) lowerCamelCase__ = ['accelerate', 'launch'] lowerCamelCase__ = Path.home() / '.cache/huggingface/accelerate' lowerCamelCase__ = 'default_config.yaml' lowerCamelCase__ = config_folder / config_file lowerCamelCase__ = config_folder / '_default_config.yaml' lowerCamelCase__ = Path('tests/test_configs') @classmethod def snake_case__ ( cls): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def snake_case__ ( cls): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path], env=os.environ.copy()) def snake_case__ ( self): '''simple docstring''' for config in sorted(self.test_config_path.glob("**/*.yaml")): with self.subTest(config_file=__a): execute_subprocess_async( self.base_cmd + ["--config_file", str(__a), self.test_file_path], env=os.environ.copy()) def snake_case__ ( self): '''simple docstring''' execute_subprocess_async(["accelerate", "test"], env=os.environ.copy()) class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = 'test-tpu' lowerCamelCase__ = 'us-central1-a' lowerCamelCase__ = 'ls' lowerCamelCase__ = ['accelerate', 'tpu-config'] lowerCamelCase__ = 'cd /usr/share' lowerCamelCase__ = 'tests/test_samples/test_command_file.sh' lowerCamelCase__ = 'Running gcloud compute tpus tpu-vm ssh' def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"], return_stdout=__a) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all", __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ], return_stdout=__a, ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all", __a, )
712
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
0
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
713
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
0
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=99, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=50, __a=0.02, __a=True, __a=None, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : int = seq_length _lowerCAmelCase : Dict = is_training _lowerCAmelCase : Tuple = use_input_mask _lowerCAmelCase : str = vocab_size _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : int = use_labels _lowerCAmelCase : Union[str, Any] = scope def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Dict = None if self.use_input_mask: _lowerCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Tuple = self.get_config() return config, input_ids, input_mask, token_labels def snake_case__ ( self): '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, is_decoder=__a, initializer_range=self.initializer_range, ) def snake_case__ ( self): '''simple docstring''' ( _lowerCAmelCase ) : Optional[int] = self.prepare_config_and_inputs() _lowerCAmelCase : int = True _lowerCAmelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case__ ( self, __a, __a, __a, __a, **__a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = BertGenerationEncoder(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[int] = model(__a, attention_mask=__a) _lowerCAmelCase : str = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = True _lowerCAmelCase : Dict = BertGenerationEncoder(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model( __a, attention_mask=__a, encoder_hidden_states=__a, encoder_attention_mask=__a, ) _lowerCAmelCase : List[str] = model( __a, attention_mask=__a, encoder_hidden_states=__a, ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Dict = BertGenerationDecoder(config=__a).to(__a).eval() # first forward pass _lowerCAmelCase : List[str] = model( __a, attention_mask=__a, encoder_hidden_states=__a, encoder_attention_mask=__a, use_cache=__a, ) _lowerCAmelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase : str = ids_tensor((self.batch_size, 3), config.vocab_size) _lowerCAmelCase : Tuple = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and _lowerCAmelCase : List[Any] = torch.cat([input_ids, next_tokens], dim=-1) _lowerCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask], dim=-1) _lowerCAmelCase : Optional[int] = model( __a, attention_mask=__a, encoder_hidden_states=__a, encoder_attention_mask=__a, output_hidden_states=__a, )["hidden_states"][0] _lowerCAmelCase : Optional[int] = model( __a, attention_mask=__a, encoder_hidden_states=__a, encoder_attention_mask=__a, past_key_values=__a, output_hidden_states=__a, )["hidden_states"][0] # select random slice _lowerCAmelCase : int = ids_tensor((1,), output_from_past.shape[-1]).item() _lowerCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a, __a, atol=1E-3)) def snake_case__ ( self, __a, __a, __a, __a, *__a, ): '''simple docstring''' _lowerCAmelCase : Dict = BertGenerationDecoder(__a) model.to(__a) model.eval() _lowerCAmelCase : Any = model(__a, attention_mask=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.prepare_config_and_inputs() _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , a , unittest.TestCase): lowerCamelCase__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowerCamelCase__ = (BertGenerationDecoder,) if is_torch_available() else () lowerCamelCase__ = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = BertGenerationEncoderTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : Optional[int] = "bert" self.model_tester.create_and_check_model(__a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__a) def snake_case__ ( self): '''simple docstring''' ( _lowerCAmelCase ) : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCAmelCase : str = None self.model_tester.create_and_check_model_as_decoder( __a, __a, __a, __a, __a, __a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(__a) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") _lowerCAmelCase : Union[str, Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]]) with torch.no_grad(): _lowerCAmelCase : Any = model(__a)[0] _lowerCAmelCase : Any = torch.Size([1, 8, 1024]) self.assertEqual(output.shape, __a) _lowerCAmelCase : Dict = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3], __a, atol=1E-4)) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") _lowerCAmelCase : List[str] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]]) with torch.no_grad(): _lowerCAmelCase : List[str] = model(__a)[0] _lowerCAmelCase : str = torch.Size([1, 8, 5_0358]) self.assertEqual(output.shape, __a) _lowerCAmelCase : Optional[Any] = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]]) self.assertTrue(torch.allclose(output[:, :3, :3], __a, atol=1E-4))
714
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _snake_case = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) _snake_case = [] _snake_case = [] _snake_case = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} _snake_case = [ { "type": "header", "text": { "type": "plain_text", "text": f'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', "emoji": True, }, } ] _snake_case = 0 for log in Path().glob("*.log"): _snake_case = 0 with open(log, "r") as f: for line in f: _snake_case = json.loads(line) if line.get("nodeid", "") != "": _snake_case = line["nodeid"] if line.get("duration", None) is not None: _snake_case = f'''{line["duration"]:.4f}''' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _snake_case = [] log.unlink() _snake_case = "" _snake_case = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" _snake_case = [] _snake_case = {} for test in failed_tests: _snake_case = test[0].split("::") _snake_case = data[0].split("/")[-1] if data[0] not in filesafailed: _snake_case = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _snake_case = [test[0] for test in failed_table] _snake_case = list(set(files)) # Count number of instances in failed_tests _snake_case = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _snake_case = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: _snake_case = "Too many failed tests, please see the full report in the Action results." _snake_case = len(err) + 10 _snake_case = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: _snake_case = "No failed tests! 🤗" print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient _snake_case = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": _snake_case = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) _snake_case = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) _snake_case = { "type": "context", "elements": [ { "type": "plain_text", "text": f'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) _snake_case = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) _snake_case = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _snake_case = "" for i, row in enumerate(test_failures): if row[0] != test_class: _snake_case = row[0] else: _snake_case = "" _snake_case = { "type": "section", "text": { "type": "mrkdwn", "text": f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
715
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _snake_case = "base_with_context" def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) _lowerCAmelCase : Any = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase : Optional[Any] = weights[F"layers_{lyr_num}"] _lowerCAmelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : Dict = ly_weight["attention"] _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) _lowerCAmelCase : str = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase : List[str] = weights[F"layers_{lyr_num}"] _lowerCAmelCase : List[Any] = ly_weight["attention"] _lowerCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCAmelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) _lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowerCAmelCase : List[Any] = weights[F"layers_{lyr_num}"] _lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) _lowerCAmelCase : int = ly_weight["self_attention"] _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : int = ly_weight["MultiHeadDotProductAttention_0"] _lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCAmelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowerCAmelCase : Optional[int] = jnp.tree_util.tree_map(onp.array , _lowerCamelCase ) _lowerCAmelCase : int = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] _lowerCAmelCase : Any = os.path.join(args.checkpoint_path , ".." , "config.gin" ) _lowerCAmelCase : Dict = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase ) _lowerCAmelCase : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) _lowerCAmelCase : List[str] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) _lowerCAmelCase : str = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) _lowerCAmelCase : Dict = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowerCAmelCase : List[str] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , _lowerCamelCase ) _lowerCAmelCase : int = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , _lowerCamelCase ) _lowerCAmelCase : List[str] = load_decoder(ta_checkpoint["target"]["decoder"] , _lowerCamelCase ) _lowerCAmelCase : List[str] = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) _lowerCAmelCase : int = SpectrogramDiffusionPipeline( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help="Path to the original jax model checkpoint.", ) _snake_case = parser.parse_args() main(args)
716
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
0
from __future__ import annotations _snake_case = "#" class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : dict = {} def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self._trie for char in text: if char not in trie: _lowerCAmelCase : List[Any] = {} _lowerCAmelCase : str = trie[char] _lowerCAmelCase : str = True def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self._trie for char in prefix: if char in trie: _lowerCAmelCase : List[Any] = trie[char] else: return [] return self._elements(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Dict = [] for c, v in d.items(): _lowerCAmelCase : List[Any] = [" "] if c == END else [(c + s) for s in self._elements(__a)] result.extend(__a) return tuple(__a) _snake_case = Trie() _snake_case = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = trie.find_word(_lowerCamelCase ) return tuple(string + word for word in suffixes ) def A ( ): '''simple docstring''' print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
717
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _snake_case = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for attribute in key.split("." ): _lowerCAmelCase : int = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCAmelCase : Dict = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCAmelCase : str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Optional[Any] = value elif weight_type == "weight_g": _lowerCAmelCase : List[str] = value elif weight_type == "weight_v": _lowerCAmelCase : Dict = value elif weight_type == "bias": _lowerCAmelCase : int = value elif weight_type == "running_mean": _lowerCAmelCase : Optional[Any] = value elif weight_type == "running_var": _lowerCAmelCase : Tuple = value elif weight_type == "num_batches_tracked": _lowerCAmelCase : Tuple = value elif weight_type == "inv_freq": _lowerCAmelCase : List[Any] = value else: _lowerCAmelCase : Tuple = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[int] = fairseq_model.state_dict() _lowerCAmelCase : Dict = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : Tuple = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCAmelCase : Tuple = True else: for key, mapped_key in MAPPING.items(): _lowerCAmelCase : Union[str, Any] = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCAmelCase : str = True if "*" in mapped_key: _lowerCAmelCase : Union[str, Any] = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCAmelCase : Tuple = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCAmelCase : Optional[Any] = None elif "pos_bias_v" in name: _lowerCAmelCase : List[Any] = None elif "weight_g" in name: _lowerCAmelCase : List[str] = "weight_g" elif "weight_v" in name: _lowerCAmelCase : Union[str, Any] = "weight_v" elif "bias" in name: _lowerCAmelCase : int = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : Any = "weight" elif "running_mean" in name: _lowerCAmelCase : List[str] = "running_mean" elif "inv_freq" in name: _lowerCAmelCase : Any = "inv_freq" elif "running_var" in name: _lowerCAmelCase : List[str] = "running_var" elif "num_batches_tracked" in name: _lowerCAmelCase : Optional[int] = "num_batches_tracked" else: _lowerCAmelCase : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = full_name.split("conv_layers." )[-1] _lowerCAmelCase : Any = name.split("." ) _lowerCAmelCase : Optional[int] = int(items[0] ) _lowerCAmelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _lowerCAmelCase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : int = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ): '''simple docstring''' if config_path is not None: _lowerCAmelCase : int = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCAmelCase : Union[str, Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCAmelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCAmelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase : Dict = target_dict.pad_index _lowerCAmelCase : Optional[Any] = target_dict.bos_index _lowerCAmelCase : List[Any] = target_dict.eos_index _lowerCAmelCase : List[str] = len(target_dict.symbols ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCAmelCase : List[str] = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : str = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCAmelCase : Dict = True if config.feat_extract_norm == "layer" else False _lowerCAmelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCAmelCase : str = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCAmelCase : Dict = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCAmelCase : int = argparse.Namespace(task="audio_pretraining" ) _lowerCAmelCase : Dict = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _snake_case = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : List[str] = use_shared_relative_position_bias _lowerCAmelCase : List[str] = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[int] = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : int = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
658
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _snake_case = numpy.array([0, 0]) _snake_case = numpy.array([0.5, 0.8660254]) _snake_case = numpy.array([1, 0]) _snake_case = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = initial_vectors for _ in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = iteration_step(_lowerCamelCase ) return vectors def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i, start_vector in enumerate(vectors[:-1] ): _lowerCAmelCase : Optional[Any] = vectors[i + 1] new_vectors.append(_lowerCamelCase ) _lowerCAmelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = numpy.radians(_lowerCamelCase ) _lowerCAmelCase : List[Any] = numpy.cos(_lowerCamelCase ), numpy.sin(_lowerCamelCase ) _lowerCAmelCase : str = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _lowerCAmelCase : Dict = zip(*_lowerCamelCase ) plt.plot(_lowerCamelCase , _lowerCamelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _snake_case = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
719
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = XLNetConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) _lowerCAmelCase : Any = finetuning_task _lowerCAmelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCAmelCase : Union[str, Any] = XLNetForSequenceClassification(_lowerCamelCase ) elif "squad" in finetuning_task: _lowerCAmelCase : Union[str, Any] = finetuning_task _lowerCAmelCase : Any = XLNetForQuestionAnswering(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = XLNetLMHeadModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F"Save PyTorch model to {os.path.abspath(_lowerCamelCase )}" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"Save configuration file to {os.path.abspath(_lowerCamelCase )}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
658
0
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
720
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
0
import csv import tweepy # Twitter API credentials _snake_case = "" _snake_case = "" _snake_case = "" _snake_case = "" def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = tweepy.OAuthHandler(_lowerCamelCase , _lowerCamelCase ) auth.set_access_token(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Tuple = tweepy.API(_lowerCamelCase ) # initialize a list to hold all the tweepy Tweets _lowerCAmelCase : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _lowerCAmelCase : List[Any] = api.user_timeline(screen_name=_lowerCamelCase , count=200 ) # save most recent tweets alltweets.extend(_lowerCamelCase ) # save the id of the oldest tweet less one _lowerCAmelCase : Dict = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_lowerCamelCase ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates _lowerCAmelCase : List[str] = api.user_timeline( screen_name=_lowerCamelCase , count=200 , max_id=_lowerCamelCase ) # save most recent tweets alltweets.extend(_lowerCamelCase ) # update the id of the oldest tweet less one _lowerCAmelCase : List[str] = alltweets[-1].id - 1 print(F"...{len(_lowerCamelCase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv _lowerCAmelCase : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , "w" ) as f: _lowerCAmelCase : Union[str, Any] = csv.writer(_lowerCamelCase ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(_lowerCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
721
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
658
0
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function" ) _lowerCAmelCase : Optional[Any] = hex_num[0] == "-" if is_negative: _lowerCAmelCase : List[str] = hex_num[1:] try: _lowerCAmelCase : Tuple = int(_lowerCamelCase , 16 ) except ValueError: raise ValueError("Invalid value was passed to the function" ) _lowerCAmelCase : List[Any] = "" while int_num > 0: _lowerCAmelCase : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
700
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'roc_bert' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=True, __a=0, __a="absolute", __a=None, __a=True, __a=True, __a=768, __a=910, __a=512, __a=2_4858, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Optional[int] = enable_pronunciation _lowerCAmelCase : Dict = enable_shape _lowerCAmelCase : Optional[Any] = pronunciation_embed_dim _lowerCAmelCase : Any = pronunciation_vocab_size _lowerCAmelCase : List[str] = shape_embed_dim _lowerCAmelCase : int = shape_vocab_size _lowerCAmelCase : Optional[int] = concat_input _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Tuple = classifier_dropout super().__init__(pad_token_id=__a, **__a)
658
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'switch_transformers' lowerCamelCase__ = ['past_key_values'] lowerCamelCase__ = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self, __a=3_2128, __a=768, __a=64, __a=2048, __a=64, __a=12, __a=3, __a=12, __a=3, __a=12, __a=8, __a=False, __a=0.01, __a="float32", __a=False, __a=32, __a=128, __a=0.1, __a=1E-6, __a=0.001, __a=0.001, __a=1.0, __a="relu", __a=True, __a=False, __a=True, __a=0, __a=1, **__a, ): '''simple docstring''' _lowerCAmelCase : str = vocab_size _lowerCAmelCase : str = d_model _lowerCAmelCase : Optional[Any] = d_kv _lowerCAmelCase : Dict = d_ff _lowerCAmelCase : List[str] = num_sparse_encoder_layers _lowerCAmelCase : Tuple = num_layers _lowerCAmelCase : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCAmelCase : List[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _lowerCAmelCase : Any = self.num_layers // self.num_sparse_encoder_layers else: _lowerCAmelCase : Optional[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _lowerCAmelCase : Optional[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: _lowerCAmelCase : List[str] = self.num_decoder_layers # HACK: this will create 0 sparse layers _lowerCAmelCase : Any = num_heads _lowerCAmelCase : int = num_experts _lowerCAmelCase : str = expert_capacity _lowerCAmelCase : int = router_bias _lowerCAmelCase : Optional[int] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}") _lowerCAmelCase : str = router_dtype _lowerCAmelCase : Tuple = router_ignore_padding_tokens _lowerCAmelCase : Dict = relative_attention_num_buckets _lowerCAmelCase : List[Any] = relative_attention_max_distance _lowerCAmelCase : Any = dropout_rate _lowerCAmelCase : str = layer_norm_epsilon _lowerCAmelCase : List[str] = initializer_factor _lowerCAmelCase : Any = feed_forward_proj _lowerCAmelCase : str = use_cache _lowerCAmelCase : str = add_router_probs _lowerCAmelCase : List[Any] = router_z_loss_coef _lowerCAmelCase : Optional[int] = router_aux_loss_coef _lowerCAmelCase : Optional[Any] = self.feed_forward_proj.split("-") _lowerCAmelCase : Any = act_info[-1] _lowerCAmelCase : List[str] = act_info[0] == "gated" if len(__a) > 1 and act_info[0] != "gated" or len(__a) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'") # for backwards compatibility if feed_forward_proj == "gated-gelu": _lowerCAmelCase : Optional[Any] = "gelu_new" super().__init__( pad_token_id=__a, eos_token_id=__a, is_encoder_decoder=__a, **__a, )
701
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
702
def A ( _lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if isinstance(_lowerCamelCase , torch.Tensor ): return image elif isinstance(_lowerCamelCase , PIL.Image.Image ): _lowerCAmelCase : str = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase : Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] _lowerCAmelCase : Dict = np.concatenate(_lowerCamelCase , axis=0 ) _lowerCAmelCase : Tuple = np.array(_lowerCamelCase ).astype(np.floataa ) / 255.0 _lowerCAmelCase : Optional[Any] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase : Any = 2.0 * image - 1.0 _lowerCAmelCase : str = torch.from_numpy(_lowerCamelCase ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase : Optional[Any] = torch.cat(_lowerCamelCase , dim=0 ) return image def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0.99_95 ): '''simple docstring''' if not isinstance(_lowerCamelCase , np.ndarray ): _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Optional[Any] = va.device _lowerCAmelCase : Dict = va.cpu().numpy() _lowerCAmelCase : str = va.cpu().numpy() _lowerCAmelCase : Dict = np.sum(va * va / (np.linalg.norm(_lowerCamelCase ) * np.linalg.norm(_lowerCamelCase )) ) if np.abs(_lowerCamelCase ) > DOT_THRESHOLD: _lowerCAmelCase : Dict = (1 - t) * va + t * va else: _lowerCAmelCase : str = np.arccos(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = np.sin(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = theta_a * t _lowerCAmelCase : Tuple = np.sin(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase : Optional[int] = sin_theta_t / sin_theta_a _lowerCAmelCase : Optional[int] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase : List[Any] = torch.from_numpy(_lowerCamelCase ).to(_lowerCamelCase ) return va def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F.normalize(_lowerCamelCase , dim=-1 ) _lowerCAmelCase : Tuple = F.normalize(_lowerCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for param in model.parameters(): _lowerCAmelCase : Any = value class UpperCAmelCase_ ( a): def __init__( self, __a, __a, __a, __a, __a, __a, __a, __a=None, __a=None, __a=None, ): '''simple docstring''' super().__init__() self.register_modules( vae=__a, text_encoder=__a, clip_model=__a, tokenizer=__a, unet=__a, scheduler=__a, feature_extractor=__a, coca_model=__a, coca_tokenizer=__a, coca_transform=__a, ) _lowerCAmelCase : Optional[Any] = ( feature_extractor.size if isinstance(feature_extractor.size, __a) else feature_extractor.size["shortest_edge"] ) _lowerCAmelCase : List[Any] = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) set_requires_grad(self.text_encoder, __a) set_requires_grad(self.clip_model, __a) def snake_case__ ( self, __a = "auto"): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a) def snake_case__ ( self): '''simple docstring''' self.enable_attention_slicing(__a) def snake_case__ ( self): '''simple docstring''' set_requires_grad(self.vae, __a) def snake_case__ ( self): '''simple docstring''' set_requires_grad(self.vae, __a) def snake_case__ ( self): '''simple docstring''' set_requires_grad(self.unet, __a) def snake_case__ ( self): '''simple docstring''' set_requires_grad(self.unet, __a) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = min(int(num_inference_steps * strength), __a) _lowerCAmelCase : List[str] = max(num_inference_steps - init_timestep, 0) _lowerCAmelCase : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case__ ( self, __a, __a, __a, __a, __a, __a=None): '''simple docstring''' if not isinstance(__a, torch.Tensor): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(__a)}") _lowerCAmelCase : List[str] = image.to(device=__a, dtype=__a) if isinstance(__a, __a): _lowerCAmelCase : Any = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(__a) ] _lowerCAmelCase : Optional[Any] = torch.cat(__a, dim=0) else: _lowerCAmelCase : Any = self.vae.encode(__a).latent_dist.sample(__a) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase : List[str] = 0.18_215 * init_latents _lowerCAmelCase : List[Any] = init_latents.repeat_interleave(__a, dim=0) _lowerCAmelCase : Union[str, Any] = randn_tensor(init_latents.shape, generator=__a, device=__a, dtype=__a) # get latents _lowerCAmelCase : Union[str, Any] = self.scheduler.add_noise(__a, __a, __a) _lowerCAmelCase : Optional[int] = init_latents return latents def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = self.coca_transform(__a).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase : Optional[int] = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) _lowerCAmelCase : Tuple = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split("<end_of_text>")[0].replace("<start_of_text>", "").rstrip(" .,") def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.feature_extractor.preprocess(__a) _lowerCAmelCase : Tuple = torch.from_numpy(clip_image_input["pixel_values"][0]).unsqueeze(0).to(self.device).half() _lowerCAmelCase : int = self.clip_model.get_image_features(__a) _lowerCAmelCase : str = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=__a) _lowerCAmelCase : Union[str, Any] = image_embeddings_clip.repeat_interleave(__a, dim=0) return image_embeddings_clip @torch.enable_grad() def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = latents.detach().requires_grad_() _lowerCAmelCase : Any = self.scheduler.scale_model_input(__a, __a) # predict the noise residual _lowerCAmelCase : Union[str, Any] = self.unet(__a, __a, encoder_hidden_states=__a).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _lowerCAmelCase : int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase : str = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase : str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase : Optional[int] = torch.sqrt(__a) _lowerCAmelCase : Union[str, Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, __a): _lowerCAmelCase : List[Any] = self.scheduler.sigmas[index] _lowerCAmelCase : int = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler)} not supported") # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase : Any = 1 / 0.18_215 * sample _lowerCAmelCase : Optional[Any] = self.vae.decode(__a).sample _lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0, 1) _lowerCAmelCase : str = transforms.Resize(self.feature_extractor_size)(__a) _lowerCAmelCase : Any = self.normalize(__a).to(latents.dtype) _lowerCAmelCase : Tuple = self.clip_model.get_image_features(__a) _lowerCAmelCase : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=__a) _lowerCAmelCase : Any = spherical_dist_loss(__a, __a).mean() * clip_guidance_scale _lowerCAmelCase : str = -torch.autograd.grad(__a, __a)[0] if isinstance(self.scheduler, __a): _lowerCAmelCase : Tuple = latents.detach() + grads * (sigma**2) _lowerCAmelCase : List[Any] = noise_pred_original else: _lowerCAmelCase : Optional[int] = noise_pred_original - torch.sqrt(__a) * grads return noise_pred, latents @torch.no_grad() def __call__( self, __a, __a, __a = None, __a = None, __a = 512, __a = 512, __a = 0.6, __a = 50, __a = 7.5, __a = 1, __a = 0.0, __a = 100, __a = None, __a = "pil", __a = True, __a = 0.8, __a = 0.1, __a = 0.1, ): '''simple docstring''' if isinstance(__a, __a) and len(__a) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(__a)} generators.") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if isinstance(__a, torch.Generator) and batch_size > 1: _lowerCAmelCase : Dict = [generator] + [None] * (batch_size - 1) _lowerCAmelCase : Dict = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] _lowerCAmelCase : Optional[Any] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase : Optional[int] = ", ".join(__a) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__a): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.") _lowerCAmelCase : List[str] = self.get_image_description(__a) if style_prompt is None: if len(__a): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.") _lowerCAmelCase : List[str] = self.get_image_description(__a) # get prompt text embeddings for content and style _lowerCAmelCase : Optional[Any] = self.tokenizer( __a, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=__a, return_tensors="pt", ) _lowerCAmelCase : List[Any] = self.text_encoder(content_text_input.input_ids.to(self.device))[0] _lowerCAmelCase : int = self.tokenizer( __a, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=__a, return_tensors="pt", ) _lowerCAmelCase : List[str] = self.text_encoder(style_text_input.input_ids.to(self.device))[0] _lowerCAmelCase : str = slerp(__a, __a, __a) # duplicate text embeddings for each generation per prompt _lowerCAmelCase : Union[str, Any] = text_embeddings.repeat_interleave(__a, dim=0) # set timesteps _lowerCAmelCase : Tuple = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _lowerCAmelCase : List[str] = {} if accepts_offset: _lowerCAmelCase : Optional[int] = 1 self.scheduler.set_timesteps(__a, **__a) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _lowerCAmelCase : Union[str, Any] = self.get_timesteps(__a, __a, self.device) _lowerCAmelCase : Dict = timesteps[:1].repeat(__a) # Preprocess image _lowerCAmelCase : Optional[int] = preprocess(__a, __a, __a) _lowerCAmelCase : Any = self.prepare_latents( __a, __a, __a, text_embeddings.dtype, self.device, __a) _lowerCAmelCase : List[Any] = preprocess(__a, __a, __a) _lowerCAmelCase : str = self.prepare_latents( __a, __a, __a, text_embeddings.dtype, self.device, __a) _lowerCAmelCase : Tuple = slerp(__a, __a, __a) if clip_guidance_scale > 0: _lowerCAmelCase : List[str] = self.get_clip_image_embeddings(__a, __a) _lowerCAmelCase : Optional[Any] = self.get_clip_image_embeddings(__a, __a) _lowerCAmelCase : Optional[int] = slerp( __a, __a, __a) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase : Union[str, Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase : str = content_text_input.input_ids.shape[-1] _lowerCAmelCase : Union[str, Any] = self.tokenizer([""], padding="max_length", max_length=__a, return_tensors="pt") _lowerCAmelCase : str = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase : Optional[int] = uncond_embeddings.repeat_interleave(__a, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase : Optional[int] = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase : Union[str, Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase : List[str] = torch.randn(__a, generator=__a, device="cpu", dtype=__a).to( self.device) else: _lowerCAmelCase : Optional[Any] = torch.randn(__a, generator=__a, device=self.device, dtype=__a) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") _lowerCAmelCase : Dict = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase : List[Any] = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) _lowerCAmelCase : Optional[int] = {} if accepts_eta: _lowerCAmelCase : List[Any] = eta # check if the scheduler accepts generator _lowerCAmelCase : Optional[int] = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _lowerCAmelCase : Optional[int] = generator with self.progress_bar(total=__a): for i, t in enumerate(__a): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _lowerCAmelCase : List[str] = self.scheduler.scale_model_input(__a, __a) # predict the noise residual _lowerCAmelCase : List[Any] = self.unet(__a, __a, encoder_hidden_states=__a).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase : List[Any] = noise_pred.chunk(2) _lowerCAmelCase : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase : str = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase : str = self.cond_fn( __a, __a, __a, __a, __a, __a, __a, ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : Union[str, Any] = self.scheduler.step(__a, __a, __a, **__a).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase : Tuple = 1 / 0.18_215 * latents _lowerCAmelCase : Optional[Any] = self.vae.decode(__a).sample _lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0, 1) _lowerCAmelCase : List[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowerCAmelCase : str = self.numpy_to_pil(__a) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__a, nsfw_content_detected=__a)
703
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
658
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): _lowerCAmelCase : int = 0 _lowerCAmelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Any = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Tuple = counter if counter > pre_counter: _lowerCAmelCase : Union[str, Any] = inputa _lowerCAmelCase : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
658
0
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = BertTokenizer lowerCamelCase__ = BertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCAmelCase : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "UNwant\u00E9d,running" _lowerCAmelCase : Dict = "unwanted, running" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file) _lowerCAmelCase : Union[str, Any] = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(__a, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a), [9, 6, 7, 12, 10, 11]) def snake_case__ ( self): '''simple docstring''' if not self.test_rust_tokenizer: return _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = self.get_rust_tokenizer() _lowerCAmelCase : Optional[int] = "UNwant\u00E9d,running" _lowerCAmelCase : List[str] = tokenizer.tokenize(__a) _lowerCAmelCase : Dict = rust_tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : List[str] = tokenizer.encode(__a, add_special_tokens=__a) _lowerCAmelCase : str = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() _lowerCAmelCase : Optional[int] = tokenizer.encode(__a) _lowerCAmelCase : Any = rust_tokenizer.encode(__a) self.assertListEqual(__a, __a) # With lower casing _lowerCAmelCase : Optional[Any] = self.get_tokenizer(do_lower_case=__a) _lowerCAmelCase : Dict = self.get_rust_tokenizer(do_lower_case=__a) _lowerCAmelCase : Union[str, Any] = "UNwant\u00E9d,running" _lowerCAmelCase : Optional[Any] = tokenizer.tokenize(__a) _lowerCAmelCase : List[str] = rust_tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : List[str] = tokenizer.encode(__a, add_special_tokens=__a) _lowerCAmelCase : List[str] = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : List[Any] = self.get_rust_tokenizer() _lowerCAmelCase : List[Any] = tokenizer.encode(__a) _lowerCAmelCase : Dict = rust_tokenizer.encode(__a) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=__a, strip_accents=__a) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = BasicTokenizer(do_lower_case=__a, strip_accents=__a) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = BasicTokenizer(do_lower_case=__a, strip_accents=__a) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = BasicTokenizer(do_lower_case=__a, strip_accents=__a) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = BasicTokenizer(do_lower_case=__a, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = BasicTokenizer() _lowerCAmelCase : Optional[int] = "a\n'll !!to?'d of, can't." _lowerCAmelCase : int = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."] self.assertListEqual(tokenizer.tokenize(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _lowerCAmelCase : int = {} for i, token in enumerate(__a): _lowerCAmelCase : Dict = i _lowerCAmelCase : Tuple = WordpieceTokenizer(vocab=__a, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) def snake_case__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def snake_case__ ( self): '''simple docstring''' self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def snake_case__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.get_tokenizer() _lowerCAmelCase : List[str] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]) self.assertListEqual( [rust_tokenizer.tokenize(__a) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained("bert-base-uncased") _lowerCAmelCase : str = tokenizer.encode("sequence builders", add_special_tokens=__a) _lowerCAmelCase : List[str] = tokenizer.encode("multi-sequence build", add_special_tokens=__a) _lowerCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__a) _lowerCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(__a, __a) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def snake_case__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : str = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _lowerCAmelCase : Any = tokenizer_r.encode_plus( __a, return_attention_mask=__a, return_token_type_ids=__a, return_offsets_mapping=__a, add_special_tokens=__a, ) _lowerCAmelCase : Optional[int] = tokenizer_r.do_lower_case if hasattr(__a, "do_lower_case") else False _lowerCAmelCase : str = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])) self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = ["的", "人", "有"] _lowerCAmelCase : Optional[int] = "".join(__a) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : Tuple = True _lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : List[Any] = tokenizer_p.encode(__a, add_special_tokens=__a) _lowerCAmelCase : List[Any] = tokenizer_r.encode(__a, add_special_tokens=__a) _lowerCAmelCase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(__a) _lowerCAmelCase : int = tokenizer_p.convert_ids_to_tokens(__a) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a, __a) self.assertListEqual(__a, __a) _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : Optional[int] = tokenizer_r.encode(__a, add_special_tokens=__a) _lowerCAmelCase : Any = tokenizer_p.encode(__a, add_special_tokens=__a) _lowerCAmelCase : str = tokenizer_r.convert_ids_to_tokens(__a) _lowerCAmelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a) # it is expected that only the first Chinese character is not preceded by "##". _lowerCAmelCase : Any = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(__a) ] self.assertListEqual(__a, __a) self.assertListEqual(__a, __a)
706
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = "https://openaipublic.azureedge.net/jukebox/models/" _snake_case = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _lowerCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : Union[str, Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _lowerCAmelCase : int = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _lowerCAmelCase : List[str] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _lowerCAmelCase : int = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : int = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _lowerCAmelCase : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} import re _lowerCAmelCase : Union[str, Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[str] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _lowerCAmelCase : List[Any] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _lowerCAmelCase : Optional[int] = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Tuple = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : str = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : str = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _lowerCAmelCase : Optional[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : int = prefix + resnet_block _lowerCAmelCase : int = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _lowerCAmelCase : str = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : str = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Union[str, Any] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _lowerCAmelCase : Optional[int] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : Dict = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Optional[Any] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _lowerCAmelCase : Any = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _lowerCAmelCase : Optional[int] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : List[str] = {"1": 1, "3": 2}[groups[-2]] _lowerCAmelCase : Optional[Any] = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _lowerCAmelCase : Tuple = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : Optional[Any] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = regex_match.groups() _lowerCAmelCase : Optional[int] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _lowerCAmelCase : List[str] = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Tuple = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _lowerCAmelCase : Any = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _lowerCAmelCase : Tuple = original_key _lowerCAmelCase : List[Any] = original_key _lowerCAmelCase : Optional[int] = value return new_dict @torch.no_grad() def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _lowerCAmelCase : List[Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) _lowerCAmelCase : Optional[Any] = MODEL_MAPPING[model_name.split("/" )[-1]] _lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[Any] = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] _lowerCAmelCase : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(".b" ): _lowerCAmelCase : Dict = old_dic[k] elif k.endswith(".w" ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Union[str, Any] = old_dic[k] _lowerCAmelCase : Union[str, Any] = "vqvae" if i == 0 else F"priors.{3 - i}" _lowerCAmelCase : Union[str, Any] = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
658
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer _snake_case = ["bert-base-uncased", "bert-base-cased"] _snake_case = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class UpperCAmelCase_ ( tf.keras.Model): def __init__( self, __a): '''simple docstring''' super().__init__() _lowerCAmelCase : Dict = tokenizer _lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(__a) _lowerCAmelCase : Any = TFAutoModel.from_config(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(__a) _lowerCAmelCase : Tuple = self.bert(**__a) return out["pooler_output"] @require_tf @require_tensorflow_text class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : Optional[int] = [ BertTokenizer.from_pretrained(__a) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _lowerCAmelCase : Any = [TFBertTokenizer.from_pretrained(__a) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__a, use_fast_bert_tokenizer=__a) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _lowerCAmelCase : Optional[Any] = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] _lowerCAmelCase : Any = list(zip(self.test_sentences, self.test_sentences[::-1])) def snake_case__ ( self): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _lowerCAmelCase : str = tokenizer(__a, return_tensors="tf", padding="longest") _lowerCAmelCase : str = tf_tokenizer(__a) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key], tf.intaa) == tf_outputs[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Optional[Any] = tf_tokenizer(self.paired_sentences) _lowerCAmelCase : Union[str, Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences], text_pair=[sentence[1] for sentence in self.paired_sentences], ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key], tf.intaa) == separated_outputs[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : Optional[int] = tf.function(__a) for test_inputs in (self.test_sentences, self.paired_sentences): _lowerCAmelCase : Optional[Any] = tf.constant(__a) _lowerCAmelCase : str = compiled_tokenizer(__a) _lowerCAmelCase : str = tf_tokenizer(__a) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def snake_case__ ( self): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase : str = ModelToSave(tokenizer=__a) _lowerCAmelCase : Dict = tf.convert_to_tensor(self.test_sentences) _lowerCAmelCase : str = model(__a) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCAmelCase : Union[str, Any] = Path(__a) / "saved.model" model.save(__a) _lowerCAmelCase : Dict = tf.keras.models.load_model(__a) _lowerCAmelCase : int = loaded_model(__a) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)), 1E-5)
707
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : str = ksize + 1 _lowerCAmelCase : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center _lowerCAmelCase : int = x - ksize // 2 _lowerCAmelCase : Dict = y - ksize // 2 # degree to radiant _lowerCAmelCase : List[Any] = theta / 180 * np.pi _lowerCAmelCase : int = np.cos(_theta ) _lowerCAmelCase : Optional[int] = np.sin(_theta ) # get kernel x _lowerCAmelCase : int = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : str = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Union[str, Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
658
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
708
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
0
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) _lowerCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
709
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
0
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _snake_case = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" _snake_case = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" _snake_case = R"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string"), "references": datasets.Value("string"), }), homepage="https://github.com/hendrycks/math", codebase_urls=["https://github.com/hendrycks/math"], ) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = 0.0 for i, j in zip(__a, __a): n_correct += 1.0 if math_equivalence.is_equiv(__a, __a) else 0.0 _lowerCAmelCase : Dict = n_correct / len(__a) return { "accuracy": accuracy, }
710
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations(_lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowerCamelCase , _lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCamelCase ) for item in array ) _lowerCAmelCase : Any = answer return answer _lowerCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [0] * (target + 1) _lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
658
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
import string def A ( _lowerCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCAmelCase : str = "" for symbol in message: if symbol in string.ascii_uppercase: _lowerCAmelCase : List[str] = string.ascii_uppercase.find(_lowerCamelCase ) _lowerCAmelCase : Dict = num - key if num < 0: _lowerCAmelCase : Dict = num + len(string.ascii_uppercase ) _lowerCAmelCase : Optional[Any] = translated + string.ascii_uppercase[num] else: _lowerCAmelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = input("Encrypted message: " ) _lowerCAmelCase : Dict = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
658
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = int(number**0.5 ) return number == sq * sq def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowerCAmelCase : int = x_den * y_den * z_den _lowerCAmelCase : int = gcd(_lowerCamelCase , _lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A ( _lowerCamelCase = 35 ): '''simple docstring''' _lowerCAmelCase : set = set() _lowerCAmelCase : int _lowerCAmelCase : Fraction = Fraction(0 ) _lowerCAmelCase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowerCAmelCase : int = x_num * y_den + x_den * y_num _lowerCAmelCase : List[str] = x_den * y_den _lowerCAmelCase : str = gcd(_lowerCamelCase , _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Union[str, Any] = add_three( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) unique_s.add(_lowerCamelCase ) # n=2 _lowerCAmelCase : List[str] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowerCAmelCase : Tuple = x_den * x_den * y_den * y_den if is_sq(_lowerCamelCase ) and is_sq(_lowerCamelCase ): _lowerCAmelCase : str = int(sqrt(_lowerCamelCase ) ) _lowerCAmelCase : Optional[Any] = int(sqrt(_lowerCamelCase ) ) _lowerCAmelCase : Any = gcd(_lowerCamelCase , _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Optional[int] = add_three( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) unique_s.add(_lowerCamelCase ) # n=-1 _lowerCAmelCase : int = x_num * y_num _lowerCAmelCase : Dict = x_den * y_num + x_num * y_den _lowerCAmelCase : Union[str, Any] = gcd(_lowerCamelCase , _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Dict = add_three( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) unique_s.add(_lowerCamelCase ) # n=2 _lowerCAmelCase : List[str] = x_num * x_num * y_num * y_num _lowerCAmelCase : List[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_lowerCamelCase ) and is_sq(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = int(sqrt(_lowerCamelCase ) ) _lowerCAmelCase : List[Any] = int(sqrt(_lowerCamelCase ) ) _lowerCAmelCase : List[str] = gcd(_lowerCamelCase , _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Optional[int] = add_three( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) unique_s.add(_lowerCamelCase ) for num, den in unique_s: total += Fraction(_lowerCamelCase , _lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
712
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = args.pruning_method _lowerCAmelCase : Dict = args.threshold _lowerCAmelCase : Any = args.model_name_or_path.rstrip("/" ) _lowerCAmelCase : str = args.target_model_path print(F"Load fine-pruned model from {model_name_or_path}" ) _lowerCAmelCase : Any = torch.load(os.path.join(_lowerCamelCase , "pytorch_model.bin" ) ) _lowerCAmelCase : Tuple = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowerCAmelCase : Optional[Any] = tensor print(F"Copied layer {name}" ) elif "classifier" in name or "qa_output" in name: _lowerCAmelCase : Dict = tensor print(F"Copied layer {name}" ) elif "bias" in name: _lowerCAmelCase : Any = tensor print(F"Copied layer {name}" ) else: if pruning_method == "magnitude": _lowerCAmelCase : str = MagnitudeBinarizer.apply(inputs=_lowerCamelCase , threshold=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowerCAmelCase : Optional[Any] = name[:-6] _lowerCAmelCase : List[Any] = model[F"{prefix_}mask_scores"] _lowerCAmelCase : int = TopKBinarizer.apply(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowerCAmelCase : int = name[:-6] _lowerCAmelCase : Optional[Any] = model[F"{prefix_}mask_scores"] _lowerCAmelCase : str = ThresholdBinarizer.apply(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Tuple = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowerCAmelCase : int = name[:-6] _lowerCAmelCase : Optional[int] = model[F"{prefix_}mask_scores"] _lowerCAmelCase : List[Any] = -0.1, 1.1 _lowerCAmelCase : Union[str, Any] = torch.sigmoid(_lowerCamelCase ) _lowerCAmelCase : Tuple = s * (r - l) + l _lowerCAmelCase : Any = s_bar.clamp(min=0.0 , max=1.0 ) _lowerCAmelCase : Any = tensor * mask print(F"Pruned layer {name}" ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: _lowerCAmelCase : Optional[Any] = os.path.join( os.path.dirname(_lowerCamelCase ) , F"bertarized_{os.path.basename(_lowerCamelCase )}" ) if not os.path.isdir(_lowerCamelCase ): shutil.copytree(_lowerCamelCase , _lowerCamelCase ) print(F"\nCreated folder {target_model_path}" ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) _snake_case = parser.parse_args() main(args)
713
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' if len(__a) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1.") _lowerCAmelCase : list[float] = list(__a) _lowerCAmelCase : Any = degree def __add__( self, __a): '''simple docstring''' if self.degree > polynomial_a.degree: _lowerCAmelCase : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __a) else: _lowerCAmelCase : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __a) def __sub__( self, __a): '''simple docstring''' return self + polynomial_a * Polynomial(0, [-1]) def __neg__( self): '''simple docstring''' return Polynomial(self.degree, [-c for c in self.coefficients]) def __mul__( self, __a): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_a.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result def __str__( self): '''simple docstring''' _lowerCAmelCase : List[str] = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(__a) return polynomial def __repr__( self): '''simple docstring''' return self.__str__() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree): _lowerCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __a) def snake_case__ ( self, __a = 0): '''simple docstring''' _lowerCAmelCase : list[float] = [0] * (self.degree + 2) _lowerCAmelCase : Optional[Any] = constant for i in range(self.degree + 1): _lowerCAmelCase : Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __a) def __eq__( self, __a): '''simple docstring''' if not isinstance(__a, __a): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self, __a): '''simple docstring''' return not self.__eq__(__a)
658
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
714
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'xlnet' lowerCamelCase__ = ['mems'] lowerCamelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=3_2000, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=True, __a="bi", __a=0.02, __a=1E-12, __a=0.1, __a=512, __a=None, __a=True, __a=False, __a=False, __a=-1, __a=False, __a="last", __a=True, __a="tanh", __a=0.1, __a=5, __a=5, __a=5, __a=1, __a=2, **__a, ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Tuple = n_layer _lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})") _lowerCAmelCase : Optional[int] = d_model // n_head _lowerCAmelCase : List[str] = ff_activation _lowerCAmelCase : Tuple = d_inner _lowerCAmelCase : List[Any] = untie_r _lowerCAmelCase : List[str] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : List[Any] = dropout _lowerCAmelCase : Optional[int] = mem_len _lowerCAmelCase : Union[str, Any] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : List[str] = clamp_len _lowerCAmelCase : Any = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : Optional[Any] = summary_activation _lowerCAmelCase : Tuple = summary_last_dropout _lowerCAmelCase : Union[str, Any] = start_n_top _lowerCAmelCase : Optional[int] = end_n_top _lowerCAmelCase : Tuple = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", __a, ) _lowerCAmelCase : Union[str, Any] = kwargs["use_cache"] _lowerCAmelCase : Union[str, Any] = use_mems_eval _lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) @property def snake_case__ ( self): '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def snake_case__ ( self, __a): '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
658
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } _snake_case = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } _snake_case = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = set() _lowerCAmelCase : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Optional[int] = char _lowerCAmelCase : Dict = set(_lowerCamelCase ) return pairs class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, __a, __a, __a="<s>", __a="</s>", __a="</s>", __a="<s>", __a="<unk>", __a="<pad>", __a="<mask>", **__a, ): '''simple docstring''' super().__init__( bos_token=__a, eos_token=__a, unk_token=__a, sep_token=__a, cls_token=__a, pad_token=__a, mask_token=__a, **__a, ) _lowerCAmelCase : str = vocab_file _lowerCAmelCase : Dict = merges_file _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Dict = 2 _lowerCAmelCase : Optional[int] = 3 self.add_from_file(__a) _lowerCAmelCase : List[Any] = {v: k for k, v in self.encoder.items()} with open(__a, encoding="utf-8") as merges_handle: _lowerCAmelCase : Union[str, Any] = merges_handle.read().split("\n")[:-1] _lowerCAmelCase : Any = [tuple(merge.split()[:-1]) for merge in merges] _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : Optional[Any] = {} def snake_case__ ( self, __a, __a = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Any = [self.cls_token_id] _lowerCAmelCase : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a, token_ids_a=__a, already_has_special_tokens=__a) if token_ids_a is None: return [1] + ([0] * len(__a)) + [1] return [1] + ([0] * len(__a)) + [1, 1] + ([0] * len(__a)) + [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def snake_case__ ( self): '''simple docstring''' return len(self.encoder) def snake_case__ ( self): '''simple docstring''' return dict(self.encoder, **self.added_tokens_encoder) def snake_case__ ( self, __a): '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : List[Any] = tuple(__a) _lowerCAmelCase : Optional[Any] = tuple(list(word[:-1]) + [word[-1] + "</w>"]) _lowerCAmelCase : List[str] = get_pairs(__a) if not pairs: return token while True: _lowerCAmelCase : Optional[Any] = min(__a, key=lambda __a: self.bpe_ranks.get(__a, float("inf"))) if bigram not in self.bpe_ranks: break _lowerCAmelCase : Tuple = bigram _lowerCAmelCase : List[str] = [] _lowerCAmelCase : List[Any] = 0 while i < len(__a): try: _lowerCAmelCase : Tuple = word.index(__a, __a) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _lowerCAmelCase : List[str] = j if word[i] == first and i < len(__a) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _lowerCAmelCase : int = tuple(__a) _lowerCAmelCase : Dict = new_word if len(__a) == 1: break else: _lowerCAmelCase : Optional[int] = get_pairs(__a) _lowerCAmelCase : str = "@@ ".join(__a) _lowerCAmelCase : Union[str, Any] = word[:-4] _lowerCAmelCase : int = word return word def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[str] = re.findall(R"\S+\n?", __a) for token in words: split_tokens.extend(list(self.bpe(__a).split(" "))) return split_tokens def snake_case__ ( self, __a): '''simple docstring''' return self.encoder.get(__a, self.encoder.get(self.unk_token)) def snake_case__ ( self, __a): '''simple docstring''' return self.decoder.get(__a, self.unk_token) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = " ".join(__a).replace("@@ ", "").strip() return out_string def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(__a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : Dict = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Any = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__a): copyfile(self.vocab_file, __a) if os.path.abspath(self.merges_file) != os.path.abspath(__a): copyfile(self.merges_file, __a) return out_vocab_file, out_merge_file def snake_case__ ( self, __a): '''simple docstring''' if isinstance(__a, __a): try: with open(__a, "r", encoding="utf-8") as fd: self.add_from_file(__a) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset") return _lowerCAmelCase : Any = f.readlines() for lineTmp in lines: _lowerCAmelCase : Any = lineTmp.strip() _lowerCAmelCase : str = line.rfind(" ") if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") _lowerCAmelCase : List[Any] = line[:idx] _lowerCAmelCase : List[str] = len(self.encoder)
715
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Union[str, Any] = "./model_checkpoints/vqgan_only.yaml" _lowerCAmelCase : Tuple = load_config(_lowerCamelCase , display=_lowerCamelCase ) _lowerCAmelCase : str = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : Optional[int] = "./model_checkpoints/vqgan_only.pt" _lowerCAmelCase : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: _lowerCAmelCase : List[Any] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _lowerCAmelCase : int = model.decode(_lowerCamelCase ) return xrec def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : List[str] = string.rsplit("." , 1 ) if reload: _lowerCAmelCase : Dict = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def A ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : int = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: _lowerCAmelCase : Optional[int] = {"state_dict": None} _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
716
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = int(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = t // 3_600, (t // 60) % 60, t % 60 return F"{h}:{m:02d}:{s:02d}" if h != 0 else F"{m:02d}:{s:02d}" def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=300 ): '''simple docstring''' return F"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n " def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _lowerCAmelCase : Optional[int] = F"{elt:.6f}" if isinstance(_lowerCamelCase , _lowerCamelCase ) else str(_lowerCamelCase ) html_code += F" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class UpperCAmelCase_ : lowerCamelCase__ = 5 lowerCamelCase__ = 0.2 def __init__( self, __a, __a = None, __a = True, __a = None, __a = 300, ): '''simple docstring''' _lowerCAmelCase : List[Any] = total _lowerCAmelCase : Any = "" if prefix is None else prefix _lowerCAmelCase : str = leave _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Optional[int] = width _lowerCAmelCase : Tuple = None _lowerCAmelCase : Dict = None _lowerCAmelCase : Tuple = None def snake_case__ ( self, __a, __a = False, __a = None): '''simple docstring''' _lowerCAmelCase : List[Any] = value if comment is not None: _lowerCAmelCase : Union[str, Any] = comment if self.last_value is None: _lowerCAmelCase : Optional[int] = time.time() _lowerCAmelCase : Any = value _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Dict = self.warmup _lowerCAmelCase : Union[str, Any] = 1 self.update_bar(__a) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total): if self.first_calls > 0: self.first_calls -= 1 _lowerCAmelCase : Dict = time.time() _lowerCAmelCase : str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _lowerCAmelCase : List[str] = self.elapsed_time / (value - self.start_value) else: _lowerCAmelCase : Optional[Any] = None if value >= self.total: _lowerCAmelCase : Optional[int] = self.total _lowerCAmelCase : int = None if not self.leave: self.close() elif self.average_time_per_item is not None: _lowerCAmelCase : Tuple = self.average_time_per_item * (self.total - value) self.update_bar(__a) _lowerCAmelCase : str = value _lowerCAmelCase : List[Any] = current_time if self.average_time_per_item is None: _lowerCAmelCase : List[str] = 1 else: _lowerCAmelCase : Tuple = max(int(self.update_every / self.average_time_per_item), 1) def snake_case__ ( self, __a, __a=None): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = " " * (len(str(self.total)) - len(str(__a))) + str(__a) if self.elapsed_time is None: _lowerCAmelCase : Optional[int] = f"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: _lowerCAmelCase : Optional[int] = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}" else: _lowerCAmelCase : List[str] = ( f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <" f" {format_time(self.predicted_remaining)}" ) self.label += f", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment) == 0 else f", {self.comment}]" self.display() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _lowerCAmelCase : List[str] = disp.display(disp.HTML(self.html_code), display_id=__a) else: self.output.update(disp.HTML(self.html_code)) def snake_case__ ( self): '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML("")) class UpperCAmelCase_ ( a): def __init__( self, __a, __a=None): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : str = None if column_names is None else [column_names] _lowerCAmelCase : List[Any] = None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _lowerCAmelCase : Union[str, Any] = disp.display(disp.HTML(self.html_code), display_id=__a) else: self.output.update(disp.HTML(self.html_code)) def snake_case__ ( self, __a): '''simple docstring''' if self.inner_table is None: _lowerCAmelCase : str = [list(values.keys()), list(values.values())] else: _lowerCAmelCase : List[Any] = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__a) _lowerCAmelCase : Optional[Any] = columns self.inner_table.append([values[c] for c in columns]) def snake_case__ ( self, __a, __a=None, __a=300): '''simple docstring''' _lowerCAmelCase : Any = NotebookProgressBar(__a, prefix=__a, parent=self, width=__a) return self.child_bar def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = None self.display() class UpperCAmelCase_ ( a): def __init__( self): '''simple docstring''' _lowerCAmelCase : Tuple = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : List[str] = False def snake_case__ ( self, __a, __a, __a, **__a): '''simple docstring''' _lowerCAmelCase : Tuple = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Union[str, Any] = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss") _lowerCAmelCase : List[Any] = NotebookTrainingTracker(state.max_steps, __a) def snake_case__ ( self, __a, __a, __a, **__a): '''simple docstring''' _lowerCAmelCase : str = int(state.epoch) if int(state.epoch) == state.epoch else f"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1, comment=f"Epoch {epoch}/{state.num_train_epochs}", force_update=self._force_next_update, ) _lowerCAmelCase : Tuple = False def snake_case__ ( self, __a, __a, __a, __a=None, **__a): '''simple docstring''' if not has_length(__a): return if self.prediction_bar is None: if self.training_tracker is not None: _lowerCAmelCase : Any = self.training_tracker.add_child(len(__a)) else: _lowerCAmelCase : Tuple = NotebookProgressBar(len(__a)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def snake_case__ ( self, __a, __a, __a, **__a): '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() _lowerCAmelCase : List[Any] = None def snake_case__ ( self, __a, __a, __a, __a=None, **__a): '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _lowerCAmelCase : Any = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy _lowerCAmelCase : List[str] = state.global_step self.training_tracker.write_line(__a) def snake_case__ ( self, __a, __a, __a, __a=None, **__a): '''simple docstring''' if self.training_tracker is not None: _lowerCAmelCase : Tuple = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history): if "loss" in log: _lowerCAmelCase : Tuple = log["loss"] break if self.first_column == "Epoch": _lowerCAmelCase : int = int(state.epoch) else: _lowerCAmelCase : Optional[Any] = state.global_step _lowerCAmelCase : Union[str, Any] = "eval" for k in metrics: if k.endswith("_loss"): _lowerCAmelCase : Any = re.sub(R"\_loss$", "", __a) _lowerCAmelCase : Optional[Any] = metrics.pop("total_flos", __a) _lowerCAmelCase : str = metrics.pop("epoch", __a) _lowerCAmelCase : Any = metrics.pop(f"{metric_key_prefix}_runtime", __a) _lowerCAmelCase : Union[str, Any] = metrics.pop(f"{metric_key_prefix}_samples_per_second", __a) _lowerCAmelCase : List[str] = metrics.pop(f"{metric_key_prefix}_steps_per_second", __a) _lowerCAmelCase : List[str] = metrics.pop(f"{metric_key_prefix}_jit_compilation_time", __a) for k, v in metrics.items(): if k == f"{metric_key_prefix}_loss": _lowerCAmelCase : List[Any] = v else: _lowerCAmelCase : str = k.split("_") _lowerCAmelCase : int = " ".join([part.capitalize() for part in splits[1:]]) _lowerCAmelCase : List[str] = v self.training_tracker.write_line(__a) self.training_tracker.remove_child() _lowerCAmelCase : List[Any] = None # Evaluation takes a long time so we should force the next update. _lowerCAmelCase : int = True def snake_case__ ( self, __a, __a, __a, **__a): '''simple docstring''' self.training_tracker.update( state.global_step, comment=f"Epoch {int(state.epoch)}/{state.num_train_epochs}", force_update=__a) _lowerCAmelCase : Dict = None
717
import baseaa def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
658
0