code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import math import flax.linen as nn import jax.numpy as jnp def _UpperCamelCase ( A : jnp.ndarray, A : int, A : float = 1, A : float = 1, A : float = 1.0E4, A : bool = False, A : float = 1.0, ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" a = float(embedding_dim // 2 ) a = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) a = min_timescale * jnp.exp(jnp.arange(A, dtype=jnp.floataa ) * -log_timescale_increment ) a = jnp.expand_dims(A, 1 ) * jnp.expand_dims(A, 0 ) # scale embeddings a = scale * emb if flip_sin_to_cos: a = jnp.concatenate([jnp.cos(A ), jnp.sin(A )], axis=1 ) else: a = jnp.concatenate([jnp.sin(A ), jnp.cos(A )], axis=1 ) a = jnp.reshape(A, [jnp.shape(A )[0], embedding_dim] ) return signal class snake_case__ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 32 SCREAMING_SNAKE_CASE_ : jnp.dtype = jnp.floataa @nn.compact def __call__( self : Tuple , __lowerCamelCase : Optional[Any] ) -> List[Any]: a = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1" )(__lowerCamelCase ) a = nn.silu(__lowerCamelCase ) a = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2" )(__lowerCamelCase ) return temb class snake_case__ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 32 SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : float = 1 @nn.compact def __call__( self : Tuple , __lowerCamelCase : int ) -> Union[str, Any]: return get_sinusoidal_embeddings( __lowerCamelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
714
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowerCAmelCase : Union[str, Any] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Any=1 ) -> Union[str, Any]: a = tokenizer a = dataset a = len(__lowerCamelCase ) if n_tasks is None else n_tasks a = n_copies def __iter__( self : Tuple ) -> str: a = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) a = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ) -> Optional[Any]: a = start_length a = eof_strings a = tokenizer def __call__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , **__lowerCamelCase : Optional[int] ) -> Optional[Any]: a = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) a = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__lowerCamelCase ) def __magic_name__ ( A : List[Any] ): '''simple docstring''' a = re.split("(%s)" % "|".join(A ), A ) # last string should be "" return "".join(string_list[:-2] ) def __magic_name__ ( A : Union[str, Any], A : Optional[Any], A : List[Any], A : Optional[Any], A : List[str], A : List[Any]=20, **A : Union[str, Any] ): '''simple docstring''' a = defaultdict(A ) # dict of list of generated tokens for step, batch in tqdm(enumerate(A ) ): with torch.no_grad(): a = batch["ids"].shape[-1] a = accelerator.unwrap_model(A ).generate( input_ids=batch["ids"][:, : batch["input_len"]], num_return_sequences=A, **A ) # each task is generated batch_size times a = batch["task_id"].repeat(A ) a = accelerator.pad_across_processes( A, dim=1, pad_index=tokenizer.pad_token_id ) a , a = accelerator.gather((generated_tokens, generated_tasks) ) a = generated_tokens.cpu().numpy() a = generated_tasks.cpu().numpy() for task, generated_tokens in zip(A, A ): gen_token_dict[task].append(A ) a = [[] for _ in range(A )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: a = tokenizer.decode(A, skip_special_tokens=A, clean_up_tokenization_spaces=A ) code_gens[task].append(remove_last_block(A ) ) return code_gens def __magic_name__ ( ): '''simple docstring''' a = HfArgumentParser(A ) a = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric a = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing a = "false" if args.num_workers is None: a = multiprocessing.cpu_count() # Use dataset load to feed to accelerate a = Accelerator() set_seed(args.seed, device_specific=A ) # Load model and tokenizer a = AutoTokenizer.from_pretrained(args.model_ckpt ) a = tokenizer.eos_token a = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings a = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0, A, A )] ), } # Load evaluation dataset and metric a = load_dataset("openai_humaneval" ) a = load_metric("code_eval" ) a = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) a = args.n_samples // args.batch_size a = TokenizedDataset(A, human_eval["test"], n_copies=A, n_tasks=A ) # do not confuse args.batch_size, which is actually the num_return_sequences a = DataLoader(A, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: a = code_eval_metric.compute(references=[""], predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception a , a = accelerator.prepare(A, A ) a = complete_code( A, A, A, A, n_tasks=A, batch_size=args.batch_size, **A, ) if accelerator.is_main_process: a = [] for task in tqdm(range(A ) ): a = human_eval["test"][task]["test"] a = F"""check({human_eval["test"][task]["entry_point"]})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric a , a = code_eval_metric.compute( references=A, predictions=A, num_workers=args.num_workers ) print(F"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file, "w" ) as fp: json.dump(A, A ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
662
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _UpperCamelCase , ) class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = RobertaConfig SCREAMING_SNAKE_CASE_ : Optional[Any] = """roberta""" def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] ) -> Tuple: super().__init__(__lowerCamelCase ) a = RobertaEmbeddings(__lowerCamelCase ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _UpperCamelCase , ) class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = RobertaConfig SCREAMING_SNAKE_CASE_ : int = """roberta""" def __init__( self : List[str] , __lowerCamelCase : Tuple ) -> Optional[int]: super().__init__(__lowerCamelCase ) a = config.num_labels a = config.num_hidden_layers a = DeeRobertaModel(__lowerCamelCase ) a = nn.Dropout(config.hidden_dropout_prob ) a = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__lowerCamelCase ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : int=None , __lowerCamelCase : Any=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=-1 , __lowerCamelCase : Tuple=False , ) -> str: a = self.num_layers try: a = self.roberta( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , position_ids=__lowerCamelCase , head_mask=__lowerCamelCase , inputs_embeds=__lowerCamelCase , ) a = outputs[1] a = self.dropout(__lowerCamelCase ) a = self.classifier(__lowerCamelCase ) a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: a = e.message a = e.exit_layer a = outputs[0] if not self.training: a = entropy(__lowerCamelCase ) a = [] a = [] if labels is not None: if self.num_labels == 1: # We are doing regression a = MSELoss() a = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: a = CrossEntropyLoss() a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits a = [] for highway_exit in outputs[-1]: a = highway_exit[0] if not self.training: highway_logits_all.append(__lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression a = MSELoss() a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: a = CrossEntropyLoss() a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__lowerCamelCase ) if train_highway: a = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: a = (loss,) + outputs if not self.training: a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
715
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : Any = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
662
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : Optional[Any] = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Optional[int] = { 'distilbert-base-uncased': 512, 'distilbert-base-uncased-distilled-squad': 512, 'distilbert-base-cased': 512, 'distilbert-base-cased-distilled-squad': 512, 'distilbert-base-german-cased': 512, 'distilbert-base-multilingual-cased': 512, } __lowerCAmelCase : List[str] = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : int = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : Optional[int] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : str = DistilBertTokenizer def __init__( self : Union[str, Any] , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str=True , __lowerCamelCase : List[str]="[UNK]" , __lowerCamelCase : str="[SEP]" , __lowerCamelCase : Tuple="[PAD]" , __lowerCamelCase : List[str]="[CLS]" , __lowerCamelCase : int="[MASK]" , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Any=None , **__lowerCamelCase : str , ) -> List[str]: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __lowerCamelCase ) != tokenize_chinese_chars ): a = getattr(__lowerCamelCase , normalizer_state.pop("type" ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__lowerCamelCase ) a = do_lower_case def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any]=None ) -> int: a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : int , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: a = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
716
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ (_UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = LongformerTokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : Optional[int] = LongformerTokenizerFast SCREAMING_SNAKE_CASE_ : str = True def __UpperCAmelCase ( self : Optional[int] ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] a = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) a = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] a = {"unk_token": "<unk>"} a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def __UpperCAmelCase ( self : Dict , **__lowerCamelCase : Dict ) -> Any: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] , **__lowerCamelCase : Any ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : List[Any] ) -> Union[str, Any]: a = "lower newer" a = "lower newer" return input_text, output_text def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a = "lower newer" a = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] a = tokenizer.tokenize(__lowerCamelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) a = tokens + [tokenizer.unk_token] a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: a = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=__lowerCamelCase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=__lowerCamelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: a = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) a = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCamelCase ) a = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCamelCase ) a = tokenizer.encode( "sequence builders" , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) a = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) a = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) a = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCAmelCase ( self : Any ) -> str: a = self.get_tokenizer() a = "Encode this sequence." a = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) a = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) # Testing spaces after special tokens a = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase )} ) # mask token has a left space a = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) a = "Encode <mask> sequence" a = "Encode <mask>sequence" a = tokenizer.encode(__lowerCamelCase ) a = encoded.index(__lowerCamelCase ) a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) a = tokenizer.encode(__lowerCamelCase ) a = encoded.index(__lowerCamelCase ) a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> List[str]: pass def __UpperCAmelCase ( self : int ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = "A, <mask> AllenNLP sentence." a = tokenizer_r.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) a = tokenizer_p.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) a = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) a = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , __lowerCamelCase ) self.assertEqual(post_processor_state["add_prefix_space"] , __lowerCamelCase ) self.assertEqual(post_processor_state["trim_offsets"] , __lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a = f"""{text_of_1_token} {text_of_1_token}""" a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) a = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ) + 1, 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) a = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , )
662
0
def __magic_name__ ( A : int, A : list[int], A : int ): '''simple docstring''' def count_of_possible_combinations(A : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(A ) def __magic_name__ ( A : int, A : list[int], A : int ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( A : int, A : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] a = sum( count_of_possible_combinations_with_dp_array(target - item, A ) for item in array ) a = answer return answer a = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(A, A ) def __magic_name__ ( A : int, A : list[int], A : int ): '''simple docstring''' a = [0] * (target + 1) a = 1 for i in range(1, target + 1 ): for j in range(A ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] = 3 __lowerCAmelCase : Dict = 5 __lowerCAmelCase : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
717
from typing import TYPE_CHECKING from ....utils import _LazyModule __lowerCAmelCase : int = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
662
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __lowerCAmelCase : List[str] = 'Usage of script: script_name <size_of_canvas:int>' __lowerCAmelCase : Tuple = [0] * 100 + [1] * 10 random.shuffle(choice) def __magic_name__ ( A : int ): '''simple docstring''' a = [[False for i in range(A )] for j in range(A )] return canvas def __magic_name__ ( A : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(A ): for j, _ in enumerate(A ): a = bool(random.getrandbits(1 ) ) def __magic_name__ ( A : list[list[bool]] ): '''simple docstring''' a = np.array(A ) a = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(A ): for c, pt in enumerate(A ): a = __judge_point( A, current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) a = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. a = current_canvas.tolist() return return_canvas def __magic_name__ ( A : bool, A : list[list[bool]] ): '''simple docstring''' a = 0 a = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. a = pt if pt: if alive < 2: a = False elif alive == 2 or alive == 3: a = True elif alive > 3: a = False else: if alive == 3: a = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __lowerCAmelCase : int = int(sys.argv[1]) # main working structure of this module. __lowerCAmelCase : Dict = create_canvas(canvas_size) seed(c) __lowerCAmelCase : Union[str, Any] = plt.subplots() fig.show() __lowerCAmelCase : Optional[int] = ListedColormap(['w', 'k']) try: while True: __lowerCAmelCase : List[str] = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
718
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : Dict = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
662
0
from ..utils import DummyObject, requires_backends class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["""sentencepiece"""] def __init__( self : Any , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Tuple ) -> Any: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["""sentencepiece"""] def __init__( self : Any , *__lowerCamelCase : Tuple , **__lowerCamelCase : Tuple ) -> Union[str, Any]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["""sentencepiece"""] def __init__( self : List[Any] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Dict ) -> Optional[int]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["""sentencepiece"""] def __init__( self : Tuple , *__lowerCamelCase : List[str] , **__lowerCamelCase : Dict ) -> Optional[Any]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["""sentencepiece"""] def __init__( self : Optional[int] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[Any] ) -> Union[str, Any]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : List[str] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[str] ) -> List[Any]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : List[str] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Dict ) -> Optional[int]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : List[str] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : int ) -> Dict: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["""sentencepiece"""] def __init__( self : str , *__lowerCamelCase : int , **__lowerCamelCase : Union[str, Any] ) -> Dict: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["""sentencepiece"""] def __init__( self : Optional[int] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : int ) -> Dict: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["""sentencepiece"""] def __init__( self : List[str] , *__lowerCamelCase : Dict , **__lowerCamelCase : str ) -> List[str]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["""sentencepiece"""] def __init__( self : Optional[Any] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Union[str, Any] ) -> List[Any]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["""sentencepiece"""] def __init__( self : Any , *__lowerCamelCase : Any , **__lowerCamelCase : List[str] ) -> Union[str, Any]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *__lowerCamelCase : Dict , **__lowerCamelCase : str ) -> Optional[int]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Optional[int] ) -> Optional[Any]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *__lowerCamelCase : Any , **__lowerCamelCase : str ) -> Optional[Any]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["""sentencepiece"""] def __init__( self : int , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Any ) -> Optional[int]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["""sentencepiece"""] def __init__( self : str , *__lowerCamelCase : int , **__lowerCamelCase : Tuple ) -> Optional[Any]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ["""sentencepiece"""] def __init__( self : List[str] , *__lowerCamelCase : List[str] , **__lowerCamelCase : str ) -> Union[str, Any]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["""sentencepiece"""] def __init__( self : Optional[Any] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Dict ) -> Any: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["""sentencepiece"""] def __init__( self : List[str] , *__lowerCamelCase : Any , **__lowerCamelCase : Union[str, Any] ) -> Dict: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *__lowerCamelCase : List[str] , **__lowerCamelCase : Optional[int] ) -> Optional[int]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : str , *__lowerCamelCase : Tuple , **__lowerCamelCase : Dict ) -> Optional[int]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ["""sentencepiece"""] def __init__( self : Dict , *__lowerCamelCase : Any , **__lowerCamelCase : List[Any] ) -> List[Any]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["""sentencepiece"""] def __init__( self : List[Any] , *__lowerCamelCase : str , **__lowerCamelCase : Optional[int] ) -> int: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["""sentencepiece"""] def __init__( self : List[str] , *__lowerCamelCase : Any , **__lowerCamelCase : Tuple ) -> int: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *__lowerCamelCase : int , **__lowerCamelCase : int ) -> Tuple: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["""sentencepiece"""] def __init__( self : List[str] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Optional[Any] ) -> Tuple: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["""sentencepiece"""] def __init__( self : Any , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : int ) -> Optional[int]: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["""sentencepiece"""] def __init__( self : str , *__lowerCamelCase : int , **__lowerCamelCase : List[Any] ) -> Dict: requires_backends(self , ["sentencepiece"] ) class snake_case__ (metaclass=_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["""sentencepiece"""] def __init__( self : Optional[int] , *__lowerCamelCase : Dict , **__lowerCamelCase : int ) -> Tuple: requires_backends(self , ["sentencepiece"] )
719
import math import flax.linen as nn import jax.numpy as jnp def __magic_name__ ( A : jnp.ndarray, A : int, A : float = 1, A : float = 1, A : float = 1.0E4, A : bool = False, A : float = 1.0, ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" a = float(embedding_dim // 2 ) a = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) a = min_timescale * jnp.exp(jnp.arange(A, dtype=jnp.floataa ) * -log_timescale_increment ) a = jnp.expand_dims(A, 1 ) * jnp.expand_dims(A, 0 ) # scale embeddings a = scale * emb if flip_sin_to_cos: a = jnp.concatenate([jnp.cos(A ), jnp.sin(A )], axis=1 ) else: a = jnp.concatenate([jnp.sin(A ), jnp.cos(A )], axis=1 ) a = jnp.reshape(A, [jnp.shape(A )[0], embedding_dim] ) return signal class snake_case__ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 32 SCREAMING_SNAKE_CASE_ : jnp.dtype = jnp.floataa @nn.compact def __call__( self : Tuple , __lowerCamelCase : Optional[Any] ) -> List[Any]: a = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1" )(__lowerCamelCase ) a = nn.silu(__lowerCamelCase ) a = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2" )(__lowerCamelCase ) return temb class snake_case__ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 32 SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : float = 1 @nn.compact def __call__( self : Tuple , __lowerCamelCase : int ) -> Union[str, Any]: return get_sinusoidal_embeddings( __lowerCamelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
662
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Tuple ) -> Tuple: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): a = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: a = "sshleifer/tiny-gpt2" a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__lowerCamelCase , multi_process=__lowerCamelCase , ) a = TensorFlowBenchmark(__lowerCamelCase ) a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self : int ) -> List[str]: a = "sgugger/tiny-distilbert-classification" a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) a = TensorFlowBenchmark(__lowerCamelCase ) a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self : Any ) -> int: a = "sshleifer/tiny-gpt2" a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) a = TensorFlowBenchmark(__lowerCamelCase ) a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self : Dict ) -> Tuple: a = "sshleifer/tiny-gpt2" a = AutoConfig.from_pretrained(__lowerCamelCase ) a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__lowerCamelCase , multi_process=__lowerCamelCase , ) a = TensorFlowBenchmark(__lowerCamelCase , [config] ) a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: a = "sshleifer/tiny-gpt2" a = AutoConfig.from_pretrained(__lowerCamelCase ) a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) a = TensorFlowBenchmark(__lowerCamelCase , [config] ) a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: a = "sshleifer/tiny-gpt2" a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) a = TensorFlowBenchmark(__lowerCamelCase ) a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: a = "sshleifer/tiny-gpt2" a = AutoConfig.from_pretrained(__lowerCamelCase ) a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) a = TensorFlowBenchmark(__lowerCamelCase , [config] ) a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self : Dict ) -> Dict: a = "patrickvonplaten/t5-tiny-random" a = AutoConfig.from_pretrained(__lowerCamelCase ) a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) a = TensorFlowBenchmark(__lowerCamelCase , configs=[config] ) a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: a = "sshleifer/tiny-gpt2" a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__lowerCamelCase , multi_process=__lowerCamelCase , ) a = TensorFlowBenchmark(__lowerCamelCase ) a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self : List[str] ) -> List[str]: a = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv" ) , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv" ) , multi_process=__lowerCamelCase , ) a = TensorFlowBenchmark(__lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv" ) ).exists() ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: a = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase : Optional[int] ): self.assertTrue(hasattr(__lowerCamelCase , "sequential" ) ) self.assertTrue(hasattr(__lowerCamelCase , "cumulative" ) ) self.assertTrue(hasattr(__lowerCamelCase , "current" ) ) self.assertTrue(hasattr(__lowerCamelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt" ) , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , eager_mode=__lowerCamelCase , multi_process=__lowerCamelCase , ) a = TensorFlowBenchmark(__lowerCamelCase ) a = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt" ) ).exists() )
720
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : int ) -> Dict: a = tempfile.mkdtemp() a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) a = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], "do_convert_rgb": True, } a = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict , **__lowerCamelCase : Union[str, Any] ) -> List[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : str , **__lowerCamelCase : Optional[int] ) -> str: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , **__lowerCamelCase : Optional[int] ) -> Tuple: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: a = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self : int ) -> List[str]: a = self.get_tokenizer() a = self.get_rust_tokenizer() a = self.get_image_processor() a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) a = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCamelCase ) a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) a = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: a = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) a = self.get_image_processor(do_normalize=__lowerCamelCase ) a = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=__lowerCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Dict: a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) a = self.prepare_image_inputs() a = image_processor(__lowerCamelCase , return_tensors="np" ) a = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self : str ) -> Optional[int]: a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) a = "Alexandra,T-shirt的价格是15便士。" a = processor(text=__lowerCamelCase ) a = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self : List[Any] ) -> Any: a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) a = "Alexandra,T-shirt的价格是15便士。" a = self.prepare_image_inputs() a = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__lowerCamelCase ) a = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> List[str]: a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) a = "Alexandra,T-shirt的价格是15便士。" a = self.prepare_image_inputs() a = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
662
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : List[Any] = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __magic_name__ ( A : Union[str, Any] ): '''simple docstring''' a = fname.split(os.path.sep )[-1] return re.search(R"^(.*)_\d+\.jpg$", A ).groups()[0] class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Dict , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None ) -> Tuple: a = file_names a = image_transform a = label_to_id def __len__( self : Any ) -> Tuple: return len(self.file_names ) def __getitem__( self : List[Any] , __lowerCamelCase : List[Any] ) -> int: a = self.file_names[idx] a = PIL.Image.open(__lowerCamelCase ) a = raw_image.convert("RGB" ) if self.image_transform is not None: a = self.image_transform(__lowerCamelCase ) a = extract_label(__lowerCamelCase ) if self.label_to_id is not None: a = self.label_to_id[label] return {"image": image, "label": label} def __magic_name__ ( A : str, A : int ): '''simple docstring''' if args.with_tracking: a = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with="all", project_dir=args.project_dir ) else: a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config["lr"] a = int(config["num_epochs"] ) a = int(config["seed"] ) a = int(config["batch_size"] ) a = config["image_size"] if not isinstance(A, (list, tuple) ): a = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps, "isdigit" ): if args.checkpointing_steps == "epoch": a = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): a = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: a = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: a = os.path.split(A )[-1].split("." )[0] accelerator.init_trackers(A, A ) # Grab all the image filenames a = [os.path.join(args.data_dir, A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences a = [extract_label(A ) for fname in file_names] a = list(set(A ) ) id_to_label.sort() a = {lbl: i for i, lbl in enumerate(A )} # Set the seed before splitting the data. np.random.seed(A ) torch.manual_seed(A ) torch.cuda.manual_seed_all(A ) # Split our filenames between train and validation a = np.random.permutation(len(A ) ) a = int(0.8 * len(A ) ) a = random_perm[:cut] a = random_perm[cut:] # For training we use a simple RandomResizedCrop a = Compose([RandomResizedCrop(A, scale=(0.5, 1.0) ), ToTensor()] ) a = PetsDataset( [file_names[i] for i in train_split], image_transform=A, label_to_id=A ) # For evaluation, we use a deterministic Resize a = Compose([Resize(A ), ToTensor()] ) a = PetsDataset([file_names[i] for i in eval_split], image_transform=A, label_to_id=A ) # Instantiate dataloaders. a = DataLoader(A, shuffle=A, batch_size=A, num_workers=4 ) a = DataLoader(A, shuffle=A, batch_size=A, num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = create_model("resnet50d", pretrained=A, num_classes=len(A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): a = False for param in model.get_classifier().parameters(): a = True # We normalize the batches of images to be a bit faster. a = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) a = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer a = torch.optim.Adam(params=model.parameters(), lr=lr / 25 ) # Instantiate learning rate scheduler a = OneCycleLR(optimizer=A, max_lr=A, epochs=A, steps_per_epoch=len(A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a = accelerator.prepare( A, A, A, A, A ) # We need to keep track of how many total steps we have iterated over a = 0 # We also need to keep track of the starting epoch so files are named properly a = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) a = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint a = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) a = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` a = os.path.splitext(A )[0] if "epoch" in training_difference: a = int(training_difference.replace("epoch_", "" ) ) + 1 a = None else: a = int(training_difference.replace("step_", "" ) ) a = resume_step // len(A ) resume_step -= starting_epoch * len(A ) # Now we train the model for epoch in range(A, A ): model.train() if args.with_tracking: a = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step a = accelerator.skip_first_batches(A, A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader a = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. a = {k: v.to(accelerator.device ) for k, v in batch.items()} a = (batch["image"] - mean) / std a = model(A ) a = torch.nn.functional.cross_entropy(A, batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(A, A ): a = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: a = os.path.join(args.output_dir, A ) accelerator.save_state(A ) model.eval() a = 0 a = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. a = {k: v.to(accelerator.device ) for k, v in batch.items()} a = (batch["image"] - mean) / std with torch.no_grad(): a = model(A ) a = outputs.argmax(dim=-1 ) a , a = accelerator.gather_for_metrics((predictions, batch["label"]) ) a = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() a = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(A ), "epoch": epoch, }, step=A, ) if checkpointing_steps == "epoch": a = F"""epoch_{epoch}""" if args.output_dir is not None: a = os.path.join(args.output_dir, A ) accelerator.save_state(A ) if args.with_tracking: accelerator.end_training() def __magic_name__ ( ): '''simple docstring''' a = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir", required=A, help="The data folder on disk." ) parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision", type=A, default=A, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps", type=A, default=A, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--output_dir", type=A, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--resume_from_checkpoint", type=A, default=A, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to load in all available experiment trackers from the environment and use them for logging.", ) parser.add_argument( "--project_dir", type=A, default="logs", help="Location on where to store experiment tracking logs` and relevent project information", ) a = parser.parse_args() a = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(A, A ) if __name__ == "__main__": main()
662
0
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class __A ( tf.keras.layers.Layer ): def __init__( self , a__ , a__ , a__ , a__ , a__=1 , a__=False , **a__ ): super().__init__(**a__ ) _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Dict = d_embed _lowerCAmelCase : str = d_proj _lowerCAmelCase : Dict = cutoffs + [vocab_size] _lowerCAmelCase : List[Any] = [0] + self.cutoffs _lowerCAmelCase : List[str] = div_val _lowerCAmelCase : List[str] = self.cutoffs[0] _lowerCAmelCase : Any = len(self.cutoffs ) - 1 _lowerCAmelCase : Tuple = self.shortlist_size + self.n_clusters _lowerCAmelCase : Dict = keep_order _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = [] def __A ( self , a__ ): if self.n_clusters > 0: _lowerCAmelCase : Union[str, Any] = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=a__ , name="""cluster_weight""" ) _lowerCAmelCase : Optional[Any] = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=a__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _lowerCAmelCase : Dict = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=a__ , name=F"out_projs_._{i}" , ) self.out_projs.append(a__ ) else: self.out_projs.append(a__ ) _lowerCAmelCase : List[str] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=a__ , name=F"out_layers_._{i}_._weight" , ) _lowerCAmelCase : Any = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=a__ , name=F"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _lowerCAmelCase , _lowerCAmelCase : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _lowerCAmelCase : Dict = self.d_embed // (self.div_val**i) _lowerCAmelCase : List[str] = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=a__ , name=F"out_projs_._{i}" ) self.out_projs.append(a__ ) _lowerCAmelCase : List[str] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=a__ , name=F"out_layers_._{i}_._weight" , ) _lowerCAmelCase : Any = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=a__ , name=F"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) super().build(a__ ) @staticmethod def __A ( a__ , a__ , a__ , a__=None ): _lowerCAmelCase : Optional[int] = x if proj is not None: _lowerCAmelCase : Tuple = tf.einsum("""ibd,ed->ibe""" , a__ , a__ ) return tf.einsum("""ibd,nd->ibn""" , a__ , a__ ) + b @staticmethod def __A ( a__ , a__ ): _lowerCAmelCase : int = shape_list(a__ ) _lowerCAmelCase : Dict = tf.range(lp_size[0] , dtype=target.dtype ) _lowerCAmelCase : str = tf.stack([r, target] , 1 ) return tf.gather_nd(a__ , a__ ) def __A ( self , a__ , a__ , a__=True , a__=False ): _lowerCAmelCase : List[Any] = 0 if self.n_clusters == 0: _lowerCAmelCase : Any = self._logit(a__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _lowerCAmelCase : Optional[Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=a__ , logits=a__ ) _lowerCAmelCase : Optional[Any] = tf.nn.log_softmax(a__ , axis=-1 ) else: _lowerCAmelCase : str = shape_list(a__ ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Union[str, Any] = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _lowerCAmelCase , _lowerCAmelCase : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _lowerCAmelCase : Optional[Any] = (target >= l_idx) & (target < r_idx) _lowerCAmelCase : Union[str, Any] = tf.where(a__ ) _lowerCAmelCase : Union[str, Any] = tf.boolean_mask(a__ , a__ ) - l_idx if self.div_val == 1: _lowerCAmelCase : str = self.out_layers[0][0][l_idx:r_idx] _lowerCAmelCase : Any = self.out_layers[0][1][l_idx:r_idx] else: _lowerCAmelCase : str = self.out_layers[i][0] _lowerCAmelCase : int = self.out_layers[i][1] if i == 0: _lowerCAmelCase : Optional[Any] = tf.concat([cur_W, self.cluster_weight] , 0 ) _lowerCAmelCase : Optional[Any] = tf.concat([cur_b, self.cluster_bias] , 0 ) _lowerCAmelCase : Dict = self._logit(a__ , a__ , a__ , self.out_projs[0] ) _lowerCAmelCase : int = tf.nn.log_softmax(a__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _lowerCAmelCase : Union[str, Any] = tf.boolean_mask(a__ , a__ ) _lowerCAmelCase : Any = self._gather_logprob(a__ , a__ ) else: _lowerCAmelCase : Union[str, Any] = self._logit(a__ , a__ , a__ , self.out_projs[i] ) _lowerCAmelCase : List[str] = tf.nn.log_softmax(a__ ) _lowerCAmelCase : Dict = self.cutoffs[0] + i - 1 # No probability for the head cluster _lowerCAmelCase : List[str] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(a__ ) if target is not None: _lowerCAmelCase : List[Any] = tf.boolean_mask(a__ , a__ ) _lowerCAmelCase : Tuple = tf.boolean_mask(a__ , a__ ) _lowerCAmelCase : Any = self._gather_logprob(a__ , a__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(a__ , -cur_logprob , shape_list(a__ ) ) _lowerCAmelCase : str = tf.concat(a__ , axis=-1 ) if target is not None: if return_mean: _lowerCAmelCase : Optional[int] = tf.reduce_mean(a__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(a__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(a__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
663
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
1
"""simple docstring""" from collections.abc import Callable import numpy as np def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Callable ,_lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Any = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Optional[Any] = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : Any = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : int = y[k] + step_size * ode_func(_lowerCamelCase ,y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
663
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : List[Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = "realm" def __init__( self , a__=30522 , a__=768 , a__=128 , a__=12 , a__=12 , a__=8 , a__=3072 , a__="gelu_new" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=256 , a__=10 , a__=1e-3 , a__=5 , a__=320 , a__=13353718 , a__=5000 , a__=1 , a__=0 , a__=2 , **a__ , ): super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) # Common config _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : int = retriever_proj_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Union[str, Any] = num_candidates _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : Any = layer_norm_eps # Reader config _lowerCAmelCase : Any = span_hidden_size _lowerCAmelCase : List[Any] = max_span_width _lowerCAmelCase : Any = reader_layer_norm_eps _lowerCAmelCase : Optional[int] = reader_beam_size _lowerCAmelCase : Union[str, Any] = reader_seq_len # Retrieval config _lowerCAmelCase : List[Any] = num_block_records _lowerCAmelCase : Dict = searcher_beam_size
663
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
1
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _a : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: _lowerCAmelCase : Union[str, Any] = ( F"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" F" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , a__ , standard_warn=a__ ) _lowerCAmelCase : str = dict(scheduler.config ) _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : List[Any] = FrozenDict(a__ ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: _lowerCAmelCase : Dict = ( F"The configuration file of this scheduler: {scheduler} has not set the configuration" """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , a__ , standard_warn=a__ ) _lowerCAmelCase : Dict = dict(scheduler.config ) _lowerCAmelCase : Any = True _lowerCAmelCase : Any = FrozenDict(a__ ) if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=a__ , segmentation_processor=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , unet=a__ , scheduler=a__ , safety_checker=a__ , feature_extractor=a__ , ) def __A ( self , a__ = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a__ ) def __A ( self ): self.enable_attention_slicing(a__ ) def __A ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : int = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 50 , a__ = 7.5 , a__ = None , a__ = 1 , a__ = 0.0 , a__ = None , a__ = None , a__ = "pil" , a__ = True , a__ = None , a__ = 1 , **a__ , ): _lowerCAmelCase : Any = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) _lowerCAmelCase : Dict = self.segmentation_model(**a__ ) _lowerCAmelCase : Tuple = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _lowerCAmelCase : Optional[Any] = self.numpy_to_pil(a__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _lowerCAmelCase : Optional[int] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=a__ , image=a__ , mask_image=a__ , height=a__ , width=a__ , num_inference_steps=a__ , guidance_scale=a__ , negative_prompt=a__ , num_images_per_prompt=a__ , eta=a__ , generator=a__ , latents=a__ , output_type=a__ , return_dict=a__ , callback=a__ , callback_steps=a__ , )
663
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
1
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : BigBirdConfig _UpperCamelCase : jnp.dtype = jnp.floataa _UpperCamelCase : bool = True def __A ( self ): super().setup() _lowerCAmelCase : int = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *a__ , **a__ ): _lowerCAmelCase : Union[str, Any] = super().__call__(*a__ , **a__ ) _lowerCAmelCase : Any = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : int ,_lowerCamelCase : Tuple ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ) -> List[str]: def cross_entropy(_lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ,_lowerCamelCase : Optional[Any]=None ): _lowerCAmelCase : List[Any] = logits.shape[-1] _lowerCAmelCase : str = (labels[..., None] == jnp.arange(_lowerCamelCase )[None]).astype("""f4""" ) _lowerCAmelCase : int = jax.nn.log_softmax(_lowerCamelCase ,axis=-1 ) _lowerCAmelCase : str = -jnp.sum(labels * logits ,axis=-1 ) if reduction is not None: _lowerCAmelCase : Tuple = reduction(_lowerCamelCase ) return loss _lowerCAmelCase : str = partial(_lowerCamelCase ,reduction=jnp.mean ) _lowerCAmelCase : List[Any] = cross_entropy(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Tuple = cross_entropy(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : List[str] = cross_entropy(_lowerCamelCase ,_lowerCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __A : _UpperCamelCase : str = "google/bigbird-roberta-base" _UpperCamelCase : int = 3_000 _UpperCamelCase : int = 10_500 _UpperCamelCase : int = 128 _UpperCamelCase : int = 3 _UpperCamelCase : int = 1 _UpperCamelCase : int = 5 # tx_args _UpperCamelCase : float = 3E-5 _UpperCamelCase : float = 0.0 _UpperCamelCase : int = 20_000 _UpperCamelCase : float = 0.0_0_9_5 _UpperCamelCase : str = "bigbird-roberta-natural-questions" _UpperCamelCase : str = "training-expt" _UpperCamelCase : str = "data/nq-training.jsonl" _UpperCamelCase : str = "data/nq-validation.jsonl" def __A ( self ): os.makedirs(self.base_dir , exist_ok=a__ ) _lowerCAmelCase : Union[str, Any] = os.path.join(self.base_dir , self.save_dir ) _lowerCAmelCase : int = self.batch_size_per_device * jax.device_count() @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , a__ ): _lowerCAmelCase : Dict = self.collate_fn(a__ ) _lowerCAmelCase : Dict = jax.tree_util.tree_map(a__ , a__ ) return batch def __A ( self , a__ ): _lowerCAmelCase , _lowerCAmelCase : str = self.fetch_inputs(features["""input_ids"""] ) _lowerCAmelCase : int = { """input_ids""": jnp.array(a__ , dtype=jnp.intaa ), """attention_mask""": jnp.array(a__ , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def __A ( self , a__ ): _lowerCAmelCase : List[Any] = [self._fetch_inputs(a__ ) for ids in input_ids] return zip(*a__ ) def __A ( self , a__ ): _lowerCAmelCase : List[Any] = [1 for _ in range(len(a__ ) )] while len(a__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : List[str] ,_lowerCamelCase : Any=None ) -> Any: if seed is not None: _lowerCAmelCase : Any = dataset.shuffle(seed=_lowerCamelCase ) for i in range(len(_lowerCamelCase ) // batch_size ): _lowerCAmelCase : int = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_lowerCamelCase ) @partial(jax.pmap ,axis_name="""batch""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,**_lowerCamelCase : int ) -> str: def loss_fn(_lowerCamelCase : Tuple ): _lowerCAmelCase : List[Any] = model_inputs.pop("""start_labels""" ) _lowerCAmelCase : List[str] = model_inputs.pop("""end_labels""" ) _lowerCAmelCase : List[Any] = model_inputs.pop("""pooled_labels""" ) _lowerCAmelCase : List[Any] = state.apply_fn(**_lowerCamelCase ,params=_lowerCamelCase ,dropout_rng=_lowerCamelCase ,train=_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = outputs return state.loss_fn( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) _lowerCAmelCase , _lowerCAmelCase : List[Any] = jax.random.split(_lowerCamelCase ) _lowerCAmelCase : Tuple = jax.value_and_grad(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = grad_fn(state.params ) _lowerCAmelCase : Tuple = jax.lax.pmean({"""loss""": loss} ,axis_name="""batch""" ) _lowerCAmelCase : Dict = jax.lax.pmean(_lowerCamelCase ,"""batch""" ) _lowerCAmelCase : Tuple = state.apply_gradients(grads=_lowerCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap ,axis_name="""batch""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,**_lowerCamelCase : List[str] ) -> List[str]: _lowerCAmelCase : Tuple = model_inputs.pop("""start_labels""" ) _lowerCAmelCase : Optional[Any] = model_inputs.pop("""end_labels""" ) _lowerCAmelCase : int = model_inputs.pop("""pooled_labels""" ) _lowerCAmelCase : Tuple = state.apply_fn(**_lowerCamelCase ,params=state.params ,train=_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = outputs _lowerCAmelCase : Tuple = state.loss_fn(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Tuple = jax.lax.pmean({"""loss""": loss} ,axis_name="""batch""" ) return metrics class __A ( train_state.TrainState ): _UpperCamelCase : Callable = struct.field(pytree_node=SCREAMING_SNAKE_CASE_ ) @dataclass class __A : _UpperCamelCase : Args _UpperCamelCase : Callable _UpperCamelCase : Callable _UpperCamelCase : Callable _UpperCamelCase : Callable _UpperCamelCase : wandb _UpperCamelCase : Callable = None def __A ( self , a__ , a__ , a__ , a__=None ): _lowerCAmelCase : str = model.params _lowerCAmelCase : str = TrainState.create( apply_fn=model.__call__ , params=a__ , tx=a__ , loss_fn=a__ , ) if ckpt_dir is not None: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = restore_checkpoint(a__ , a__ ) _lowerCAmelCase : Dict = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } _lowerCAmelCase , _lowerCAmelCase : str = build_tx(**a__ ) _lowerCAmelCase : str = train_state.TrainState( step=a__ , apply_fn=model.__call__ , params=a__ , tx=a__ , opt_state=a__ , ) _lowerCAmelCase : int = args _lowerCAmelCase : str = data_collator _lowerCAmelCase : Optional[Any] = lr _lowerCAmelCase : int = params _lowerCAmelCase : Any = jax_utils.replicate(a__ ) return state def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = self.args _lowerCAmelCase : Union[str, Any] = len(a__ ) // args.batch_size _lowerCAmelCase : Optional[int] = jax.random.PRNGKey(0 ) _lowerCAmelCase : Any = jax.random.split(a__ , jax.device_count() ) for epoch in range(args.max_epochs ): _lowerCAmelCase : str = jnp.array(0 , dtype=jnp.floataa ) _lowerCAmelCase : Optional[Any] = get_batched_dataset(a__ , args.batch_size , seed=a__ ) _lowerCAmelCase : Optional[Any] = 0 for batch in tqdm(a__ , total=a__ , desc=F"Running EPOCH-{epoch}" ): _lowerCAmelCase : Optional[int] = self.data_collator(a__ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.train_step_fn(a__ , a__ , **a__ ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: _lowerCAmelCase : int = jax_utils.unreplicate(state.step ) _lowerCAmelCase : int = running_loss.item() / i _lowerCAmelCase : Optional[Any] = self.scheduler_fn(state_step - 1 ) _lowerCAmelCase : str = self.evaluate(a__ , a__ ) _lowerCAmelCase : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(a__ ) ) self.logger.log(a__ , commit=a__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"-e{epoch}-s{i}" , state=a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Dict = get_batched_dataset(a__ , self.args.batch_size ) _lowerCAmelCase : List[Any] = len(a__ ) // self.args.batch_size _lowerCAmelCase : str = jnp.array(0 , dtype=jnp.floataa ) _lowerCAmelCase : List[str] = 0 for batch in tqdm(a__ , total=a__ , desc="""Evaluating ... """ ): _lowerCAmelCase : Any = self.data_collator(a__ ) _lowerCAmelCase : Tuple = self.val_step_fn(a__ , **a__ ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def __A ( self , a__ , a__ ): _lowerCAmelCase : int = jax_utils.unreplicate(a__ ) print(F"SAVING CHECKPOINT IN {save_dir}" , end=""" ... """ ) self.model_save_fn(a__ , params=state.params ) with open(os.path.join(a__ , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(a__ , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(a__ , """data_collator.joblib""" ) ) with open(os.path.join(a__ , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , a__ ) print("""DONE""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[Any] ) -> Union[str, Any]: print(f"RESTORING CHECKPOINT FROM {save_dir}" ,end=""" ... """ ) with open(os.path.join(_lowerCamelCase ,"""flax_model.msgpack""" ) ,"""rb""" ) as f: _lowerCAmelCase : List[Any] = from_bytes(state.params ,f.read() ) with open(os.path.join(_lowerCamelCase ,"""opt_state.msgpack""" ) ,"""rb""" ) as f: _lowerCAmelCase : Optional[int] = from_bytes(state.opt_state ,f.read() ) _lowerCAmelCase : int = joblib.load(os.path.join(_lowerCamelCase ,"""args.joblib""" ) ) _lowerCAmelCase : List[Any] = joblib.load(os.path.join(_lowerCamelCase ,"""data_collator.joblib""" ) ) with open(os.path.join(_lowerCamelCase ,"""training_state.json""" ) ,"""r""" ) as f: _lowerCAmelCase : Tuple = json.load(_lowerCamelCase ) _lowerCAmelCase : List[str] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : int ,_lowerCamelCase : Any ,_lowerCamelCase : str ) -> List[str]: _lowerCAmelCase : Union[str, Any] = num_train_steps - warmup_steps _lowerCAmelCase : Tuple = optax.linear_schedule(init_value=_lowerCamelCase ,end_value=_lowerCamelCase ,transition_steps=_lowerCamelCase ) _lowerCAmelCase : str = optax.linear_schedule(init_value=_lowerCamelCase ,end_value=1e-7 ,transition_steps=_lowerCamelCase ) _lowerCAmelCase : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] ,boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Any ,_lowerCamelCase : Any ,_lowerCamelCase : Optional[int] ) -> str: def weight_decay_mask(_lowerCamelCase : List[Any] ): _lowerCAmelCase : List[str] = traverse_util.flatten_dict(_lowerCamelCase ) _lowerCAmelCase : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(_lowerCamelCase ) _lowerCAmelCase : List[Any] = scheduler_fn(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = optax.adamw(learning_rate=_lowerCamelCase ,weight_decay=_lowerCamelCase ,mask=_lowerCamelCase ) return tx, lr
663
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : int = IFInpaintingPipeline _UpperCamelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} _UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - {"latents"} def __A ( self ): return self._get_dummy_components() def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Dict = torch.manual_seed(a__ ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) _lowerCAmelCase : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) _lowerCAmelCase : str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __A ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __A ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __A ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __A ( self ): self._test_save_load_local() def __A ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
663
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
1
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : Tuple = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } _a : Optional[Any] = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } _a : List[str] = { 'ctrl': 256, } _a : List[Any] = { 'Pregnancy': 168_629, 'Christianity': 7_675, 'Explain': 106_423, 'Fitness': 63_440, 'Saving': 63_163, 'Ask': 27_171, 'Ass': 95_985, 'Joke': 163_509, 'Questions': 45_622, 'Thoughts': 49_605, 'Retail': 52_342, 'Feminism': 164_338, 'Writing': 11_992, 'Atheism': 192_263, 'Netflix': 48_616, 'Computing': 39_639, 'Opinion': 43_213, 'Alone': 44_967, 'Funny': 58_917, 'Gaming': 40_358, 'Human': 4_088, 'India': 1_331, 'Joker': 77_138, 'Diet': 36_206, 'Legal': 11_859, 'Norman': 4_939, 'Tip': 72_689, 'Weight': 52_343, 'Movies': 46_273, 'Running': 23_425, 'Science': 2_090, 'Horror': 37_793, 'Confession': 60_572, 'Finance': 12_250, 'Politics': 16_360, 'Scary': 191_985, 'Support': 12_654, 'Technologies': 32_516, 'Teenage': 66_160, 'Event': 32_769, 'Learned': 67_460, 'Notion': 182_770, 'Wikipedia': 37_583, 'Books': 6_665, 'Extract': 76_050, 'Confessions': 102_701, 'Conspiracy': 75_932, 'Links': 63_674, 'Narcissus': 150_425, 'Relationship': 54_766, 'Relationships': 134_796, 'Reviews': 41_671, 'News': 4_256, 'Translation': 26_820, 'multilingual': 128_406, } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ) -> Optional[int]: _lowerCAmelCase : str = set() _lowerCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : List[str] = char _lowerCAmelCase : str = set(_lowerCamelCase ) return pairs class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : int = CONTROL_CODES def __init__( self , a__ , a__ , a__="<unk>" , **a__ ): super().__init__(unk_token=a__ , **a__ ) with open(a__ , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase : Union[str, Any] = json.load(a__ ) _lowerCAmelCase : int = {v: k for k, v in self.encoder.items()} with open(a__ , encoding="""utf-8""" ) as merges_handle: _lowerCAmelCase : List[str] = merges_handle.read().split("""\n""" )[1:-1] _lowerCAmelCase : List[Any] = [tuple(merge.split() ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : Optional[int] = {} @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , a__ ): if token in self.cache: return self.cache[token] _lowerCAmelCase : int = tuple(a__ ) _lowerCAmelCase : Tuple = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) _lowerCAmelCase : List[str] = get_pairs(a__ ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(a__ , key=lambda a__ : self.bpe_ranks.get(a__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = bigram _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : str = 0 while i < len(a__ ): try: _lowerCAmelCase : Dict = word.index(a__ , a__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Any = j if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Dict = tuple(a__ ) _lowerCAmelCase : List[Any] = new_word if len(a__ ) == 1: break else: _lowerCAmelCase : Optional[int] = get_pairs(a__ ) _lowerCAmelCase : Any = """@@ """.join(a__ ) _lowerCAmelCase : List[Any] = word[:-4] _lowerCAmelCase : Optional[int] = word return word def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Optional[Any] = re.findall(r"""\S+\n?""" , a__ ) for token in words: split_tokens.extend(list(self.bpe(a__ ).split(""" """ ) ) ) return split_tokens def __A ( self , a__ ): return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def __A ( self , a__ ): return self.decoder.get(a__ , self.unk_token ) def __A ( self , a__ ): _lowerCAmelCase : List[str] = """ """.join(a__ ).replace("""@@ """ , """""" ).strip() return out_string def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : Union[str, Any] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : Any = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + """\n""" ) _lowerCAmelCase : Optional[int] = 0 with open(a__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) _lowerCAmelCase : List[Any] = token_index writer.write(""" """.join(a__ ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
663
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _a : List[Any] = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _a : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" from __future__ import annotations _a : Dict = 8.9_88e9 # units = N * m^s * C^-2 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ) -> dict[str, float]: _lowerCAmelCase : List[str] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if distance < 0: raise ValueError("""Distance cannot be negative""" ) if force == 0: _lowerCAmelCase : str = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: _lowerCAmelCase : Any = abs(_lowerCamelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: _lowerCAmelCase : int = abs(_lowerCamelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: _lowerCAmelCase : Optional[Any] = (COULOMBS_CONSTANT * charge_product / abs(_lowerCamelCase )) ** 0.5 return {"distance": distance} raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
663
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _a : Tuple = pytest.mark.integration @require_faiss class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self ): _lowerCAmelCase : Any = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(a__ ) for x in np.arange(30 ).tolist()]} ) return dset def __A ( self ): import faiss _lowerCAmelCase : Dataset = self._create_dummy_dataset() _lowerCAmelCase : Dict = dset.map( lambda a__ , a__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=a__ , keep_in_memory=a__ ) _lowerCAmelCase : List[Any] = dset.add_faiss_index("""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) _lowerCAmelCase , _lowerCAmelCase : int = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def __A ( self ): import faiss _lowerCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def __A ( self ): import faiss _lowerCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=a__ ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def __A ( self ): _lowerCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(a__ , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def __A ( self ): from elasticsearch import Elasticsearch _lowerCAmelCase : Dataset = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: _lowerCAmelCase : Union[str, Any] = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 30 ) _lowerCAmelCase : Union[str, Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 29}]}} _lowerCAmelCase : List[Any] = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=a__ ) _lowerCAmelCase , _lowerCAmelCase : List[str] = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self ): import faiss _lowerCAmelCase : Dict = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query _lowerCAmelCase : List[Any] = np.zeros(5 , dtype=np.floataa ) _lowerCAmelCase : Any = 1 _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = index.search(a__ ) self.assertRaises(a__ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries _lowerCAmelCase : List[Any] = np.eye(5 , dtype=np.floataa )[::-1] _lowerCAmelCase , _lowerCAmelCase : Optional[int] = index.search_batch(a__ ) self.assertRaises(a__ , index.search_batch , queries[0] ) _lowerCAmelCase : int = [scores[0] for scores in total_scores] _lowerCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(a__ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , a__ ) def __A ( self ): import faiss _lowerCAmelCase : Tuple = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) _lowerCAmelCase : Dict = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(a__ ): _lowerCAmelCase : int = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def __A ( self ): import faiss _lowerCAmelCase : Union[str, Any] = faiss.IndexFlat(5 ) _lowerCAmelCase : int = FaissIndex(custom_index=a__ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __A ( self ): import faiss _lowerCAmelCase : List[str] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=a__ ) as tmp_file: index.save(tmp_file.name ) _lowerCAmelCase : Tuple = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) _lowerCAmelCase : Optional[Any] = np.zeros(5 , dtype=np.floataa ) _lowerCAmelCase : int = 1 _lowerCAmelCase , _lowerCAmelCase : List[str] = index.search(a__ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Tuple: import faiss _lowerCAmelCase : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) _lowerCAmelCase : Tuple = """index.faiss""" _lowerCAmelCase : Optional[int] = f"mock://{index_name}" index.save(_lowerCamelCase ,storage_options=mockfs.storage_options ) _lowerCAmelCase : Optional[Any] = FaissIndex.load(_lowerCamelCase ,storage_options=mockfs.storage_options ) _lowerCAmelCase : Dict = np.zeros(5 ,dtype=np.floataa ) _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase , _lowerCAmelCase : Tuple = index.search(_lowerCamelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self ): from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: _lowerCAmelCase : Optional[Any] = Elasticsearch() _lowerCAmelCase : List[str] = {"""acknowledged""": True} _lowerCAmelCase : str = ElasticSearchIndex(es_client=a__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query _lowerCAmelCase : List[str] = """foo""" _lowerCAmelCase : str = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = index.search(a__ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout _lowerCAmelCase : Optional[Any] = """foo""" _lowerCAmelCase : Union[str, Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} _lowerCAmelCase , _lowerCAmelCase : Dict = index.search(a__ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries _lowerCAmelCase : Tuple = ["""foo""", """bar""", """foobar"""] _lowerCAmelCase : Optional[Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} _lowerCAmelCase , _lowerCAmelCase : Tuple = index.search_batch(a__ ) _lowerCAmelCase : Any = [scores[0] for scores in total_scores] _lowerCAmelCase : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(a__ ) , 0 ) self.assertListEqual([1, 1, 1] , a__ ) # batched queries with timeout _lowerCAmelCase : Union[str, Any] = ["""foo""", """bar""", """foobar"""] _lowerCAmelCase : int = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} _lowerCAmelCase , _lowerCAmelCase : List[Any] = index.search_batch(a__ , request_timeout=30 ) _lowerCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] _lowerCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(a__ ) , 0 ) self.assertListEqual([1, 1, 1] , a__ )
663
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : int = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = "pegasus" _UpperCamelCase : int = ["past_key_values"] _UpperCamelCase : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , a__=50265 , a__=1024 , a__=12 , a__=4096 , a__=16 , a__=12 , a__=4096 , a__=16 , a__=0.0 , a__=0.0 , a__=True , a__=True , a__="gelu" , a__=1024 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=0 , a__=False , a__=0 , a__=1 , a__=1 , **a__ , ): _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Dict = d_model _lowerCAmelCase : List[str] = encoder_ffn_dim _lowerCAmelCase : Any = encoder_layers _lowerCAmelCase : Any = encoder_attention_heads _lowerCAmelCase : Union[str, Any] = decoder_ffn_dim _lowerCAmelCase : Union[str, Any] = decoder_layers _lowerCAmelCase : List[Any] = decoder_attention_heads _lowerCAmelCase : Tuple = dropout _lowerCAmelCase : Dict = attention_dropout _lowerCAmelCase : Any = activation_dropout _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Optional[int] = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : Tuple = decoder_layerdrop _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : int = encoder_layers _lowerCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , forced_eos_token_id=a__ , **a__ , ) @property def __A ( self ): return self.encoder_attention_heads @property def __A ( self ): return self.d_model
663
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : List[str] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Dict ) -> List[Any]: _lowerCAmelCase : Dict = s.rsplit(_lowerCamelCase ,_lowerCamelCase ) return new.join(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Dict: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Dict: _lowerCAmelCase : str = {} _lowerCAmelCase : Optional[int] = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _lowerCAmelCase : Optional[Any] = key.replace(f"{group_key}." ,f"{group_key}.group." ) if "res_path" in key: _lowerCAmelCase : List[Any] = key.replace("""res_path.""" ,"""res_path.path.""" ) if key.endswith(""".w""" ): _lowerCAmelCase : Optional[int] = rreplace(_lowerCamelCase ,""".w""" ,""".weight""" ,1 ) if key.endswith(""".b""" ): _lowerCAmelCase : Dict = rreplace(_lowerCamelCase ,""".b""" ,""".bias""" ,1 ) _lowerCAmelCase : Tuple = value.float() return upgrade @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : int ,_lowerCamelCase : Optional[Any]=None ,_lowerCamelCase : List[str]=True ) -> Optional[Any]: from dall_e import Encoder _lowerCAmelCase : Optional[Any] = Encoder() if os.path.exists(_lowerCamelCase ): _lowerCAmelCase : int = torch.load(_lowerCamelCase ) else: _lowerCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Any = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: _lowerCAmelCase : Tuple = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = FlavaImageCodebookConfig() _lowerCAmelCase : Optional[int] = FlavaImageCodebook(_lowerCamelCase ).eval() _lowerCAmelCase : Any = encoder.state_dict() _lowerCAmelCase : List[str] = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) _lowerCAmelCase : Any = hf_model.state_dict() _lowerCAmelCase : Optional[Any] = count_parameters(_lowerCamelCase ) _lowerCAmelCase : int = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _a : Optional[Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
663
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def SCREAMING_SNAKE_CASE ( ) -> Any: _lowerCAmelCase : Tuple = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=_lowerCamelCase ) env_command_parser(subparsers=_lowerCamelCase ) launch_command_parser(subparsers=_lowerCamelCase ) tpu_command_parser(subparsers=_lowerCamelCase ) test_command_parser(subparsers=_lowerCamelCase ) # Let's go _lowerCAmelCase : Optional[Any] = parser.parse_args() if not hasattr(_lowerCamelCase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(_lowerCamelCase ) if __name__ == "__main__": main()
663
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
1
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __A ( SCREAMING_SNAKE_CASE_ ): @require_torch def __A ( self ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowerCAmelCase : int = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _lowerCAmelCase : str = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _lowerCAmelCase : int = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _lowerCAmelCase : Optional[Any] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(a__ ) BertModel.from_pretrained(a__ ) BertTokenizer.from_pretrained(a__ ) pipeline(task="""fill-mask""" , model=a__ ) # baseline - just load from_pretrained with normal network _lowerCAmelCase : Any = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _lowerCAmelCase : Union[str, Any] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCAmelCase : Dict = """1""" _lowerCAmelCase : Optional[int] = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def __A ( self ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowerCAmelCase : Dict = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _lowerCAmelCase : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _lowerCAmelCase : List[Any] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _lowerCAmelCase : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(a__ ) BertModel.from_pretrained(a__ ) BertTokenizer.from_pretrained(a__ ) pipeline(task="""fill-mask""" , model=a__ ) # baseline - just load from_pretrained with normal network _lowerCAmelCase : int = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _lowerCAmelCase : List[Any] = self.get_env() _lowerCAmelCase : List[str] = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def __A ( self ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowerCAmelCase : str = """ from transformers import BertConfig, BertModel, BertTokenizer """ _lowerCAmelCase : int = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _lowerCAmelCase : Union[str, Any] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _lowerCAmelCase : int = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _lowerCAmelCase : Any = self.get_env() _lowerCAmelCase : int = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network _lowerCAmelCase : Optional[int] = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCAmelCase : Any = """1""" _lowerCAmelCase : List[Any] = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def __A ( self ): _lowerCAmelCase : Optional[Any] = """ from transformers import pipeline """ _lowerCAmelCase : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _lowerCAmelCase : List[Any] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _lowerCAmelCase : List[Any] = self.get_env() _lowerCAmelCase : Union[str, Any] = """1""" _lowerCAmelCase : Tuple = [sys.executable, """-c""", """\n""".join([load, mock, run] )] _lowerCAmelCase : Tuple = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def __A ( self ): _lowerCAmelCase : List[str] = """ from transformers import AutoModel """ _lowerCAmelCase : Optional[Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _lowerCAmelCase : Tuple = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _lowerCAmelCase : Dict = self.get_env() _lowerCAmelCase : Tuple = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCAmelCase : Dict = """1""" _lowerCAmelCase : List[Any] = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
663
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Dict = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _a : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = "encoder-decoder" _UpperCamelCase : Optional[int] = True def __init__( self , **a__ ): super().__init__(**a__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase : List[Any] = kwargs.pop("""encoder""" ) _lowerCAmelCase : int = encoder_config.pop("""model_type""" ) _lowerCAmelCase : List[Any] = kwargs.pop("""decoder""" ) _lowerCAmelCase : Optional[Any] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : List[str] = AutoConfig.for_model(a__ , **a__ ) _lowerCAmelCase : Optional[Any] = AutoConfig.for_model(a__ , **a__ ) _lowerCAmelCase : List[Any] = True @classmethod def __A ( cls , a__ , a__ , **a__ ): logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _lowerCAmelCase : Dict = True _lowerCAmelCase : Optional[int] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : List[str] = self.encoder.to_dict() _lowerCAmelCase : Optional[int] = self.decoder.to_dict() _lowerCAmelCase : List[Any] = self.__class__.model_type return output
663
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: _a : Tuple = None _a : List[str] = logging.get_logger(__name__) _a : Optional[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _a : Tuple = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } _a : Dict = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } _a : Optional[Any] = '▁' class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ["input_ids", "attention_mask"] _UpperCamelCase : List[str] = BarthezTokenizer def __init__( self , a__=None , a__=None , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Optional[int] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , **a__ , ) _lowerCAmelCase : Optional[Any] = vocab_file _lowerCAmelCase : Dict = False if not self.vocab_file else True def __A ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] _lowerCAmelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Tuple = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , a__ , a__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : List[str] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
663
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
1
"""simple docstring""" _a : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : dict ,_lowerCamelCase : Any ,_lowerCamelCase : Tuple ) -> list[str]: _lowerCAmelCase : str = set() # keep track of all the paths to be checked _lowerCAmelCase : int = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _lowerCAmelCase : Optional[int] = queue.pop(0 ) # get the last node from the path _lowerCAmelCase : Union[str, Any] = path[-1] if node not in explored: _lowerCAmelCase : Union[str, Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _lowerCAmelCase : Optional[int] = list(_lowerCamelCase ) new_path.append(_lowerCamelCase ) queue.append(_lowerCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_lowerCamelCase ) # in case there's no path between the 2 nodes return [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : dict ,_lowerCamelCase : int ,_lowerCamelCase : List[str] ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _lowerCAmelCase : Tuple = [start] _lowerCAmelCase : Any = set(_lowerCamelCase ) # Keep tab on distances from `start` node. _lowerCAmelCase : int = {start: 0, target: -1} while queue: _lowerCAmelCase : Dict = queue.pop(0 ) if node == target: _lowerCAmelCase : Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] ,dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_lowerCamelCase ) queue.append(_lowerCamelCase ) _lowerCAmelCase : List[str] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
663
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
1
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) _a : Any = parser.parse_args() _a : int = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _a : Optional[int] = CLIPImageProcessor() _a : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') _a : Tuple = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
663
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
1
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _a : Union[str, Any] = logging.get_logger(__name__) class __A : _UpperCamelCase : str _UpperCamelCase : str = None @staticmethod def __A ( ): raise NotImplementedError def __A ( self , a__ , a__ , a__ , **a__ ): raise NotImplementedError def __A ( self , a__ ): raise NotImplementedError def __A ( self ): if not self.is_available(): raise RuntimeError( F"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def __A ( cls ): return F"`pip install {cls.pip_package or cls.name}`" class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = "optuna" @staticmethod def __A ( ): return is_optuna_available() def __A ( self , a__ , a__ , a__ , **a__ ): return run_hp_search_optuna(a__ , a__ , a__ , **a__ ) def __A ( self , a__ ): return default_hp_space_optuna(a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = "ray" _UpperCamelCase : Tuple = "'ray[tune]'" @staticmethod def __A ( ): return is_ray_available() def __A ( self , a__ , a__ , a__ , **a__ ): return run_hp_search_ray(a__ , a__ , a__ , **a__ ) def __A ( self , a__ ): return default_hp_space_ray(a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = "sigopt" @staticmethod def __A ( ): return is_sigopt_available() def __A ( self , a__ , a__ , a__ , **a__ ): return run_hp_search_sigopt(a__ , a__ , a__ , **a__ ) def __A ( self , a__ ): return default_hp_space_sigopt(a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = "wandb" @staticmethod def __A ( ): return is_wandb_available() def __A ( self , a__ , a__ , a__ , **a__ ): return run_hp_search_wandb(a__ , a__ , a__ , **a__ ) def __A ( self , a__ ): return default_hp_space_wandb(a__ ) _a : Tuple = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : str = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_lowerCamelCase ) > 0: _lowerCAmelCase : Optional[Any] = available_backends[0].name if len(_lowerCamelCase ) > 1: logger.info( f"{len(_lowerCamelCase )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _a : Optional[int] = list[list[float | int]] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Matrix ,_lowerCamelCase : Matrix ) -> Matrix: _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Any = matrix[row][col] _lowerCAmelCase : Optional[Any] = vector[row][0] _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Optional[int] = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Dict = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase ,_lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase , _lowerCAmelCase : Any = augmented[pivot_row], augmented[row] for rowa in range(row + 1 ,_lowerCamelCase ): _lowerCAmelCase : Optional[int] = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : str = 0 for cola in range(col + 1 ,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 ,_lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : Any = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase ,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] ,10 )] for row in range(_lowerCamelCase ) ] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ) -> Callable[[int], int]: _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Any = y_val _lowerCAmelCase : List[str] = solve(_lowerCamelCase ,_lowerCamelCase ) def interpolated_func(_lowerCamelCase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Callable[[int], int] = question_function ,_lowerCamelCase : int = 10 ) -> int: _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 ,order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 ,order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Tuple = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
663
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
1
"""simple docstring""" class __A : def __init__( self ): _lowerCAmelCase : int = 0 _lowerCAmelCase : int = 0 _lowerCAmelCase : Tuple = {} def __A ( self , a__ ): if vertex not in self.adjacency: _lowerCAmelCase : Any = {} self.num_vertices += 1 def __A ( self , a__ , a__ , a__ ): self.add_vertex(a__ ) self.add_vertex(a__ ) if head == tail: return _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : int = weight def __A ( self ): _lowerCAmelCase : Dict = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight) ) for i in range(len(a__ ) ): _lowerCAmelCase : List[Any] = list(edges[i] ) edges.sort(key=lambda a__ : e[2] ) for i in range(len(a__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = edge _lowerCAmelCase : Dict = weight _lowerCAmelCase : Optional[int] = weight def __str__( self ): _lowerCAmelCase : Any = """""" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : Optional[int] = self.adjacency[head][tail] string += F"{head} -> {tail} == {weight}\n" return string.rstrip("""\n""" ) def __A ( self ): _lowerCAmelCase : List[str] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __A ( self ): return self.adjacency.keys() @staticmethod def __A ( a__=None , a__=None ): _lowerCAmelCase : Optional[int] = Graph() if vertices is None: _lowerCAmelCase : int = [] if edges is None: _lowerCAmelCase : Optional[Any] = [] for vertex in vertices: g.add_vertex(a__ ) for edge in edges: g.add_edge(*a__ ) return g class __A : def __init__( self ): _lowerCAmelCase : str = {} _lowerCAmelCase : int = {} def __len__( self ): return len(self.parent ) def __A ( self , a__ ): if item in self.parent: return self.find(a__ ) _lowerCAmelCase : List[str] = item _lowerCAmelCase : Dict = 0 return item def __A ( self , a__ ): if item not in self.parent: return self.make_set(a__ ) if item != self.parent[item]: _lowerCAmelCase : List[str] = self.find(self.parent[item] ) return self.parent[item] def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[int] = self.find(a__ ) _lowerCAmelCase : Any = self.find(a__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : str = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : str = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : str = roota return roota return None @staticmethod def __A ( a__ ): _lowerCAmelCase : str = graph.num_vertices _lowerCAmelCase : Tuple = Graph.UnionFind() _lowerCAmelCase : Union[str, Any] = [] while num_components > 1: _lowerCAmelCase : List[Any] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : List[Any] = -1 _lowerCAmelCase : Tuple = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = edge edges.remove((tail, head, weight) ) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = edge _lowerCAmelCase : List[str] = union_find.find(a__ ) _lowerCAmelCase : List[str] = union_find.find(a__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = cheap_edge[vertex] if union_find.find(a__ ) != union_find.find(a__ ): union_find.union(a__ , a__ ) mst_edges.append(cheap_edge[vertex] ) _lowerCAmelCase : Optional[int] = num_components - 1 _lowerCAmelCase : Optional[int] = Graph.build(edges=a__ ) return mst
663
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
1
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') _a : Any = parser.parse_args() if args.model_type == "bert": _a : Any = BertForMaskedLM.from_pretrained(args.model_name) _a : str = 'bert' else: raise ValueError('args.model_type should be "bert".') _a : Tuple = model.state_dict() _a : Optional[int] = {} for w in ["word_embeddings", "position_embeddings"]: _a : str = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a : Any = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a : List[str] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a : Dict = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a : Tuple = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a : Optional[Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a : Optional[int] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a : List[str] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a : str = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a : Dict = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a : Optional[int] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a : int = state_dict['cls.predictions.decoder.weight'] _a : List[str] = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: _a : Optional[int] = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a : Tuple = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
663
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
1
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _a : Optional[Any] = re.compile(r'\s+') def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> Dict: return {"hash": hashlib.mda(re.sub(_lowerCamelCase ,"""""" ,example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> Optional[int]: _lowerCAmelCase : Optional[int] = [len(_lowerCamelCase ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(_lowerCamelCase ), "line_max": max(_lowerCamelCase )} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Any: _lowerCAmelCase : Tuple = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : Any ) -> str: if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : Any=5 ) -> int: _lowerCAmelCase : str = ["""auto-generated""", """autogenerated""", """automatically generated"""] _lowerCAmelCase : List[str] = example["""content"""].splitlines() for _, line in zip(range(_lowerCamelCase ) ,_lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Any=5 ,_lowerCamelCase : Any=0.05 ) -> Dict: _lowerCAmelCase : Tuple = ["""unit tests""", """test file""", """configuration file"""] _lowerCAmelCase : Any = example["""content"""].splitlines() _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = 0 # first test for _, line in zip(range(_lowerCamelCase ) ,_lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCAmelCase : Tuple = example["""content"""].count("""\n""" ) _lowerCAmelCase : Optional[Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> int: _lowerCAmelCase : Any = ["""def """, """class """, """for """, """while """] _lowerCAmelCase : Optional[int] = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : Union[str, Any]=4 ) -> str: _lowerCAmelCase : Any = example["""content"""].splitlines() _lowerCAmelCase : Tuple = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: _lowerCAmelCase : Optional[int] = tokenizer(example["""content"""] ,truncation=_lowerCamelCase )["""input_ids"""] _lowerCAmelCase : int = len(example["""content"""] ) / len(_lowerCamelCase ) return {"ratio": ratio} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Dict: _lowerCAmelCase : List[Any] = {} results.update(get_hash(_lowerCamelCase ) ) results.update(line_stats(_lowerCamelCase ) ) results.update(alpha_stats(_lowerCamelCase ) ) results.update(char_token_ratio(_lowerCamelCase ) ) results.update(is_autogenerated(_lowerCamelCase ) ) results.update(is_config_or_test(_lowerCamelCase ) ) results.update(has_no_keywords(_lowerCamelCase ) ) results.update(has_few_assignments(_lowerCamelCase ) ) return results def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ,_lowerCamelCase : int ) -> Tuple: if not check_uniques(_lowerCamelCase ,_lowerCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> Union[str, Any]: with open(_lowerCamelCase ,"""rb""" ) as f_in: with gzip.open(str(_lowerCamelCase ) + """.gz""" ,"""wb""" ,compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCamelCase ,_lowerCamelCase ) os.unlink(_lowerCamelCase ) # Settings _a : Dict = HfArgumentParser(PreprocessingArguments) _a : Dict = parser.parse_args() if args.num_workers is None: _a : str = multiprocessing.cpu_count() _a : str = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _a : Dict = time.time() _a : int = load_dataset(args.dataset_name, split='train') print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing _a : List[Any] = time.time() _a : Any = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes _a : Optional[int] = set(ds.unique('hash')) _a : Dict = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics _a : Dict = time.time() _a : Dict = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _a : Optional[int] = time.time() _a , _a : Union[str, Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file _a : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) _a : Dict = output_dir / 'data' data_dir.mkdir(exist_ok=True) _a : Any = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _a : Union[str, Any] = str(data_dir / F"""file-{file_number+1:012}.json""") _a : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
663
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
1
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _a : Optional[Any] = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize _a : Optional[Any] = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' _a : Any = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' _a : Optional[Any] = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def __A ( self , a__ ): import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def __A ( self , a__ , a__ , a__=0.9 , a__=3 , a__=0.5 ): if NLTK_VERSION >= version.Version("""3.6.5""" ): _lowerCAmelCase : List[str] = [ meteor_score.single_meteor_score( word_tokenize(a__ ) , word_tokenize(a__ ) , alpha=a__ , beta=a__ , gamma=a__ ) for ref, pred in zip(a__ , a__ ) ] else: _lowerCAmelCase : Tuple = [ meteor_score.single_meteor_score(a__ , a__ , alpha=a__ , beta=a__ , gamma=a__ ) for ref, pred in zip(a__ , a__ ) ] return {"meteor": np.mean(a__ )}
663
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
1
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __A : @staticmethod def __A ( *a__ , **a__ ): pass def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ) -> str: _lowerCAmelCase : int = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ) -> Dict: _lowerCAmelCase : Any = np.array(_lowerCamelCase ) _lowerCAmelCase : Tuple = npimg.shape return {"hash": hashimage(_lowerCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __A ( unittest.TestCase ): _UpperCamelCase : List[str] = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _UpperCamelCase : Tuple = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : int = MaskGenerationPipeline(model=a__ , image_processor=a__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __A ( self , a__ , a__ ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def __A ( self ): pass @slow @require_torch def __A ( self ): _lowerCAmelCase : Optional[int] = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) _lowerCAmelCase : Optional[Any] = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing _lowerCAmelCase : int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0_4_4_4}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0_2_1}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0_1_6_7}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0_1_3_2}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0_0_5_3}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9_9_6_7}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.9_9_3}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9_9_0_9}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9_8_7_9}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9_8_3_4}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9_7_1_6}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9_6_1_2}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9_5_9_9}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9_5_5_2}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9_5_3_2}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9_5_1_6}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9_4_9_9}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9_4_8_3}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9_4_6_4}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.9_4_3}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.9_4_3}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9_4_0_8}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9_3_3_5}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9_3_2_6}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9_2_6_2}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8_9_9_9}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8_9_8_6}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8_9_8_4}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8_8_7_3}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def __A ( self ): _lowerCAmelCase : List[str] = """facebook/sam-vit-huge""" _lowerCAmelCase : Dict = pipeline("""mask-generation""" , model=a__ ) _lowerCAmelCase : Any = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _lowerCAmelCase : Any = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0_4_4_4}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0_2_1_0}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0_1_6_7}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0_1_3_2}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0_0_5_3}, ] , )
663
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
1
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = 'Hello world! cécé herlolip' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ,_lowerCamelCase : bool ) -> Any: _lowerCAmelCase : Tuple = FairseqRobertaModel.from_pretrained(_lowerCamelCase ) roberta.eval() # disable dropout _lowerCAmelCase : Tuple = roberta.model.encoder.sentence_encoder _lowerCAmelCase : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1e-5 ,) if classification_head: _lowerCAmelCase : Tuple = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" ,_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = XLMRobertaXLForSequenceClassification(_lowerCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(_lowerCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase : List[str] = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase : Optional[int] = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase : List[Any] = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase : Union[str, Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase : BertLayer = model.roberta.encoder.layer[i] _lowerCAmelCase : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] _lowerCAmelCase : RobertaAttention = layer.attention _lowerCAmelCase : str = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase : Union[str, Any] = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase : List[str] = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase : List[str] = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase : Union[str, Any] = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase : Union[str, Any] = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase : Optional[int] = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase : int = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase : Any = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase : str = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase : Any = roberta_layer.final_layer_norm.weight _lowerCAmelCase : str = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase : Optional[int] = roberta_layer.fca.weight _lowerCAmelCase : Any = roberta_layer.fca.bias # output _lowerCAmelCase : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase : Optional[Any] = roberta_layer.fca.weight _lowerCAmelCase : Optional[Any] = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase : Dict = roberta.model.classification_heads["""mnli"""].dense.weight _lowerCAmelCase : List[Any] = roberta.model.classification_heads["""mnli"""].dense.bias _lowerCAmelCase : Optional[int] = roberta.model.classification_heads["""mnli"""].out_proj.weight _lowerCAmelCase : Optional[int] = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head _lowerCAmelCase : Union[str, Any] = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase : Any = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase : Dict = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase : Any = roberta.model.encoder.lm_head.weight _lowerCAmelCase : Union[str, Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase : torch.Tensor = roberta.encode(_lowerCamelCase ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase : Union[str, Any] = model(_lowerCamelCase )[0] if classification_head: _lowerCAmelCase : List[Any] = roberta.model.classification_heads["""mnli"""](roberta.extract_features(_lowerCamelCase ) ) else: _lowerCAmelCase : Tuple = roberta.model(_lowerCamelCase )[0] print(our_output.shape ,their_output.shape ) _lowerCAmelCase : Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(f"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 _lowerCAmelCase : List[Any] = torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1e-3 ) print("""Do both models output the same tensors?""" ,"""🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(_lowerCamelCase ).mkdir(parents=_lowerCamelCase ,exist_ok=_lowerCamelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) _a : Any = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
663
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> list[int]: _lowerCAmelCase : Any = [True] * limit _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : Any = False _lowerCAmelCase : List[Any] = True for i in range(3 ,int(limit**0.5 + 1 ) ,2 ): _lowerCAmelCase : str = i * 2 while index < limit: _lowerCAmelCase : Any = False _lowerCAmelCase : str = index + i _lowerCAmelCase : Tuple = [2] for i in range(3 ,_lowerCamelCase ,2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : Union[str, Any] = prime_sieve(_lowerCamelCase ) _lowerCAmelCase : str = 0 _lowerCAmelCase : List[str] = 0 for i in range(len(_lowerCamelCase ) ): for j in range(i + length ,len(_lowerCamelCase ) ): _lowerCAmelCase : str = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _lowerCAmelCase : List[Any] = j - i _lowerCAmelCase : str = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : int = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = "sew-d" def __init__( self , a__=32 , a__=768 , a__=12 , a__=12 , a__=3072 , a__=2 , a__=512 , a__=256 , a__=True , a__=True , a__=("p2c", "c2p") , a__="layer_norm" , a__="gelu_python" , a__=0.1 , a__=0.1 , a__=0.1 , a__=0.0 , a__=0.1 , a__=0.0_2 , a__=1e-7 , a__=1e-5 , a__="group" , a__="gelu" , a__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , a__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , a__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , a__=False , a__=128 , a__=16 , a__=True , a__=0.0_5 , a__=10 , a__=2 , a__=0.0 , a__=10 , a__=0 , a__="mean" , a__=False , a__=False , a__=256 , a__=0 , a__=1 , a__=2 , **a__ , ): super().__init__(**a__ , pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ ) _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[Any] = feat_extract_norm _lowerCAmelCase : Any = feat_extract_activation _lowerCAmelCase : Optional[int] = list(a__ ) _lowerCAmelCase : Dict = list(a__ ) _lowerCAmelCase : Tuple = list(a__ ) _lowerCAmelCase : int = conv_bias _lowerCAmelCase : Any = num_conv_pos_embeddings _lowerCAmelCase : List[Any] = num_conv_pos_embedding_groups _lowerCAmelCase : int = len(self.conv_dim ) _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : int = squeeze_factor _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : Optional[Any] = position_buckets _lowerCAmelCase : List[str] = share_att_key _lowerCAmelCase : Optional[Any] = relative_attention _lowerCAmelCase : str = norm_rel_ebd _lowerCAmelCase : Any = list(a__ ) _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : List[str] = attention_dropout _lowerCAmelCase : Union[str, Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : int = final_dropout _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : List[Any] = feature_layer_norm_eps _lowerCAmelCase : str = initializer_range _lowerCAmelCase : List[str] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : List[Any] = apply_spec_augment _lowerCAmelCase : List[Any] = mask_time_prob _lowerCAmelCase : Any = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : Optional[int] = mask_feature_prob _lowerCAmelCase : List[str] = mask_feature_length _lowerCAmelCase : Any = mask_feature_min_masks # ctc loss _lowerCAmelCase : Tuple = ctc_loss_reduction _lowerCAmelCase : List[str] = ctc_zero_infinity # sequence classification _lowerCAmelCase : Union[str, Any] = use_weighted_layer_sum _lowerCAmelCase : Optional[int] = classifier_proj_size @property def __A ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
663
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
1
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _a : Any = float('nan') class __A : def __init__( self , a__ ): _lowerCAmelCase : Optional[int] = sys.stdout _lowerCAmelCase : Optional[Any] = open(a__ , """a""" ) def __getattr__( self , a__ ): return getattr(self.stdout , a__ ) def __A ( self , a__ ): self.stdout.write(a__ ) # strip tqdm codes self.file.write(re.sub(r"""^.*\r""" , """""" , a__ , 0 , re.M ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str]=80 ,_lowerCamelCase : Any=False ) -> Optional[Any]: _lowerCAmelCase : List[Any] = [] # deal with critical env vars _lowerCAmelCase : List[str] = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: _lowerCAmelCase : Union[str, Any] = os.environ.get(_lowerCamelCase ,_lowerCamelCase ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) _lowerCAmelCase : List[Any] = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(_lowerCamelCase ) # now the normal args cmd += list(map(shlex.quote ,sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Dict = """""" while len(_lowerCamelCase ) > 0: current_line += f"{cmd.pop(0 )} " if len(_lowerCamelCase ) == 0 or len(_lowerCamelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_lowerCamelCase ) _lowerCAmelCase : int = """""" return "\\\n".join(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : int ) -> List[Any]: # unwrap multi-line input _lowerCAmelCase : Any = re.sub(r"""[\\\n]+""" ,""" """ ,args.base_cmd ) # remove --output_dir if any and set our own _lowerCAmelCase : Union[str, Any] = re.sub("""--output_dir\s+[^\s]+""" ,"""""" ,args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir _lowerCAmelCase : Tuple = re.sub("""--overwrite_output_dir\s+""" ,"""""" ,args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ,_lowerCamelCase : List[str] ,_lowerCamelCase : List[Any] ) -> Union[str, Any]: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 ,100 ) for k in metric_keys} ,**{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} ,) _lowerCAmelCase : Any = subprocess.run(_lowerCamelCase ,capture_output=_lowerCamelCase ,text=_lowerCamelCase ) if verbose: print("""STDOUT""" ,result.stdout ) print("""STDERR""" ,result.stderr ) # save the streams _lowerCAmelCase : Optional[int] = variation.replace(""" """ ,"""-""" ) with open(Path(_lowerCamelCase ) / f"log.{prefix}.stdout.txt" ,"""w""" ) as f: f.write(result.stdout ) with open(Path(_lowerCamelCase ) / f"log.{prefix}.stderr.txt" ,"""w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" ,"""r""" ,encoding="""utf-8""" ) as f: _lowerCAmelCase : Union[str, Any] = json.load(_lowerCamelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : int ,_lowerCamelCase : Dict ,_lowerCamelCase : str ,_lowerCamelCase : List[Any] ,_lowerCamelCase : int ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : List[str] ,_lowerCamelCase : Optional[Any] ,) -> Optional[Any]: _lowerCAmelCase : Dict = [] _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = f"{id}: {variation:<{longest_variation_len}}" _lowerCAmelCase : Tuple = f"{preamble}: " _lowerCAmelCase : Optional[int] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_lowerCamelCase ) ,desc=_lowerCamelCase ,leave=_lowerCamelCase ): _lowerCAmelCase : Dict = process_run_single( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = single_run_metrics[target_metric_key] if not math.isnan(_lowerCamelCase ): metrics.append(_lowerCamelCase ) results.append(_lowerCamelCase ) outcome += "✓" else: outcome += "✘" _lowerCAmelCase : Optional[int] = f"\33[2K\r{outcome}" if len(_lowerCamelCase ) > 0: _lowerCAmelCase : List[Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _lowerCAmelCase : Tuple = round(mean_metrics[target_metric_key] ,2 ) _lowerCAmelCase : List[Any] = f"{outcome} {mean_target}" if len(_lowerCamelCase ) > 1: results_str += f" {tuple(round(_lowerCamelCase ,2 ) for x in results )}" print(_lowerCamelCase ) _lowerCAmelCase : Any = variation return mean_metrics else: print(_lowerCamelCase ) return {variation_key: variation, target_metric_key: nan} def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : int = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Tuple ,_lowerCamelCase : Dict ) -> int: _lowerCAmelCase : Any = pd.DataFrame(_lowerCamelCase ) _lowerCAmelCase : str = """variation""" _lowerCAmelCase : Dict = """diff_%""" _lowerCAmelCase : Tuple = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _lowerCAmelCase : Optional[int] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_lowerCamelCase ): # as a fallback, use the minimal value as the sentinel _lowerCAmelCase : Any = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_lowerCamelCase ): _lowerCAmelCase : List[str] = df.apply( lambda _lowerCamelCase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 ,axis="""columns""" ,) # re-order columns _lowerCAmelCase : Union[str, Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _lowerCAmelCase : Any = df.reindex(_lowerCamelCase ,axis="""columns""" ) # reorder cols # capitalize _lowerCAmelCase : Tuple = df.rename(str.capitalize ,axis="""columns""" ) # make the cols as narrow as possible _lowerCAmelCase : int = df.rename(lambda _lowerCamelCase : c.replace("""_""" ,"""<br>""" ) ,axis="""columns""" ) _lowerCAmelCase : str = df.rename(lambda _lowerCamelCase : c.replace("""_""" ,"""\n""" ) ,axis="""columns""" ) _lowerCAmelCase : List[Any] = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_lowerCamelCase ,floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_lowerCamelCase ,floatfmt=""".2f""" )] print("""\n\n""".join(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" ,default=_lowerCamelCase ,type=_lowerCamelCase ,required=_lowerCamelCase ,help="""Base cmd""" ,) parser.add_argument( """--variations""" ,default=_lowerCamelCase ,type=_lowerCamelCase ,nargs="""+""" ,required=_lowerCamelCase ,help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" ,) parser.add_argument( """--base-variation""" ,default=_lowerCamelCase ,type=_lowerCamelCase ,help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" ,) parser.add_argument( """--target-metric-key""" ,default=_lowerCamelCase ,type=_lowerCamelCase ,required=_lowerCamelCase ,help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" ,) parser.add_argument( """--report-metric-keys""" ,default="""""" ,type=_lowerCamelCase ,help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" ,) parser.add_argument( """--repeat-times""" ,default=1 ,type=_lowerCamelCase ,help="""How many times to re-run each variation - an average will be reported""" ,) parser.add_argument( """--output_dir""" ,default="""output_benchmark""" ,type=_lowerCamelCase ,help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" ,) parser.add_argument( """--verbose""" ,default=_lowerCamelCase ,action="""store_true""" ,help="""Whether to show the outputs of each run or just the benchmark progress""" ,) _lowerCAmelCase : int = parser.parse_args() _lowerCAmelCase : Union[str, Any] = args.output_dir Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) _lowerCAmelCase : int = get_base_command(_lowerCamelCase ,_lowerCamelCase ) # split each dimension into its --foo variations _lowerCAmelCase : List[Any] = [list(map(str.strip ,re.split(r"""\|""" ,_lowerCamelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _lowerCAmelCase : Optional[Any] = list(map(str.strip ,map(""" """.join ,itertools.product(*_lowerCamelCase ) ) ) ) _lowerCAmelCase : Union[str, Any] = max(len(_lowerCamelCase ) for x in variations ) # split wanted keys _lowerCAmelCase : List[Any] = args.report_metric_keys.split() # capture prints into a log file for convenience _lowerCAmelCase : Dict = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script's output is also piped into {report_fn}" ) _lowerCAmelCase : List[str] = Tee(_lowerCamelCase ) print(f"\n*** Running {len(_lowerCamelCase )} benchmarks:" ) print(f"Base command: {' '.join(_lowerCamelCase )}" ) _lowerCAmelCase : Optional[Any] = """variation""" _lowerCAmelCase : int = [] for id, variation in enumerate(tqdm(_lowerCamelCase ,desc="""Total completion: """ ,leave=_lowerCamelCase ) ): _lowerCAmelCase : Optional[int] = base_cmd + variation.split() results.append( process_run( id + 1 ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,args.target_metric_key ,_lowerCamelCase ,args.repeat_times ,_lowerCamelCase ,args.verbose ,) ) process_results(_lowerCamelCase ,args.target_metric_key ,_lowerCamelCase ,args.base_variation ,_lowerCamelCase ) if __name__ == "__main__": main()
663
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a : Optional[Any] = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ['MobileViTFeatureExtractor'] _a : Optional[Any] = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
1
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __A : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=4 , a__="gelu" , a__=0.0 , a__=0.1 , a__=True , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ): _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[str] = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : Union[str, Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Any = intermediate_multiple_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Any = hidden_dropout _lowerCAmelCase : str = attention_dropout _lowerCAmelCase : List[str] = weight_tying _lowerCAmelCase : int = max_position_embeddings _lowerCAmelCase : Tuple = type_vocab_size _lowerCAmelCase : Optional[Any] = type_sequence_label_size _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : str = num_labels _lowerCAmelCase : Union[str, Any] = num_choices _lowerCAmelCase : Any = scope def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, token_labels def __A ( self ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase : Any = True return config, input_ids, input_mask, token_labels def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = GPTNeoXJapaneseModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[str] = model(a__ , attention_mask=a__ ) _lowerCAmelCase : str = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = True _lowerCAmelCase : Tuple = GPTNeoXJapaneseModel(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = model(a__ , attention_mask=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = GPTNeoXJapaneseForCausalLM(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : int = True _lowerCAmelCase : Dict = GPTNeoXJapaneseForCausalLM(config=a__ ) model.to(a__ ) model.eval() # first forward pass _lowerCAmelCase : Optional[int] = model(a__ , attention_mask=a__ , use_cache=a__ ) _lowerCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCAmelCase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCAmelCase : List[str] = model(a__ , attention_mask=a__ , output_hidden_states=a__ ) _lowerCAmelCase : Dict = output_from_no_past["""hidden_states"""][0] _lowerCAmelCase : Tuple = model( a__ , attention_mask=a__ , past_key_values=a__ , output_hidden_states=a__ , )["""hidden_states"""][0] # select random slice _lowerCAmelCase : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) ) def __A ( self ): _lowerCAmelCase : Any = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _UpperCamelCase : str = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _UpperCamelCase : Union[str, Any] = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _UpperCamelCase : Optional[int] = False _UpperCamelCase : int = False _UpperCamelCase : int = False _UpperCamelCase : int = False def __A ( self ): _lowerCAmelCase : List[str] = GPTNeoXJapaneseModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a__ , a__ , a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a__ , a__ , a__ ) def __A ( self ): # This regression test was failing with PyTorch < 1.3 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCAmelCase : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(a__ , a__ , a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a__ , a__ , a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a__ ) @slow def __A ( self ): _lowerCAmelCase : int = """abeja/gpt-neox-japanese-2.7b""" _lowerCAmelCase : str = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] _lowerCAmelCase : Optional[int] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] _lowerCAmelCase : Tuple = GPTNeoXJapaneseTokenizer.from_pretrained(a__ ) _lowerCAmelCase : Tuple = GPTNeoXJapaneseForCausalLM.from_pretrained(a__ ) _lowerCAmelCase : Dict = [] for prompt in prompts: _lowerCAmelCase : str = tokenizer(a__ , return_tensors="""pt""" ).input_ids _lowerCAmelCase : Optional[int] = model.generate(a__ , max_length=50 ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(a__ , skip_special_tokens=a__ ) predicted_outputs += generated_string self.assertListEqual(a__ , a__ )
663
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _a : str = logging.getLogger(__name__) @dataclass class __A : _UpperCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _UpperCamelCase : bool = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether tp freeze the encoder."} ) _UpperCamelCase : bool = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class __A : _UpperCamelCase : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _UpperCamelCase : Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) _UpperCamelCase : Optional[int] = field( default=1_024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase : Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase : Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) _UpperCamelCase : Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) _UpperCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Source language id for translation."} ) _UpperCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Target language id for translation."} ) _UpperCamelCase : Optional[int] = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "# num_beams to use for evaluation."} ) _UpperCamelCase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : str ,_lowerCamelCase : Optional[Any] ) -> Any: logger.info(f"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(f" {key} = {metrics[key]}" ) save_json(_lowerCamelCase ,os.path.join(_lowerCamelCase ,f"{split}_results.json" ) ) def SCREAMING_SNAKE_CASE ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowerCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = parser.parse_args_into_dataclasses() check_output_dir(_lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) ,training_args.fpaa ,) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" ,_lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _lowerCAmelCase : List[Any] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ): assert hasattr(_lowerCamelCase ,_lowerCamelCase ), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(_lowerCamelCase ,_lowerCamelCase ,getattr(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _lowerCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path ,from_tf=""".ckpt""" in model_args.model_name_or_path ,config=_lowerCamelCase ,cache_dir=model_args.cache_dir ,) # use task specific params use_task_specific_params(_lowerCamelCase ,data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase : str = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_lowerCamelCase ,(MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Optional[int] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_lowerCamelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase : List[str] = SeqaSeqDataset # Get datasets _lowerCAmelCase : Dict = ( dataset_class( _lowerCamelCase ,type_path="""train""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_train ,max_target_length=data_args.max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,) if training_args.do_train else None ) _lowerCAmelCase : List[Any] = ( dataset_class( _lowerCamelCase ,type_path="""val""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_val ,max_target_length=data_args.val_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase : Dict = ( dataset_class( _lowerCamelCase ,type_path="""test""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_test ,max_target_length=data_args.test_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase : Union[str, Any] = ( build_compute_metrics_fn(data_args.task ,_lowerCamelCase ) if training_args.predict_with_generate else None ) _lowerCAmelCase : int = SeqaSeqTrainer( model=_lowerCamelCase ,args=_lowerCamelCase ,data_args=_lowerCamelCase ,train_dataset=_lowerCamelCase ,eval_dataset=_lowerCamelCase ,data_collator=SeqaSeqDataCollator( _lowerCamelCase ,_lowerCamelCase ,model.config.decoder_start_token_id ,training_args.tpu_num_cores ) ,compute_metrics=_lowerCamelCase ,tokenizer=_lowerCamelCase ,) _lowerCAmelCase : Any = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase : Union[str, Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase : List[str] = train_result.metrics _lowerCAmelCase : List[Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" ,_lowerCamelCase ,training_args.output_dir ) all_metrics.update(_lowerCamelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir ,"""trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase : Optional[Any] = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase : List[Any] = data_args.n_val _lowerCAmelCase : Tuple = round(metrics["""val_loss"""] ,4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" ,_lowerCamelCase ,training_args.output_dir ) all_metrics.update(_lowerCamelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase : List[Any] = trainer.predict(test_dataset=_lowerCamelCase ,metric_key_prefix="""test""" ) _lowerCAmelCase : Tuple = test_output.metrics _lowerCAmelCase : List[str] = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase : int = round(metrics["""test_loss"""] ,4 ) handle_metrics("""test""" ,_lowerCamelCase ,training_args.output_dir ) all_metrics.update(_lowerCamelCase ) if training_args.predict_with_generate: _lowerCAmelCase : Dict = tokenizer.batch_decode( test_output.predictions ,skip_special_tokens=_lowerCamelCase ,clean_up_tokenization_spaces=_lowerCamelCase ) _lowerCAmelCase : List[str] = lmap(str.strip ,_lowerCamelCase ) write_txt_file(_lowerCamelCase ,os.path.join(training_args.output_dir ,"""test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(_lowerCamelCase ,os.path.join(training_args.output_dir ,"""all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
663
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} _a : Any = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } _a : Union[str, Any] = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } _a : Union[str, Any] = '▁' class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , a__ , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__ = None , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Union[str, Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token _lowerCAmelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) _lowerCAmelCase : Optional[Any] = vocab_file _lowerCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a__ ) ) _lowerCAmelCase : Any = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} _lowerCAmelCase : List[str] = len(self.sp_model ) - 1 _lowerCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __A ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Dict = [self.cls_token_id] _lowerCAmelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __A ( self ): return len(self.sp_model ) def __A ( self ): _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self , a__ ): return self.sp_model.encode(a__ , out_type=a__ ) def __A ( self , a__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : Optional[int] = self.sp_model.PieceToId(a__ ) return spm_id if spm_id else self.unk_token_id def __A ( self , a__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a__ ) def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : int = """""" _lowerCAmelCase : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token _lowerCAmelCase : int = True _lowerCAmelCase : Any = [] else: current_sub_tokens.append(a__ ) _lowerCAmelCase : Any = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : Any = None return state def __setstate__( self , a__ ): _lowerCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : Tuple = {} _lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : Optional[Any] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , """wb""" ) as fi: _lowerCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
663
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
1
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
1
"""simple docstring""" import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class __A : @property def __A ( self ): return self.get_dummy_input() @property def __A ( self ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def __A ( self , a__=True , a__=False , a__=False , a__=False , ): _lowerCAmelCase : Any = 4 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : Optional[Any] = (32, 32) _lowerCAmelCase : List[Any] = torch.manual_seed(0 ) _lowerCAmelCase : Tuple = torch.device(a__ ) _lowerCAmelCase : Any = (batch_size, num_channels) + sizes _lowerCAmelCase : Any = randn_tensor(a__ , generator=a__ , device=a__ ) _lowerCAmelCase : Union[str, Any] = {"""hidden_states""": hidden_states} if include_temb: _lowerCAmelCase : Optional[Any] = 128 _lowerCAmelCase : Optional[Any] = randn_tensor((batch_size, temb_channels) , generator=a__ , device=a__ ) if include_res_hidden_states_tuple: _lowerCAmelCase : Optional[Any] = torch.manual_seed(1 ) _lowerCAmelCase : Optional[int] = (randn_tensor(a__ , generator=a__ , device=a__ ),) if include_encoder_hidden_states: _lowerCAmelCase : List[Any] = floats_tensor((batch_size, 32, 32) ).to(a__ ) if include_skip_sample: _lowerCAmelCase : Optional[int] = randn_tensor(((batch_size, 3) + sizes) , generator=a__ , device=a__ ) return dummy_input def __A ( self ): _lowerCAmelCase : Any = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": _lowerCAmelCase : Optional[Any] = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) _lowerCAmelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def __A ( self , a__ ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase : str = self.block_class(**a__ ) unet_block.to(a__ ) unet_block.eval() with torch.no_grad(): _lowerCAmelCase : Any = unet_block(**a__ ) if isinstance(a__ , a__ ): _lowerCAmelCase : Tuple = output[0] self.assertEqual(output.shape , self.output_shape ) _lowerCAmelCase : List[Any] = output[0, -1, -3:, -3:] _lowerCAmelCase : Any = torch.tensor(a__ ).to(a__ ) assert torch_all_close(output_slice.flatten() , a__ , atol=5e-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : int = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase : Any = self.block_class(**a__ ) model.to(a__ ) model.train() _lowerCAmelCase : List[str] = model(**a__ ) if isinstance(a__ , a__ ): _lowerCAmelCase : int = output[0] _lowerCAmelCase : int = torch.device(a__ ) _lowerCAmelCase : Union[str, Any] = randn_tensor(output.shape , device=a__ ) _lowerCAmelCase : Dict = torch.nn.functional.mse_loss(a__ , a__ ) loss.backward()
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class __A ( unittest.TestCase ): @property def __A ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __A ( self ): _lowerCAmelCase : List[Any] = ort.SessionOptions() _lowerCAmelCase : Union[str, Any] = False return options def __A ( self ): _lowerCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _lowerCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _lowerCAmelCase : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _lowerCAmelCase : Optional[Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[str] = """A red cat sitting on a park bench""" _lowerCAmelCase : str = np.random.RandomState(0 ) _lowerCAmelCase : List[Any] = pipe( prompt=a__ , image=a__ , mask_image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=15 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
663
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch _a : Any = random.Random() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=1.0 ,_lowerCamelCase : List[Any]=None ,_lowerCamelCase : Dict=None ) -> int: if rng is None: _lowerCAmelCase : List[str] = global_rng _lowerCAmelCase : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __A ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=400 , a__=2000 , a__=1 , a__=0.0 , a__=16000 , a__=True , a__=80 , a__=16 , a__=64 , a__="hann_window" , a__=80 , a__=7600 , a__=1e-10 , a__=True , ): _lowerCAmelCase : Any = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Union[str, Any] = min_seq_length _lowerCAmelCase : Any = max_seq_length _lowerCAmelCase : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCAmelCase : Optional[Any] = feature_size _lowerCAmelCase : int = padding_value _lowerCAmelCase : List[Any] = sampling_rate _lowerCAmelCase : Tuple = do_normalize _lowerCAmelCase : Dict = num_mel_bins _lowerCAmelCase : Dict = hop_length _lowerCAmelCase : Any = win_length _lowerCAmelCase : Optional[int] = win_function _lowerCAmelCase : List[Any] = fmin _lowerCAmelCase : List[str] = fmax _lowerCAmelCase : List[str] = mel_floor _lowerCAmelCase : Any = return_attention_mask def __A ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __A ( self , a__=False , a__=False ): def _flatten(a__ ): return list(itertools.chain(*a__ ) ) if equal_length: _lowerCAmelCase : Dict = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _lowerCAmelCase : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase : List[str] = [np.asarray(a__ ) for x in speech_inputs] return speech_inputs def __A ( self , a__=False , a__=False ): if equal_length: _lowerCAmelCase : str = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCAmelCase : List[str] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase : Union[str, Any] = [np.asarray(a__ ) for x in speech_inputs] return speech_inputs @require_torch class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = SpeechTaFeatureExtractor def __A ( self ): _lowerCAmelCase : Any = SpeechTaFeatureExtractionTester(self ) def __A ( self , a__ ): self.assertTrue(np.all(np.mean(a__ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a__ , axis=0 ) - 1 ) < 1e-3 ) ) def __A ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : List[Any] = [np.asarray(a__ ) for speech_input in speech_inputs] # Test not batched input _lowerCAmelCase : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values _lowerCAmelCase : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) # Test batched _lowerCAmelCase : Union[str, Any] = feat_extract(a__ , return_tensors="""np""" ).input_values _lowerCAmelCase : Tuple = feat_extract(a__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(a__ , a__ ): self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) def __A ( self ): _lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : Any = ["""longest""", """max_length""", """do_not_pad"""] _lowerCAmelCase : str = [None, 1600, None] for max_length, padding in zip(a__ , a__ ): _lowerCAmelCase : List[Any] = feat_extract(a__ , padding=a__ , max_length=a__ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __A ( self ): _lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Union[str, Any] = range(800 , 1400 , 200 ) _lowerCAmelCase : int = [floats_list((1, x) )[0] for x in lengths] _lowerCAmelCase : int = ["""longest""", """max_length""", """do_not_pad"""] _lowerCAmelCase : Optional[int] = [None, 1600, None] for max_length, padding in zip(a__ , a__ ): _lowerCAmelCase : Any = feat_extract(a__ , max_length=a__ , padding=a__ ) _lowerCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __A ( self ): _lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : int = feat_extract( a__ , truncation=a__ , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) _lowerCAmelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __A ( self ): _lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : Optional[Any] = feat_extract( a__ , truncation=a__ , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) _lowerCAmelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _lowerCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : List[Any] = feat_extract( a__ , truncation=a__ , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) _lowerCAmelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __A ( self ): _lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Optional[int] = np.random.rand(100 ).astype(np.floataa ) _lowerCAmelCase : Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCAmelCase : Optional[Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _lowerCAmelCase : List[Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __A ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : Tuple = [np.asarray(a__ ) for speech_input in speech_inputs] # Test feature size _lowerCAmelCase : List[str] = feature_extractor(audio_target=a__ , padding=a__ , return_tensors="""np""" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input _lowerCAmelCase : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_values _lowerCAmelCase : Union[str, Any] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) # Test batched _lowerCAmelCase : List[Any] = feature_extractor(a__ , return_tensors="""np""" ).input_values _lowerCAmelCase : Any = feature_extractor(a__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(a__ , a__ ): self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _lowerCAmelCase : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowerCAmelCase : str = np.asarray(a__ ) _lowerCAmelCase : List[Any] = feature_extractor(a__ , return_tensors="""np""" ).input_values _lowerCAmelCase : List[Any] = feature_extractor(a__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(a__ , a__ ): self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) def __A ( self ): _lowerCAmelCase : Any = self.feat_extract_tester.prepare_inputs_for_target() _lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase : Optional[Any] = feat_extract.model_input_names[0] _lowerCAmelCase : Tuple = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(a__ ) == len(a__ ) for x, y in zip(a__ , processed_features[input_name] ) ) ) _lowerCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a__ ) _lowerCAmelCase : Any = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) _lowerCAmelCase : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __A ( self ): _lowerCAmelCase : Dict = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a__ ) _lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase : Tuple = feat_extract.model_input_names[0] _lowerCAmelCase : Any = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) _lowerCAmelCase : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase : Union[str, Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __A ( self ): _lowerCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase : int = self.feat_extract_tester.prepare_inputs_for_target() _lowerCAmelCase : str = feat_extract.model_input_names[0] _lowerCAmelCase : List[str] = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase : Any = feat_extract.num_mel_bins # hack! _lowerCAmelCase : Optional[int] = feat_extract.pad(a__ , padding="""longest""" , return_tensors="""np""" )[input_name] _lowerCAmelCase : str = feat_extract.pad(a__ , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __A ( self ): _lowerCAmelCase : List[str] = self.feat_extract_dict _lowerCAmelCase : Dict = True _lowerCAmelCase : str = self.feature_extraction_class(**a__ ) _lowerCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target() _lowerCAmelCase : Optional[int] = [len(a__ ) for x in speech_inputs] _lowerCAmelCase : Tuple = feat_extract.model_input_names[0] _lowerCAmelCase : List[str] = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase : str = feat_extract.num_mel_bins # hack! _lowerCAmelCase : Tuple = feat_extract.pad(a__ , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , a__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.feat_extract_dict _lowerCAmelCase : List[str] = True _lowerCAmelCase : Dict = self.feature_extraction_class(**a__ ) _lowerCAmelCase : Tuple = self.feat_extract_tester.prepare_inputs_for_target() _lowerCAmelCase : int = [len(a__ ) for x in speech_inputs] _lowerCAmelCase : Optional[int] = feat_extract.model_input_names[0] _lowerCAmelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase : List[Any] = min(a__ ) _lowerCAmelCase : Optional[int] = feat_extract.num_mel_bins # hack! _lowerCAmelCase : Tuple = feat_extract.pad( a__ , padding="""max_length""" , max_length=a__ , truncation=a__ , return_tensors="""np""" ) self.assertIn("""attention_mask""" , a__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __A ( self , a__ ): from datasets import load_dataset _lowerCAmelCase : str = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _lowerCAmelCase : Union[str, Any] = ds.sort("""id""" ).select(range(a__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def __A ( self ): # fmt: off _lowerCAmelCase : Union[str, Any] = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on _lowerCAmelCase : Tuple = self._load_datasamples(1 ) _lowerCAmelCase : int = SpeechTaFeatureExtractor() _lowerCAmelCase : int = feature_extractor(a__ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , a__ , atol=1e-6 ) ) def __A ( self ): # fmt: off _lowerCAmelCase : str = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on _lowerCAmelCase : Optional[int] = self._load_datasamples(1 ) _lowerCAmelCase : Optional[Any] = SpeechTaFeatureExtractor() _lowerCAmelCase : Tuple = feature_extractor(audio_target=a__ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a__ , atol=1e-4 ) )
663
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
1
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): @register_to_config def __init__( self , a__ = 768 , ): super().__init__() _lowerCAmelCase : Optional[int] = nn.Parameter(torch.zeros(1 , a__ ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.ones(1 , a__ ) ) def __A ( self , a__ = None , a__ = None , ): _lowerCAmelCase : Any = nn.Parameter(self.mean.to(a__ ).to(a__ ) ) _lowerCAmelCase : Any = nn.Parameter(self.std.to(a__ ).to(a__ ) ) return self def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self , a__ ): _lowerCAmelCase : Tuple = (embeds * self.std) + self.mean return embeds
663
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A ( unittest.TestCase ): def __init__( self , a__ , a__=3 , a__=32 , a__=3 , a__=10 , a__=[10, 20, 30, 40] , a__=[1, 1, 2, 1] , a__=True , a__=True , a__="relu" , a__=3 , a__=None , ): _lowerCAmelCase : Any = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[Any] = image_size _lowerCAmelCase : str = num_channels _lowerCAmelCase : Union[str, Any] = embeddings_size _lowerCAmelCase : int = hidden_sizes _lowerCAmelCase : List[str] = depths _lowerCAmelCase : int = is_training _lowerCAmelCase : Optional[Any] = use_labels _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_labels _lowerCAmelCase : Any = scope _lowerCAmelCase : List[Any] = len(a__ ) def __A ( self ): _lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = self.get_config() return config, pixel_values def __A ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __A ( self , a__ , a__ ): _lowerCAmelCase : str = FlaxRegNetModel(config=a__ ) _lowerCAmelCase : Dict = model(a__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : List[Any] = FlaxRegNetForImageClassification(config=a__ ) _lowerCAmelCase : Any = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase : int = config_and_inputs _lowerCAmelCase : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : int = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _UpperCamelCase : str = False _UpperCamelCase : Dict = False _UpperCamelCase : Optional[Any] = False def __A ( self ): _lowerCAmelCase : Optional[Any] = FlaxRegNetModelTester(self ) _lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def __A ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ): return def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def __A ( self ): pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : str = model_class(a__ ) _lowerCAmelCase : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __A ( self ): def check_hidden_states_output(a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = model_class(a__ ) _lowerCAmelCase : int = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCAmelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) _lowerCAmelCase , _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Dict = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : List[Any] = True check_hidden_states_output(a__ , a__ , a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase : Optional[int] = self._prepare_for_class(a__ , a__ ) _lowerCAmelCase : Any = model_class(a__ ) @jax.jit def model_jitted(a__ , **a__ ): return model(pixel_values=a__ , **a__ ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase : Optional[Any] = model_jitted(**a__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase : List[str] = model_jitted(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) ) for jitted_output, output in zip(a__ , a__ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: _lowerCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class __A ( unittest.TestCase ): @cached_property def __A ( self ): return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def __A ( self ): _lowerCAmelCase : Optional[int] = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=a__ , return_tensors="""np""" ) _lowerCAmelCase : Union[str, Any] = model(**a__ ) # verify the logits _lowerCAmelCase : Optional[Any] = (1, 1000) self.assertEqual(outputs.logits.shape , a__ ) _lowerCAmelCase : Dict = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
663
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
1
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _a : List[str] = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') _a , _a : Dict = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') _a : Any = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: _a : List[Any] = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _a : Optional[int] = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
663
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
1
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any] = logging.get_logger(__name__) _a : int = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = "data2vec-audio" def __init__( self , a__=32 , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=0.1 , a__=0.0 , a__=0.1 , a__=0.1 , a__=0.0_2 , a__=1e-5 , a__="gelu" , a__=(512, 512, 512, 512, 512, 512, 512) , a__=(5, 2, 2, 2, 2, 2, 2) , a__=(10, 3, 3, 3, 3, 2, 2) , a__=False , a__=16 , a__=19 , a__=5 , a__=0.0_5 , a__=10 , a__=2 , a__=0.0 , a__=10 , a__=0 , a__="sum" , a__=False , a__=False , a__=256 , a__=(512, 512, 512, 512, 1500) , a__=(5, 3, 3, 1, 1) , a__=(1, 2, 3, 1, 1) , a__=512 , a__=0 , a__=1 , a__=2 , a__=False , a__=3 , a__=2 , a__=3 , a__=None , **a__ , ): super().__init__(**a__ , pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ ) _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_activation _lowerCAmelCase : Any = list(a__ ) _lowerCAmelCase : Dict = list(a__ ) _lowerCAmelCase : Union[str, Any] = list(a__ ) _lowerCAmelCase : int = conv_bias _lowerCAmelCase : Tuple = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Optional[int] = conv_pos_kernel_size _lowerCAmelCase : str = len(self.conv_dim ) _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : str = hidden_dropout _lowerCAmelCase : List[str] = attention_dropout _lowerCAmelCase : Any = activation_dropout _lowerCAmelCase : Tuple = feat_proj_dropout _lowerCAmelCase : Dict = final_dropout _lowerCAmelCase : Union[str, Any] = layerdrop _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Tuple = mask_time_prob _lowerCAmelCase : Any = mask_time_length _lowerCAmelCase : Tuple = mask_time_min_masks _lowerCAmelCase : Tuple = mask_feature_prob _lowerCAmelCase : int = mask_feature_length _lowerCAmelCase : Dict = mask_feature_min_masks # ctc loss _lowerCAmelCase : Optional[int] = ctc_loss_reduction _lowerCAmelCase : int = ctc_zero_infinity # adapter _lowerCAmelCase : int = add_adapter _lowerCAmelCase : List[Any] = adapter_kernel_size _lowerCAmelCase : Tuple = adapter_stride _lowerCAmelCase : Tuple = num_adapter_layers _lowerCAmelCase : Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = list(a__ ) _lowerCAmelCase : List[Any] = list(a__ ) _lowerCAmelCase : str = list(a__ ) _lowerCAmelCase : Tuple = xvector_output_dim @property def __A ( self ): return math.prod(self.conv_stride )
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _a : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : List[str] ,_lowerCamelCase : List[str] ,_lowerCamelCase : int=False ) -> Optional[int]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: _lowerCAmelCase : List[Any] = os.path.abspath(_lowerCamelCase ) logger.info(f"Loading PyTorch weights from {pt_path}" ) _lowerCAmelCase : Dict = torch.load(_lowerCamelCase ,map_location="""cpu""" ) logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." ) _lowerCAmelCase : int = convert_pytorch_state_dict_to_flax(_lowerCamelCase ,_lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _lowerCAmelCase : Union[str, Any] = convert_pytorch_sharded_state_dict_to_flax(_lowerCamelCase ,_lowerCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple[str] ,_lowerCamelCase : np.ndarray ,_lowerCamelCase : Dict[str, jnp.ndarray] ,_lowerCamelCase : str ,) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(_lowerCamelCase : Tuple[str] ) -> bool: return len(set(_lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm _lowerCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _lowerCAmelCase : int = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _lowerCAmelCase : Tuple = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding _lowerCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer _lowerCAmelCase : int = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): _lowerCAmelCase : str = pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _lowerCAmelCase : List[Any] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowerCAmelCase : str = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowerCAmelCase : List[str] = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _lowerCAmelCase : Dict = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _lowerCAmelCase : Optional[int] = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _lowerCAmelCase : int = pt_tuple_key[-2] + """_v""" if name is not None: _lowerCAmelCase : Union[str, Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Union[str, Any] ) -> Dict: # convert pytorch tensor to numpy _lowerCAmelCase : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} _lowerCAmelCase : Tuple = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _lowerCAmelCase : Any = flax_model.params["""params"""] else: _lowerCAmelCase : Optional[Any] = flax_model.params _lowerCAmelCase : Optional[int] = flatten_dict(_lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _lowerCAmelCase : Union[str, Any] = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(_lowerCamelCase ) _lowerCAmelCase : Any = {} _lowerCAmelCase : Dict = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _lowerCAmelCase : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase : int = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _lowerCAmelCase : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase : str = pt_tuple_key[1:] # Correctly rename weight parameters _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = rename_key_and_reshape_tensor( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # add model prefix if necessary _lowerCAmelCase : Optional[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase : Optional[Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _lowerCAmelCase : Optional[int] = jnp.asarray(_lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCamelCase ,_lowerCamelCase ) continue # also add unexpected weight so that warning is thrown _lowerCAmelCase : Dict = jnp.asarray(_lowerCamelCase ) else: # also add unexpected weight so that warning is thrown _lowerCAmelCase : Optional[Any] = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ) -> List[str]: import torch # Load the index _lowerCAmelCase : List[Any] = {} for shard_file in shard_filenames: # load using msgpack utils _lowerCAmelCase : Tuple = torch.load(_lowerCamelCase ) _lowerCAmelCase : int = {k: v.numpy() for k, v in pt_state_dict.items()} _lowerCAmelCase : Optional[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _lowerCAmelCase : Tuple = flax_model.params["""params"""] _lowerCAmelCase : List[str] = flatten_dict(_lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: _lowerCAmelCase : Union[str, Any] = flax_model.params _lowerCAmelCase : Dict = flatten_dict(_lowerCamelCase ) _lowerCAmelCase : Any = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _lowerCAmelCase : Any = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase : List[Any] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _lowerCAmelCase : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters _lowerCAmelCase , _lowerCAmelCase : str = rename_key_and_reshape_tensor( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # add model prefix if necessary _lowerCAmelCase : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase : Any = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _lowerCAmelCase : Optional[Any] = jnp.asarray(_lowerCamelCase ) continue if "var" in flax_key[-1]: _lowerCAmelCase : Tuple = jnp.asarray(_lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCamelCase ,_lowerCamelCase ) continue # also add unexpected weight so that warning is thrown _lowerCAmelCase : List[Any] = jnp.asarray(_lowerCamelCase ) else: # also add unexpected weight so that warning is thrown _lowerCAmelCase : Union[str, Any] = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : List[str] ) -> Optional[Any]: _lowerCAmelCase : Tuple = os.path.abspath(_lowerCamelCase ) logger.info(f"Loading Flax weights from {flax_checkpoint_path}" ) # import correct flax class _lowerCAmelCase : int = getattr(_lowerCamelCase ,"""Flax""" + model.__class__.__name__ ) # load flax weight dict with open(_lowerCamelCase ,"""rb""" ) as state_f: try: _lowerCAmelCase : Dict = from_bytes(_lowerCamelCase ,state_f.read() ) except UnpicklingError: raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ) -> Optional[int]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _lowerCAmelCase : List[str] = flatten_dict(jax.tree_util.tree_map(lambda _lowerCamelCase : x.dtype == jnp.bfloataa ,_lowerCamelCase ) ).values() if any(_lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _lowerCAmelCase : Dict = jax.tree_util.tree_map( lambda _lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,_lowerCamelCase ) _lowerCAmelCase : Tuple = flatten_dict(_lowerCamelCase ) _lowerCAmelCase : List[Any] = pt_model.state_dict() _lowerCAmelCase : str = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) _lowerCAmelCase : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : str = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _lowerCAmelCase : int = flax_key_tuple[0] == pt_model.base_model_prefix _lowerCAmelCase : Union[str, Any] = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase : int = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase : str = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCamelCase ) not in pt_model_dict: # conv layer _lowerCAmelCase : str = flax_key_tuple[:-1] + ("""weight""",) _lowerCAmelCase : Any = jnp.transpose(_lowerCamelCase ,(3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCamelCase ) not in pt_model_dict: # linear layer _lowerCAmelCase : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) _lowerCAmelCase : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCAmelCase : str = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _lowerCAmelCase : Dict = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: _lowerCAmelCase : Optional[Any] = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: _lowerCAmelCase : Union[str, Any] = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _lowerCAmelCase : Tuple = """.""".join(_lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _lowerCAmelCase : List[Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _lowerCAmelCase : Tuple = key.split(""".""" ) _lowerCAmelCase : List[str] = None if key_components[-3::2] == ["parametrizations", "original0"]: _lowerCAmelCase : Optional[int] = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: _lowerCAmelCase : List[Any] = key_components[-2] + """_v""" if name is not None: _lowerCAmelCase : Dict = key_components[:-3] + [name] _lowerCAmelCase : Optional[Any] = """.""".join(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = key if flax_key in special_pt_names: _lowerCAmelCase : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict _lowerCAmelCase : List[str] = np.asarray(_lowerCamelCase ) if not isinstance(_lowerCamelCase ,np.ndarray ) else flax_tensor _lowerCAmelCase : Union[str, Any] = torch.from_numpy(_lowerCamelCase ) # remove from missing keys missing_keys.remove(_lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCamelCase ) pt_model.load_state_dict(_lowerCamelCase ) # re-transform missing_keys to list _lowerCAmelCase : Dict = list(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" ) if len(_lowerCamelCase ) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) else: logger.warning( f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" """If your task is similar to the task the model of the checkpoint was trained on, """ f"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
663
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a : Union[str, Any] = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
1
"""simple docstring""" _a : str = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } _a : Dict = {value: key for key, value in encode_dict.items()} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> str: _lowerCAmelCase : Tuple = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> str: if set(_lowerCamelCase ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) _lowerCAmelCase : Dict = """""" for word in coded.split(): while len(_lowerCamelCase ) != 0: decoded += decode_dict[word[:5]] _lowerCAmelCase : Dict = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
663
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
1
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _a : int = Lock() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ,_lowerCamelCase : List[str] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ,_lowerCamelCase : int ,_lowerCamelCase : str ) -> Tuple: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 ,10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowerCamelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _lowerCAmelCase : List[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _lowerCAmelCase : Any = min(_lowerCamelCase ,_lowerCamelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowerCamelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _lowerCAmelCase : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _lowerCAmelCase : Dict = max(_lowerCamelCase ,_lowerCamelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Optional[int]: _lowerCAmelCase : int = [] _lowerCAmelCase : List[str] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _lowerCAmelCase : Optional[Any] = Pipe() _lowerCAmelCase : Optional[int] = Pipe() process_array_.append( Process( target=_lowerCamelCase ,args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) ,) ) _lowerCAmelCase : List[Any] = temp_rs _lowerCAmelCase : int = temp_rr for i in range(1 ,len(_lowerCamelCase ) - 1 ): _lowerCAmelCase : List[Any] = Pipe() _lowerCAmelCase : Dict = Pipe() process_array_.append( Process( target=_lowerCamelCase ,args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) ,) ) _lowerCAmelCase : List[Any] = temp_rs _lowerCAmelCase : str = temp_rr process_array_.append( Process( target=_lowerCamelCase ,args=( len(_lowerCamelCase ) - 1, arr[len(_lowerCamelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowerCamelCase ) - 1], ) ,) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 ,len(_lowerCamelCase ) ): _lowerCAmelCase : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def SCREAMING_SNAKE_CASE ( ) -> Any: _lowerCAmelCase : List[str] = list(range(10 ,0 ,-1 ) ) print("""Initial List""" ) print(*_lowerCamelCase ) _lowerCAmelCase : int = odd_even_transposition(_lowerCamelCase ) print("""Sorted List\n""" ) print(*_lowerCamelCase ) if __name__ == "__main__": main()
663
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
1
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = KandinskyVaaPriorPipeline _UpperCamelCase : Any = ["prompt"] _UpperCamelCase : List[Any] = ["prompt", "negative_prompt"] _UpperCamelCase : Any = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] _UpperCamelCase : List[str] = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 100 @property def __A ( self ): _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } _lowerCAmelCase : Optional[int] = PriorTransformer(**a__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _lowerCAmelCase : List[str] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _lowerCAmelCase : Tuple = CLIPVisionModelWithProjection(a__ ) return model @property def __A ( self ): _lowerCAmelCase : Tuple = CLIPImageProcessor( crop_size=224 , do_center_crop=a__ , do_normalize=a__ , do_resize=a__ , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor def __A ( self ): _lowerCAmelCase : List[str] = self.dummy_prior _lowerCAmelCase : Union[str, Any] = self.dummy_image_encoder _lowerCAmelCase : List[str] = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_image_processor _lowerCAmelCase : Union[str, Any] = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=1_0.0 , ) _lowerCAmelCase : Union[str, Any] = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : int = torch.manual_seed(a__ ) else: _lowerCAmelCase : Any = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Union[str, Any] = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : Tuple = """cpu""" _lowerCAmelCase : Optional[Any] = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[Any] = output.image_embeds _lowerCAmelCase : Optional[int] = pipe( **self.get_dummy_inputs(a__ ) , return_dict=a__ , )[0] _lowerCAmelCase : Optional[Any] = image[0, -10:] _lowerCAmelCase : int = image_from_tuple[0, -10:] assert image.shape == (1, 32) _lowerCAmelCase : str = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __A ( self ): _lowerCAmelCase : Optional[int] = torch_device == """cpu""" _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Any = False self._test_inference_batch_single_identical( test_max_difference=a__ , relax_max_difference=a__ , test_mean_pixel_difference=a__ , ) @skip_mps def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Union[str, Any] = False self._test_attention_slicing_forward_pass( test_max_difference=a__ , test_mean_pixel_difference=a__ , )
663
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
1
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : def __init__( self , a__ , a__=13 , a__=32 , a__=2 , a__=3 , a__=16 , a__=[32, 64, 128] , a__=[1, 2, 1] , a__=[2, 2, 4] , a__=2 , a__=2.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=True , a__=0.0_2 , a__=1e-5 , a__=True , a__=None , a__=True , a__=10 , a__=8 , a__=["stage1", "stage2"] , a__=[1, 2] , ): _lowerCAmelCase : str = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : Tuple = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : List[Any] = num_heads _lowerCAmelCase : Optional[int] = window_size _lowerCAmelCase : Optional[int] = mlp_ratio _lowerCAmelCase : Optional[Any] = qkv_bias _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : int = drop_path_rate _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : List[Any] = use_absolute_embeddings _lowerCAmelCase : Union[str, Any] = patch_norm _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : Optional[int] = scope _lowerCAmelCase : Any = use_labels _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : Tuple = encoder_stride _lowerCAmelCase : str = out_features _lowerCAmelCase : Tuple = out_indices def __A ( self ): _lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Dict = self.get_config() return config, pixel_values, labels def __A ( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = FocalNetModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[str] = model(a__ ) _lowerCAmelCase : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Dict = FocalNetBackbone(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Optional[int] = FocalNetBackbone(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Union[str, Any] = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = FocalNetForMaskedImageModeling(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = model(a__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Any = FocalNetForMaskedImageModeling(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = model(a__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : str = self.type_sequence_label_size _lowerCAmelCase : Tuple = FocalNetForImageClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Any = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : str = 1 _lowerCAmelCase : int = FocalNetForImageClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ): _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = config_and_inputs _lowerCAmelCase : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Any = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _UpperCamelCase : Optional[Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Optional[Any] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Any = False def __A ( self ): _lowerCAmelCase : Optional[Any] = FocalNetModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=a__ , embed_dim=37 , has_text_modality=a__ ) def __A ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ): return def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __A ( self ): pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase : List[Any] = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase : str = model_class(a__ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : List[str] = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCAmelCase : Union[str, Any] = outputs.hidden_states _lowerCAmelCase : List[str] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a__ ) , a__ ) # FocalNet has a different seq_length _lowerCAmelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(a__ ) , a__ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = reshaped_hidden_states[0].shape _lowerCAmelCase : List[str] = ( reshaped_hidden_states[0].view(a__ , a__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase : int = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[Any] = 3 _lowerCAmelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase : str = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : int = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) @slow def __A ( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Any = FocalNetModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = _config_zero_init(a__ ) for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(config=a__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class __A ( unittest.TestCase ): @cached_property def __A ( self ): # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __A ( self ): _lowerCAmelCase : List[str] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(a__ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase : str = image_processor(images=a__ , return_tensors="""pt""" ).to(a__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**a__ ) # verify the logits _lowerCAmelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) _lowerCAmelCase : Any = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Any = (FocalNetBackbone,) if is_torch_available() else () _UpperCamelCase : int = FocalNetConfig _UpperCamelCase : List[str] = False def __A ( self ): _lowerCAmelCase : Any = FocalNetModelTester(self )
663
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
1
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _a : Any = threading.Lock() _a : Optional[logging.Handler] = None _a : Optional[Any] = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } _a : Tuple = logging.WARNING _a : str = True def SCREAMING_SNAKE_CASE ( ) -> Any: _lowerCAmelCase : Tuple = os.getenv("""TRANSFORMERS_VERBOSITY""" ,_lowerCamelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def SCREAMING_SNAKE_CASE ( ) -> str: return __name__.split(""".""" )[0] def SCREAMING_SNAKE_CASE ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def SCREAMING_SNAKE_CASE ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowerCAmelCase : Tuple = logging.StreamHandler() # Set sys.stderr as stream. _lowerCAmelCase : Union[str, Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _lowerCAmelCase : List[str] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowerCAmelCase : Optional[int] = False def SCREAMING_SNAKE_CASE ( ) -> None: global _default_handler with _lock: if not _default_handler: return _lowerCAmelCase : Union[str, Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowerCAmelCase : Dict = None def SCREAMING_SNAKE_CASE ( ) -> int: return log_levels def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[str] = None ) -> logging.Logger: if name is None: _lowerCAmelCase : Optional[int] = _get_library_name() _configure_library_root_logger() return logging.getLogger(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: return set_verbosity(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: return set_verbosity(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: return set_verbosity(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: return set_verbosity(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def SCREAMING_SNAKE_CASE ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : logging.Handler ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : logging.Handler ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> None: _configure_library_root_logger() _lowerCAmelCase : Dict = False def SCREAMING_SNAKE_CASE ( ) -> None: _configure_library_root_logger() _lowerCAmelCase : Dict = True def SCREAMING_SNAKE_CASE ( ) -> None: _lowerCAmelCase : List[str] = _get_library_root_logger().handlers for handler in handlers: _lowerCAmelCase : str = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> None: _lowerCAmelCase : Optional[int] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ,*_lowerCamelCase : Dict ,**_lowerCamelCase : Optional[Any] ) -> Dict: _lowerCAmelCase : Optional[int] = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" ,_lowerCamelCase ) if no_advisory_warnings: return self.warning(*_lowerCamelCase ,**_lowerCamelCase ) _a : int = warning_advice @functools.lru_cache(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,*_lowerCamelCase : Tuple ,**_lowerCamelCase : Any ) -> List[str]: self.warning(*_lowerCamelCase ,**_lowerCamelCase ) _a : List[Any] = warning_once class __A : def __init__( self , *a__ , **a__ ): # pylint: disable=unused-argument _lowerCAmelCase : Dict = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , a__ ): def empty_fn(*a__ , **a__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , a__ , a__ , a__ ): return class __A : def __call__( self , *a__ , **a__ ): if _tqdm_active: return tqdm_lib.tqdm(*a__ , **a__ ) else: return EmptyTqdm(*a__ , **a__ ) def __A ( self , *a__ , **a__ ): _lowerCAmelCase : Optional[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*a__ , **a__ ) def __A ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() _a : str = _tqdm_cls() def SCREAMING_SNAKE_CASE ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: global _tqdm_active _lowerCAmelCase : Tuple = True hf_hub_utils.enable_progress_bars() def SCREAMING_SNAKE_CASE ( ) -> int: global _tqdm_active _lowerCAmelCase : Any = False hf_hub_utils.disable_progress_bars()
663
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : Tuple = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = "gpt_neox_japanese" def __init__( self , a__=32000 , a__=2560 , a__=32 , a__=32 , a__=4 , a__="gelu" , a__=1.0_0 , a__=10000 , a__=2048 , a__=0.0_2 , a__=1e-5 , a__=True , a__=31996 , a__=31999 , a__=0.1 , a__=0.0 , **a__ , ): super().__init__(bos_token_id=a__ , eos_token_id=a__ , **a__ ) _lowerCAmelCase : str = vocab_size _lowerCAmelCase : str = max_position_embeddings _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_multiple_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Dict = rotary_pct _lowerCAmelCase : Union[str, Any] = rotary_emb_base _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : str = hidden_dropout
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : Dict = tempfile.mkdtemp() _lowerCAmelCase : Tuple = SamImageProcessor() _lowerCAmelCase : Tuple = SamProcessor(a__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **a__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def __A ( self ): shutil.rmtree(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : int = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ): _lowerCAmelCase : str = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Dict = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) _lowerCAmelCase : Optional[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : List[Any] = SamProcessor(image_processor=a__ ) _lowerCAmelCase : Optional[int] = self.prepare_image_inputs() _lowerCAmelCase : List[Any] = image_processor(a__ , return_tensors="""np""" ) _lowerCAmelCase : Union[str, Any] = processor(images=a__ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def __A ( self ): _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : str = SamProcessor(image_processor=a__ ) _lowerCAmelCase : Optional[int] = [torch.ones((1, 3, 5, 5) )] _lowerCAmelCase : List[Any] = [[1764, 2646]] _lowerCAmelCase : str = [[683, 1024]] _lowerCAmelCase : int = processor.post_process_masks(a__ , a__ , a__ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _lowerCAmelCase : Optional[Any] = processor.post_process_masks( a__ , torch.tensor(a__ ) , torch.tensor(a__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _lowerCAmelCase : List[Any] = [np.ones((1, 3, 5, 5) )] _lowerCAmelCase : int = processor.post_process_masks(a__ , np.array(a__ ) , np.array(a__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _lowerCAmelCase : Dict = [[1, 0], [0, 1]] with self.assertRaises(a__ ): _lowerCAmelCase : Tuple = processor.post_process_masks(a__ , np.array(a__ ) , np.array(a__ ) ) @require_vision @require_tf class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : List[str] = tempfile.mkdtemp() _lowerCAmelCase : List[str] = SamImageProcessor() _lowerCAmelCase : Optional[Any] = SamProcessor(a__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **a__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def __A ( self ): shutil.rmtree(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : Any = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ): _lowerCAmelCase : List[str] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[int] = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) _lowerCAmelCase : Optional[int] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.get_image_processor() _lowerCAmelCase : str = SamProcessor(image_processor=a__ ) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(a__ , return_tensors="""np""" ) _lowerCAmelCase : Any = processor(images=a__ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def __A ( self ): _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Dict = SamProcessor(image_processor=a__ ) _lowerCAmelCase : Dict = [tf.ones((1, 3, 5, 5) )] _lowerCAmelCase : List[str] = [[1764, 2646]] _lowerCAmelCase : List[str] = [[683, 1024]] _lowerCAmelCase : Optional[Any] = processor.post_process_masks(a__ , a__ , a__ , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _lowerCAmelCase : Dict = processor.post_process_masks( a__ , tf.convert_to_tensor(a__ ) , tf.convert_to_tensor(a__ ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _lowerCAmelCase : List[str] = [np.ones((1, 3, 5, 5) )] _lowerCAmelCase : List[str] = processor.post_process_masks( a__ , np.array(a__ ) , np.array(a__ ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _lowerCAmelCase : Any = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _lowerCAmelCase : Tuple = processor.post_process_masks( a__ , np.array(a__ ) , np.array(a__ ) , return_tensors="""tf""" ) @require_vision @require_torchvision class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : int = SamImageProcessor() _lowerCAmelCase : str = SamProcessor(a__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **a__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def __A ( self ): shutil.rmtree(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : Tuple = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __A ( self ): _lowerCAmelCase : Optional[int] = self.get_image_processor() _lowerCAmelCase : str = SamProcessor(image_processor=a__ ) _lowerCAmelCase : List[str] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _lowerCAmelCase : Union[str, Any] = [tf.convert_to_tensor(a__ )] _lowerCAmelCase : Optional[Any] = [torch.tensor(a__ )] _lowerCAmelCase : Tuple = [[1764, 2646]] _lowerCAmelCase : Dict = [[683, 1024]] _lowerCAmelCase : Optional[int] = processor.post_process_masks( a__ , a__ , a__ , return_tensors="""tf""" ) _lowerCAmelCase : Dict = processor.post_process_masks( a__ , a__ , a__ , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __A ( self ): _lowerCAmelCase : Tuple = self.get_image_processor() _lowerCAmelCase : Any = SamProcessor(image_processor=a__ ) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : Any = image_processor(a__ , return_tensors="""pt""" )["""pixel_values"""].numpy() _lowerCAmelCase : Optional[int] = processor(images=a__ , return_tensors="""pt""" )["""pixel_values"""].numpy() _lowerCAmelCase : Optional[Any] = image_processor(a__ , return_tensors="""tf""" )["""pixel_values"""].numpy() _lowerCAmelCase : Optional[Any] = processor(images=a__ , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(a__ , a__ ) ) self.assertTrue(np.allclose(a__ , a__ ) ) self.assertTrue(np.allclose(a__ , a__ ) )
663
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
1
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _a : Optional[Any] = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _a : List[str] = concatenate_datasets _a : Optional[Any] = DownloadConfig _a : Tuple = DownloadManager _a : List[str] = DownloadMode _a : Tuple = DownloadConfig _a : Union[str, Any] = DownloadMode _a : Optional[int] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
663
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self ): _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Dict = 3 _lowerCAmelCase : str = (32, 32) _lowerCAmelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a__ ) return image @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(a__ ) @property def __A ( self ): def extract(*a__ , **a__ ): class __A : def __init__( self ): _lowerCAmelCase : Dict = torch.ones([0] ) def __A ( self , a__ ): self.pixel_values.to(a__ ) return self return Out() return extract def __A ( self ): _lowerCAmelCase : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Any = self.dummy_cond_unet _lowerCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=a__ , set_alpha_to_one=a__ , ) _lowerCAmelCase : Optional[int] = self.dummy_vae _lowerCAmelCase : Optional[Any] = self.dummy_text_encoder _lowerCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _lowerCAmelCase : List[Any] = StableDiffusionPipeline( unet=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , safety_checker=a__ , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : str = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = """A painting of a squirrel eating a burger""" _lowerCAmelCase : List[str] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Dict = sd_pipe([prompt] , generator=a__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) _lowerCAmelCase : Union[str, Any] = output.images _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Dict = sd_pipe( [prompt] , generator=a__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=a__ , )[0] _lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] _lowerCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Any = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.dummy_cond_unet _lowerCAmelCase : List[str] = PNDMScheduler(skip_prk_steps=a__ ) _lowerCAmelCase : str = self.dummy_vae _lowerCAmelCase : Union[str, Any] = self.dummy_text_encoder _lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _lowerCAmelCase : str = StableDiffusionPipeline( unet=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , safety_checker=a__ , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : List[str] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _lowerCAmelCase : Optional[Any] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Optional[int] = sd_pipe([prompt] , generator=a__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) _lowerCAmelCase : Dict = output.images _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : List[Any] = sd_pipe( [prompt] , generator=a__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=a__ , )[0] _lowerCAmelCase : str = image[0, -3:, -3:, -1] _lowerCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Any = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=a__ ) assert isinstance(a__ , a__ ) assert isinstance(pipe.scheduler , a__ ) assert pipe.safety_checker is None _lowerCAmelCase : List[str] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a__ ) _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(a__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowerCAmelCase : List[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_cond_unet _lowerCAmelCase : str = PNDMScheduler(skip_prk_steps=a__ ) _lowerCAmelCase : List[Any] = self.dummy_vae _lowerCAmelCase : Optional[Any] = self.dummy_text_encoder _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _lowerCAmelCase : Dict = unet.half() _lowerCAmelCase : List[str] = vae.half() _lowerCAmelCase : Optional[Any] = bert.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase : List[str] = StableDiffusionPipeline( unet=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , safety_checker=a__ , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : Optional[Any] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = """A painting of a squirrel eating a burger""" _lowerCAmelCase : Optional[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=a__ ) _lowerCAmelCase : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCAmelCase : str = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _lowerCAmelCase : Optional[Any] = 4003660346 _lowerCAmelCase : Union[str, Any] = 7 # without safety guidance (sld_guidance_scale = 0) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(a__ ) _lowerCAmelCase : Tuple = sd_pipe( [prompt] , generator=a__ , guidance_scale=a__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase : int = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : List[Any] = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(a__ ) _lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=a__ , guidance_scale=a__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : Optional[Any] = output.images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] _lowerCAmelCase : Any = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=a__ ) _lowerCAmelCase : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCAmelCase : Optional[Any] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[Any] = """padme amidala taking a bath artwork, safe for work, no nudity""" _lowerCAmelCase : int = 2734971755 _lowerCAmelCase : Optional[Any] = 7 _lowerCAmelCase : Tuple = torch.manual_seed(a__ ) _lowerCAmelCase : Dict = sd_pipe( [prompt] , generator=a__ , guidance_scale=a__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase : Dict = output.images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[Any] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _lowerCAmelCase : Optional[Any] = torch.manual_seed(a__ ) _lowerCAmelCase : str = sd_pipe( [prompt] , generator=a__ , guidance_scale=a__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] _lowerCAmelCase : Dict = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _lowerCAmelCase : Optional[int] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[Any] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _lowerCAmelCase : str = 1044355234 _lowerCAmelCase : int = 12 _lowerCAmelCase : Optional[int] = torch.manual_seed(a__ ) _lowerCAmelCase : Tuple = sd_pipe( [prompt] , generator=a__ , guidance_scale=a__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase : Tuple = output.images _lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] _lowerCAmelCase : Tuple = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _lowerCAmelCase : Optional[int] = torch.manual_seed(a__ ) _lowerCAmelCase : List[str] = sd_pipe( [prompt] , generator=a__ , guidance_scale=a__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : List[Any] = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
663
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[int] = logging.get_logger(__name__) _a : Any = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = "data2vec-vision" def __init__( self , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=1e-12 , a__=224 , a__=16 , a__=3 , a__=False , a__=False , a__=False , a__=False , a__=0.1 , a__=0.1 , a__=True , a__=[3, 5, 7, 11] , a__=[1, 2, 3, 6] , a__=True , a__=0.4 , a__=256 , a__=1 , a__=False , a__=255 , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : int = image_size _lowerCAmelCase : Any = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : Tuple = use_mask_token _lowerCAmelCase : Tuple = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : Dict = use_shared_relative_position_bias _lowerCAmelCase : Optional[Any] = layer_scale_init_value _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : Optional[Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : str = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : str = use_auxiliary_head _lowerCAmelCase : Optional[int] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Tuple = auxiliary_num_convs _lowerCAmelCase : Dict = auxiliary_concat_input _lowerCAmelCase : Optional[int] = semantic_loss_ignore_index class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = version.parse("1.11" ) @property def __A ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __A ( self ): return 1e-4
663
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["speech"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""speech"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["speech"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""speech"""] )
663
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
1
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Any = GPTaTokenizer _UpperCamelCase : Optional[int] = GPTaTokenizerFast _UpperCamelCase : Optional[int] = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : int = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : str = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Dict = {"""unk_token""": """<unk>"""} _lowerCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : Any = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : List[Any] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : List[str] = """lower newer""" _lowerCAmelCase : Union[str, Any] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[Any] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : List[str] = tokens + [tokenizer.unk_token] _lowerCAmelCase : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = """lower newer""" # Testing tokenization _lowerCAmelCase : Optional[Any] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : List[str] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Optional[Any] = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : Dict = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : int = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Optional[Any] = """This is a simple input""" _lowerCAmelCase : Any = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Tuple = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Tuple = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Any = """This is a simple input""" _lowerCAmelCase : List[Any] = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : List[str] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Union[str, Any] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[Any] = tokenizer.pad_token_id _lowerCAmelCase : Tuple = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : List[str] = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : Tuple = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : str = """$$$""" _lowerCAmelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : List[str] = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = tokenizer.bos_token_id _lowerCAmelCase : Optional[int] = tokenizer(a__ ) _lowerCAmelCase : Optional[Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __A ( self ): pass def __A ( self ): # TODO: change to self.get_tokenizers() when the fast version is implemented _lowerCAmelCase : List[Any] = [self.get_tokenizer(do_lower_case=a__ , add_bos_token=a__ )] for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _lowerCAmelCase : int = """Encode this.""" _lowerCAmelCase : Dict = """This one too please.""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ , add_special_tokens=a__ ) encoded_sequence += tokenizer.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : List[Any] = tokenizer.encode_plus( a__ , a__ , add_special_tokens=a__ , return_special_tokens_mask=a__ , ) _lowerCAmelCase : Tuple = encoded_sequence_dict["""input_ids"""] _lowerCAmelCase : List[str] = encoded_sequence_dict["""special_tokens_mask"""] self.assertEqual(len(a__ ) , len(a__ ) ) _lowerCAmelCase : Dict = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(a__ ) ] _lowerCAmelCase : List[str] = [x for x in filtered_sequence if x is not None] self.assertEqual(a__ , a__ ) @require_tokenizers class __A ( unittest.TestCase ): def __A ( self ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=a__ ) _lowerCAmelCase : Tuple = """A photo of a cat""" _lowerCAmelCase : List[str] = tokenizer.encode( a__ , ) self.assertEqual(a__ , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("""test_opt""" ) _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""./test_opt""" ) _lowerCAmelCase : List[Any] = tokenizer.encode( a__ , ) self.assertEqual(a__ , [2, 250, 1345, 9, 10, 4758] ) def __A ( self ): _lowerCAmelCase : str = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , use_slow=a__ ) _lowerCAmelCase : Any = """A photo of a cat""" _lowerCAmelCase : Dict = tokenizer.encode( a__ , ) # Same as above self.assertEqual(a__ , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("""This test is failing because of a bug in the fast tokenizer""" ) def __A ( self ): _lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=a__ ) _lowerCAmelCase : Dict = """bos""" _lowerCAmelCase : str = tokenizer.get_vocab()["""bos"""] _lowerCAmelCase : Any = """A photo of a cat""" _lowerCAmelCase : List[Any] = tokenizer.encode( a__ , ) # We changed the bos token self.assertEqual(a__ , [31957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("""./tok""" ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained("""./tok""" ) self.assertTrue(tokenizer.is_fast ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode( a__ , ) self.assertEqual(a__ , [31957, 250, 1345, 9, 10, 4758] )
663
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
1
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[str] = IFPipeline _UpperCamelCase : List[Any] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} _UpperCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : int = PipelineTesterMixin.required_optional_params - {"latents"} def __A ( self ): return self._get_dummy_components() def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : str = torch.manual_seed(a__ ) else: _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : str = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __A ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __A ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __A ( self ): self._test_save_load_local() def __A ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): # if _lowerCAmelCase : Union[str, Any] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) _lowerCAmelCase : List[str] = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=a__ , tokenizer=a__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) _lowerCAmelCase , _lowerCAmelCase : Any = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(a__ , a__ , a__ , a__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase : Any = IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase : Optional[int] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(a__ , a__ , a__ , a__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase : Any = IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase : Tuple = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(a__ , a__ , a__ , a__ ) def __A ( self , a__ , a__ , a__ , a__ ): # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase : Any = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , num_inference_steps=2 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(a__ , a__ ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) _lowerCAmelCase : int = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , generator=a__ , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(a__ , a__ ) def __A ( self , a__ , a__ , a__ , a__ ): # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) _lowerCAmelCase : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase : Tuple = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , num_inference_steps=2 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(a__ , a__ ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase : Tuple = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(a__ ) _lowerCAmelCase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) _lowerCAmelCase : str = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , original_image=a__ , generator=a__ , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(a__ , a__ ) def __A ( self , a__ , a__ , a__ , a__ ): # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(a__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase : str = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , mask_image=a__ , num_inference_steps=2 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : str = output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(a__ , a__ ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) _lowerCAmelCase : Tuple = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(a__ ) _lowerCAmelCase : int = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(a__ ) _lowerCAmelCase : Dict = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , mask_image=a__ , original_image=a__ , generator=a__ , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase : int = output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(a__ , a__ ) def SCREAMING_SNAKE_CASE ( ) -> str: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
663
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
1
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def SCREAMING_SNAKE_CASE ( ) -> str: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _lowerCAmelCase : int = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching ,"""os.path.join""" ,_lowerCamelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os ,_PatchedModuleObj ) assert isinstance(_test_patching.os.path ,_PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path ,_PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os ,_PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path ,_PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path ,_PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def SCREAMING_SNAKE_CASE ( ) -> List[str]: assert _test_patching.open is open _lowerCAmelCase : Optional[int] = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching ,"""open""" ,_lowerCamelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def SCREAMING_SNAKE_CASE ( ) -> Tuple: # pandas.read_csv is not present in _test_patching _lowerCAmelCase : int = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching ,"""pandas.read_csv""" ,_lowerCamelCase ): pass def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point _lowerCAmelCase : Any = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching ,"""len""" ,_lowerCamelCase ) is None with patch_submodule(_test_patching ,"""len""" ,_lowerCamelCase ): assert _test_patching.len is mock assert _test_patching.len is len def SCREAMING_SNAKE_CASE ( ) -> List[str]: _lowerCAmelCase : List[str] = """__test_patch_submodule_start_and_stop_mock__""" _lowerCAmelCase : Tuple = patch_submodule(_test_patching ,"""open""" ,_lowerCamelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def SCREAMING_SNAKE_CASE ( ) -> Any: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _lowerCAmelCase : Dict = """__test_patch_submodule_successive_join__""" _lowerCAmelCase : List[Any] = """__test_patch_submodule_successive_dirname__""" _lowerCAmelCase : List[Any] = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching ,"""os.path.join""" ,_lowerCamelCase ): with patch_submodule(_test_patching ,"""os.rename""" ,_lowerCamelCase ): with patch_submodule(_test_patching ,"""os.path.dirname""" ,_lowerCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching ,"""os.rename""" ,_lowerCamelCase ): with patch_submodule(_test_patching ,"""os.path.join""" ,_lowerCamelCase ): with patch_submodule(_test_patching ,"""os.path.dirname""" ,_lowerCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def SCREAMING_SNAKE_CASE ( ) -> int: _lowerCAmelCase : Optional[Any] = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching ,"""__module_that_doesn_exist__.__attribute_that_doesn_exist__""" ,_lowerCamelCase ): pass with patch_submodule(_test_patching ,"""os.__attribute_that_doesn_exist__""" ,_lowerCamelCase ): pass
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) _a : Dict = parser.parse_args() _a : List[str] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
663
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
1
"""simple docstring""" from __future__ import annotations from random import random class __A : def __init__( self , a__ = None ): _lowerCAmelCase : Dict = value _lowerCAmelCase : Any = random() _lowerCAmelCase : Node | None = None _lowerCAmelCase : Node | None = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return F"'{self.value}: {self.prior:.5}'" else: return pformat( {F"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__( self ): _lowerCAmelCase : List[Any] = str(self.value ) + """ """ _lowerCAmelCase : int = str(self.left or """""" ) _lowerCAmelCase : Union[str, Any] = str(self.right or """""" ) return value + left + right def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = split(root.left ,_lowerCamelCase ) return left, root else: _lowerCAmelCase , _lowerCAmelCase : List[Any] = split(root.right ,_lowerCamelCase ) return root, right def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCAmelCase : List[Any] = merge(left.right ,_lowerCamelCase ) return left else: _lowerCAmelCase : int = merge(_lowerCamelCase ,right.left ) return right def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Node | None: _lowerCAmelCase : Optional[Any] = Node(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = split(_lowerCamelCase ,_lowerCamelCase ) return merge(merge(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Node | None: _lowerCAmelCase , _lowerCAmelCase : str = split(_lowerCamelCase ,value - 1 ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = split(_lowerCamelCase ,_lowerCamelCase ) return merge(_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value ,end=""",""" ) inorder(root.right ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": _lowerCAmelCase : Any = insert(_lowerCamelCase ,int(arg[1:] ) ) elif arg[0] == "-": _lowerCAmelCase : Optional[Any] = erase(_lowerCamelCase ,int(arg[1:] ) ) else: print("""Unknown command""" ) return root def SCREAMING_SNAKE_CASE ( ) -> None: _lowerCAmelCase : Union[str, Any] = None print( """enter numbers to create a tree, + value to add value into treap, """ """- value to erase all nodes with value. 'q' to quit. """ ) _lowerCAmelCase : Union[str, Any] = input() while args != "q": _lowerCAmelCase : str = interact_treap(_lowerCamelCase ,_lowerCamelCase ) print(_lowerCamelCase ) _lowerCAmelCase : Dict = input() print("""good by!""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
1
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : List[str] ) -> Union[str, Any]: # Initialise PyTorch model _lowerCAmelCase : Dict = MobileBertConfig.from_json_file(_lowerCamelCase ) print(f"Building PyTorch model from configuration: {config}" ) _lowerCAmelCase : Any = MobileBertForPreTraining(_lowerCamelCase ) # Load weights from tf checkpoint _lowerCAmelCase : Optional[Any] = load_tf_weights_in_mobilebert(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() ,_lowerCamelCase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
663
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
1
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a : Optional[Any] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[Any] = DebertaVaTokenizer _UpperCamelCase : Optional[int] = DebertaVaTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = True def __A ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = DebertaVaTokenizer(a__ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self , a__ ): _lowerCAmelCase : List[str] = """this is a test""" _lowerCAmelCase : Any = """this is a test""" return input_text, output_text def __A ( self ): _lowerCAmelCase : List[str] = """<pad>""" _lowerCAmelCase : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __A ( self ): _lowerCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(a__ ) , 30001 ) def __A ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def __A ( self ): # fmt: off _lowerCAmelCase : int = """ \tHeLLo!how \n Are yoU? """ _lowerCAmelCase : Optional[Any] = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on _lowerCAmelCase : List[Any] = DebertaVaTokenizer(a__ , do_lower_case=a__ ) _lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Optional[int] = DebertaVaTokenizerFast(a__ , do_lower_case=a__ ) _lowerCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __A ( self ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __A ( self ): pass def __A ( self ): # fmt: off _lowerCAmelCase : Any = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : Any = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _lowerCAmelCase : Dict = DebertaVaTokenizer(a__ , split_by_punct=a__ ) _lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : List[str] = DebertaVaTokenizerFast(a__ , split_by_punct=a__ ) _lowerCAmelCase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) def __A ( self ): # fmt: off _lowerCAmelCase : int = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : List[str] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _lowerCAmelCase : Optional[int] = DebertaVaTokenizer(a__ , do_lower_case=a__ , split_by_punct=a__ ) _lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = DebertaVaTokenizerFast(a__ , do_lower_case=a__ , split_by_punct=a__ ) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) def __A ( self ): # fmt: off _lowerCAmelCase : int = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : Tuple = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on _lowerCAmelCase : List[Any] = DebertaVaTokenizer(a__ , do_lower_case=a__ , split_by_punct=a__ ) _lowerCAmelCase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = DebertaVaTokenizerFast(a__ , do_lower_case=a__ , split_by_punct=a__ ) _lowerCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) def __A ( self ): # fmt: off _lowerCAmelCase : List[str] = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : List[Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizer(a__ , do_lower_case=a__ , split_by_punct=a__ ) _lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Any = DebertaVaTokenizerFast(a__ , do_lower_case=a__ , split_by_punct=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) def __A ( self ): # fmt: off _lowerCAmelCase : Optional[Any] = """ \tHeLLo!how \n Are yoU? """ _lowerCAmelCase : Optional[int] = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on _lowerCAmelCase : Any = DebertaVaTokenizer(a__ , do_lower_case=a__ , split_by_punct=a__ ) _lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Dict = DebertaVaTokenizerFast(a__ , do_lower_case=a__ , split_by_punct=a__ ) _lowerCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Any = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__ ) ) _lowerCAmelCase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__ ) ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Optional[Any] = tokenizer.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : Optional[Any] = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = self.get_rust_tokenizer() _lowerCAmelCase : str = tokenizer.encode(a__ ) _lowerCAmelCase : List[str] = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) def __A ( self ): _lowerCAmelCase : int = """This is a test""" _lowerCAmelCase : Optional[int] = [13, 1, 4398, 25, 21, 1289] _lowerCAmelCase : List[str] = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] _lowerCAmelCase : int = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizer(a__ , keep_accents=a__ ) _lowerCAmelCase : str = DebertaVaTokenizerFast(a__ , keep_accents=a__ ) _lowerCAmelCase : Tuple = tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Dict = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Optional[Any] = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual(a__ , a__ ) # fmt: off _lowerCAmelCase : int = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : Tuple = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _lowerCAmelCase : Any = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] _lowerCAmelCase : Optional[Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on _lowerCAmelCase : List[Any] = tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : List[str] = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Optional[int] = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual(a__ , a__ ) def __A ( self ): _lowerCAmelCase : Any = DebertaVaTokenizer(a__ ) _lowerCAmelCase : List[Any] = tokenizer.encode("""sequence builders""" ) _lowerCAmelCase : List[str] = tokenizer.encode("""multi-sequence build""" ) _lowerCAmelCase : str = tokenizer.build_inputs_with_special_tokens(a__ ) _lowerCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , a__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , a__ , ) @slow def __A ( self ): # fmt: off _lowerCAmelCase : List[str] = {"""input_ids""": [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
663
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
1
"""simple docstring""" import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __A ( unittest.TestCase ): @require_torch def __A ( self ): _lowerCAmelCase : Optional[Any] = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) _lowerCAmelCase : List[Any] = load_dataset("""ashraq/esc50""" ) _lowerCAmelCase : Any = dataset["""train"""]["""audio"""][-1]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(a__ ) , [{"""score""": 0.5_0_1, """label""": """Sound of a dog"""}, {"""score""": 0.4_9_9, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def __A ( self ): pass @slow @require_torch def __A ( self ): _lowerCAmelCase : Optional[Any] = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog _lowerCAmelCase : Union[str, Any] = load_dataset("""ashraq/esc50""" ) _lowerCAmelCase : List[str] = dataset["""train"""]["""audio"""][-1]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(a__ ) , [ {"""score""": 0.9_9_9, """label""": """Sound of a dog"""}, {"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""}, ] , ) _lowerCAmelCase : Any = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(a__ ) , [ [ {"""score""": 0.9_9_9, """label""": """Sound of a dog"""}, {"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) _lowerCAmelCase : List[str] = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(a__ ) , [ [ {"""score""": 0.9_9_9, """label""": """Sound of a dog"""}, {"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def __A ( self ): pass
663
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
1
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Dict ,_lowerCamelCase : Optional[int] ) -> str: if isinstance(_lowerCamelCase ,torch.Tensor ): return image elif isinstance(_lowerCamelCase ,PIL.Image.Image ): _lowerCAmelCase : List[Any] = [image] if isinstance(image[0] ,PIL.Image.Image ): _lowerCAmelCase : str = [np.array(i.resize((w, h) ,resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] _lowerCAmelCase : Tuple = np.concatenate(_lowerCamelCase ,axis=0 ) _lowerCAmelCase : List[str] = np.array(_lowerCamelCase ).astype(np.floataa ) / 2_55.0 _lowerCAmelCase : Tuple = image.transpose(0 ,3 ,1 ,2 ) _lowerCAmelCase : str = 2.0 * image - 1.0 _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ) elif isinstance(image[0] ,torch.Tensor ): _lowerCAmelCase : List[Any] = torch.cat(_lowerCamelCase ,dim=0 ) return image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ,_lowerCamelCase : Any=0.99_95 ) -> List[str]: if not isinstance(_lowerCamelCase ,np.ndarray ): _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Dict = va.device _lowerCAmelCase : Optional[Any] = va.cpu().numpy() _lowerCAmelCase : Optional[int] = va.cpu().numpy() _lowerCAmelCase : Tuple = np.sum(va * va / (np.linalg.norm(_lowerCamelCase ) * np.linalg.norm(_lowerCamelCase )) ) if np.abs(_lowerCamelCase ) > DOT_THRESHOLD: _lowerCAmelCase : List[Any] = (1 - t) * va + t * va else: _lowerCAmelCase : Tuple = np.arccos(_lowerCamelCase ) _lowerCAmelCase : int = np.sin(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = theta_a * t _lowerCAmelCase : int = np.sin(_lowerCamelCase ) _lowerCAmelCase : Tuple = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase : str = sin_theta_t / sin_theta_a _lowerCAmelCase : str = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase : str = torch.from_numpy(_lowerCamelCase ).to(_lowerCamelCase ) return va def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Optional[Any] ) -> Union[str, Any]: _lowerCAmelCase : Union[str, Any] = F.normalize(_lowerCamelCase ,dim=-1 ) _lowerCAmelCase : List[str] = F.normalize(_lowerCamelCase ,dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Optional[int] ) -> Dict: for param in model.parameters(): _lowerCAmelCase : Optional[Any] = value class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__=None , a__=None , a__=None , ): super().__init__() self.register_modules( vae=a__ , text_encoder=a__ , clip_model=a__ , tokenizer=a__ , unet=a__ , scheduler=a__ , feature_extractor=a__ , coca_model=a__ , coca_tokenizer=a__ , coca_transform=a__ , ) _lowerCAmelCase : Dict = ( feature_extractor.size if isinstance(feature_extractor.size , a__ ) else feature_extractor.size["""shortest_edge"""] ) _lowerCAmelCase : Optional[int] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , a__ ) set_requires_grad(self.clip_model , a__ ) def __A ( self , a__ = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a__ ) def __A ( self ): self.enable_attention_slicing(a__ ) def __A ( self ): set_requires_grad(self.vae , a__ ) def __A ( self ): set_requires_grad(self.vae , a__ ) def __A ( self ): set_requires_grad(self.unet , a__ ) def __A ( self ): set_requires_grad(self.unet , a__ ) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : List[str] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , torch.Tensor ): raise ValueError(F"`image` has to be of type `torch.Tensor` but is {type(a__ )}" ) _lowerCAmelCase : Any = image.to(device=a__ , dtype=a__ ) if isinstance(a__ , a__ ): _lowerCAmelCase : List[str] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : List[str] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : int = self.vae.encode(a__ ).latent_dist.sample(a__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase : List[str] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase : Optional[int] = init_latents.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Union[str, Any] = randn_tensor(init_latents.shape , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[int] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__ ): _lowerCAmelCase : List[str] = self.coca_transform(a__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase : str = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase : Optional[Any] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def __A ( self , a__ , a__ ): _lowerCAmelCase : str = self.feature_extractor.preprocess(a__ ) _lowerCAmelCase : str = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase : Tuple = self.clip_model.get_image_features(a__ ) _lowerCAmelCase : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a__ ) _lowerCAmelCase : Optional[int] = image_embeddings_clip.repeat_interleave(a__ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : str = latents.detach().requires_grad_() _lowerCAmelCase : List[str] = self.scheduler.scale_model_input(a__ , a__ ) # predict the noise residual _lowerCAmelCase : Any = self.unet(a__ , a__ , encoder_hidden_states=a__ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase : str = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase : str = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase : Optional[int] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase : Union[str, Any] = torch.sqrt(a__ ) _lowerCAmelCase : int = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , a__ ): _lowerCAmelCase : Optional[Any] = self.scheduler.sigmas[index] _lowerCAmelCase : Dict = latents - sigma * noise_pred else: raise ValueError(F"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase : Union[str, Any] = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase : int = self.vae.decode(a__ ).sample _lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase : Any = transforms.Resize(self.feature_extractor_size )(a__ ) _lowerCAmelCase : str = self.normalize(a__ ).to(latents.dtype ) _lowerCAmelCase : Union[str, Any] = self.clip_model.get_image_features(a__ ) _lowerCAmelCase : Optional[int] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a__ ) _lowerCAmelCase : Optional[Any] = spherical_dist_loss(a__ , a__ ).mean() * clip_guidance_scale _lowerCAmelCase : Union[str, Any] = -torch.autograd.grad(a__ , a__ )[0] if isinstance(self.scheduler , a__ ): _lowerCAmelCase : Any = latents.detach() + grads * (sigma**2) _lowerCAmelCase : Dict = noise_pred_original else: _lowerCAmelCase : Optional[int] = noise_pred_original - torch.sqrt(a__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , a__ , a__ , a__ = None , a__ = None , a__ = 512 , a__ = 512 , a__ = 0.6 , a__ = 50 , a__ = 7.5 , a__ = 1 , a__ = 0.0 , a__ = 100 , a__ = None , a__ = "pil" , a__ = True , a__ = 0.8 , a__ = 0.1 , a__ = 0.1 , ): if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError(F"You have passed {batch_size} batch_size, but only {len(a__ )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(a__ , torch.Generator ) and batch_size > 1: _lowerCAmelCase : Any = [generator] + [None] * (batch_size - 1) _lowerCAmelCase : Tuple = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] _lowerCAmelCase : Tuple = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase : Optional[int] = """, """.join(a__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(a__ ): raise ValueError( F"Content prompt is None and CoCa [{coca_is_none_str}] is None." F"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) _lowerCAmelCase : Optional[int] = self.get_image_description(a__ ) if style_prompt is None: if len(a__ ): raise ValueError( F"Style prompt is None and CoCa [{coca_is_none_str}] is None." F" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) _lowerCAmelCase : str = self.get_image_description(a__ ) # get prompt text embeddings for content and style _lowerCAmelCase : Any = self.tokenizer( a__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=a__ , return_tensors="""pt""" , ) _lowerCAmelCase : Optional[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase : Tuple = self.tokenizer( a__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=a__ , return_tensors="""pt""" , ) _lowerCAmelCase : str = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase : Optional[Any] = slerp(a__ , a__ , a__ ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase : Union[str, Any] = text_embeddings.repeat_interleave(a__ , dim=0 ) # set timesteps _lowerCAmelCase : Dict = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase : Any = {} if accepts_offset: _lowerCAmelCase : Any = 1 self.scheduler.set_timesteps(a__ , **a__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase : str = self.get_timesteps(a__ , a__ , self.device ) _lowerCAmelCase : str = timesteps[:1].repeat(a__ ) # Preprocess image _lowerCAmelCase : Optional[Any] = preprocess(a__ , a__ , a__ ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , text_embeddings.dtype , self.device , a__ ) _lowerCAmelCase : Tuple = preprocess(a__ , a__ , a__ ) _lowerCAmelCase : Any = self.prepare_latents( a__ , a__ , a__ , text_embeddings.dtype , self.device , a__ ) _lowerCAmelCase : Union[str, Any] = slerp(a__ , a__ , a__ ) if clip_guidance_scale > 0: _lowerCAmelCase : str = self.get_clip_image_embeddings(a__ , a__ ) _lowerCAmelCase : Optional[int] = self.get_clip_image_embeddings(a__ , a__ ) _lowerCAmelCase : Optional[Any] = slerp( a__ , a__ , a__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase : str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase : Tuple = content_text_input.input_ids.shape[-1] _lowerCAmelCase : Tuple = self.tokenizer([""""""] , padding="""max_length""" , max_length=a__ , return_tensors="""pt""" ) _lowerCAmelCase : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase : int = uncond_embeddings.repeat_interleave(a__ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase : Any = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase : int = torch.randn(a__ , generator=a__ , device="""cpu""" , dtype=a__ ).to( self.device ) else: _lowerCAmelCase : Dict = torch.randn(a__ , generator=a__ , device=self.device , dtype=a__ ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) _lowerCAmelCase : List[str] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase : Optional[int] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase : Optional[int] = {} if accepts_eta: _lowerCAmelCase : int = eta # check if the scheduler accepts generator _lowerCAmelCase : str = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase : Optional[int] = generator with self.progress_bar(total=a__ ): for i, t in enumerate(a__ ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : Optional[int] = self.scheduler.scale_model_input(a__ , a__ ) # predict the noise residual _lowerCAmelCase : Tuple = self.unet(a__ , a__ , encoder_hidden_states=a__ ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : int = noise_pred.chunk(2 ) _lowerCAmelCase : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase : Union[str, Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase : List[str] = self.cond_fn( a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase : int = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase : Dict = self.vae.decode(a__ ).sample _lowerCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase : str = self.numpy_to_pil(a__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=a__ , nsfw_content_detected=a__ )
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __A ( unittest.TestCase ): def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.0_2 , ): _lowerCAmelCase : Tuple = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : List[Any] = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : List[str] = is_training _lowerCAmelCase : Optional[Any] = use_labels _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Optional[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Any = num_patches + 1 def __A ( self ): _lowerCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Any = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , ) return config, pixel_values def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[Any] = FlaxViTModel(config=a__ ) _lowerCAmelCase : int = model(a__ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Tuple = (self.image_size, self.image_size) _lowerCAmelCase : int = (self.patch_size, self.patch_size) _lowerCAmelCase : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Any = self.type_sequence_label_size _lowerCAmelCase : Any = FlaxViTForImageClassification(config=a__ ) _lowerCAmelCase : Optional[int] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : int = FlaxViTForImageClassification(a__ ) _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Any = model(a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Tuple = config_and_inputs _lowerCAmelCase : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __A ( self ): _lowerCAmelCase : Dict = FlaxViTModelTester(self ) _lowerCAmelCase : Dict = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Dict = model_class(a__ ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase : List[str] = self._prepare_for_class(a__ , a__ ) _lowerCAmelCase : Optional[int] = model_class(a__ ) @jax.jit def model_jitted(a__ , **a__ ): return model(pixel_values=a__ , **a__ ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase : Any = model_jitted(**a__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase : Any = model_jitted(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) ) for jitted_output, output in zip(a__ , a__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __A ( self ): for model_class_name in self.all_model_classes: _lowerCAmelCase : str = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) _lowerCAmelCase : Optional[Any] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(a__ )
663
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
1
"""simple docstring""" from functools import lru_cache def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> set: _lowerCAmelCase : Tuple = 2 _lowerCAmelCase : str = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_lowerCamelCase ) if n > 1: factors.add(_lowerCamelCase ) return factors @lru_cache def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> int: return len(unique_prime_factors(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ) -> bool: return len(set(_lowerCamelCase ) ) in (0, 1) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> list: _lowerCAmelCase : Dict = 2 while True: # Increment each value of a generated range _lowerCAmelCase : Tuple = [base + i for i in range(_lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. _lowerCAmelCase : Tuple = [upf_len(_lowerCamelCase ) for x in group] checker.append(_lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(_lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 4 ) -> int: _lowerCAmelCase : str = run(_lowerCamelCase ) return results[0] if len(_lowerCamelCase ) else None if __name__ == "__main__": print(solution())
663
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ,_lowerCamelCase : list ,_lowerCamelCase : int ) -> int: if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _lowerCAmelCase : Union[str, Any] = [p / w for p, w in zip(_lowerCamelCase ,_lowerCamelCase )] # Creating a copy of the list and sorting profit/weight in ascending order _lowerCAmelCase : Union[str, Any] = sorted(_lowerCamelCase ) # declaring useful variables _lowerCAmelCase : Dict = len(_lowerCamelCase ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : str = 0 _lowerCAmelCase : Dict = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _lowerCAmelCase : List[Any] = sorted_profit_by_weight[length - i - 1] _lowerCAmelCase : Union[str, Any] = profit_by_weight.index(_lowerCamelCase ) _lowerCAmelCase : Dict = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) _a : List[Any] = [int(x) for x in input('Input profits separated by spaces: ').split()] _a : List[Any] = [int(x) for x in input('Input weights separated by spaces: ').split()] _a : str = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
663
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
1
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() _a : Optional[int] = logging.get_logger(__name__) _a : Union[str, Any] = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : str ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> Union[str, Any]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: _lowerCAmelCase : int = TOKENIZER_CLASSES else: _lowerCAmelCase : Any = {tokenizer_name: getattr(_lowerCamelCase ,tokenizer_name + """Fast""" )} logger.info(f"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: _lowerCAmelCase : List[str] = TOKENIZER_CLASSES[tokenizer_name] _lowerCAmelCase : Tuple = True if checkpoint_name is None: _lowerCAmelCase : int = list(tokenizer_class.max_model_input_sizes.keys() ) else: _lowerCAmelCase : Optional[Any] = [checkpoint_name] logger.info(f"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(f"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer _lowerCAmelCase : Tuple = tokenizer_class.from_pretrained(_lowerCamelCase ,force_download=_lowerCamelCase ) # Save fast tokenizer logger.info(f"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = checkpoint.split("""/""" ) _lowerCAmelCase : Optional[Any] = os.path.join(_lowerCamelCase ,_lowerCamelCase ) elif add_prefix: _lowerCAmelCase : Dict = checkpoint _lowerCAmelCase : Tuple = dump_path else: _lowerCAmelCase : str = None _lowerCAmelCase : int = dump_path logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _lowerCAmelCase : Dict = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _lowerCAmelCase : Tuple = file_path.split(_lowerCamelCase )[-1][0] if next_char == "/": _lowerCAmelCase : List[str] = os.path.join(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Tuple = None logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) _lowerCAmelCase : Optional[int] = tokenizer.save_pretrained( _lowerCamelCase ,legacy_format=_lowerCamelCase ,filename_prefix=_lowerCamelCase ) logger.info(f"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(_lowerCamelCase ) logger.info(f"=> removing {file_name}" ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) _a : Optional[Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
663
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
1
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __A : def __init__( self , a__ , a__=13 , a__=32 , a__=2 , a__=3 , a__=16 , a__=[1, 2, 1] , a__=[2, 2, 4] , a__=2 , a__=2.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=True , a__=0.0_2 , a__=1e-5 , a__=True , a__=None , a__=True , a__=10 , a__=8 , a__=["stage1", "stage2", "stage3"] , a__=[1, 2, 3] , ): _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : Any = image_size _lowerCAmelCase : Optional[int] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : List[str] = embed_dim _lowerCAmelCase : str = depths _lowerCAmelCase : Tuple = num_heads _lowerCAmelCase : Dict = window_size _lowerCAmelCase : Optional[Any] = mlp_ratio _lowerCAmelCase : Tuple = qkv_bias _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : Any = drop_path_rate _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : List[Any] = use_absolute_embeddings _lowerCAmelCase : Tuple = patch_norm _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : str = scope _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : List[str] = type_sequence_label_size _lowerCAmelCase : List[Any] = encoder_stride _lowerCAmelCase : Any = out_features _lowerCAmelCase : int = out_indices def __A ( self ): _lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : str = MaskFormerSwinModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Union[str, Any] = model(a__ ) _lowerCAmelCase : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = MaskFormerSwinBackbone(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(a__ ): _lowerCAmelCase : int = ["""stem"""] _lowerCAmelCase : Union[str, Any] = MaskFormerSwinBackbone(config=a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = config_and_inputs _lowerCAmelCase : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[str] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _UpperCamelCase : List[Any] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} _UpperCamelCase : Optional[int] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[str] = False _UpperCamelCase : Tuple = False _UpperCamelCase : Tuple = False def __A ( self ): _lowerCAmelCase : Union[str, Any] = MaskFormerSwinModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self , config_class=a__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def __A ( self ): pass def __A ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ): return def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def __A ( self ): pass @unittest.skip("""Swin does not support feedforward chunking""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : str = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(a__ ) _lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] _lowerCAmelCase : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def __A ( self ): pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def __A ( self ): pass def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Dict = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCAmelCase : Union[str, Any] = outputs.hidden_states _lowerCAmelCase : Any = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a__ ) , a__ ) # Swin has a different seq_length _lowerCAmelCase : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : int = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Tuple = 3 _lowerCAmelCase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Optional[Any] = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def __A ( self ): pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def __A ( self ): pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a__ ): _lowerCAmelCase : List[str] = 0 return t def check_equivalence(a__ , a__ , a__ , a__={} ): with torch.no_grad(): _lowerCAmelCase : Dict = model(**a__ , return_dict=a__ , **a__ ) _lowerCAmelCase : Dict = model(**a__ , return_dict=a__ , **a__ ).to_tuple() def recursive_check(a__ , a__ ): if isinstance(a__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a__ , a__ ): recursive_check(a__ , a__ ) elif isinstance(a__ , a__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a__ , a__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a__ ) , set_nan_tensor_to_zero(a__ ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(a__ ).any()} and `inf`: {torch.isinf(a__ )}. Dict has" F" `nan`: {torch.isnan(a__ ).any()} and `inf`: {torch.isinf(a__ )}." ) , ) recursive_check(a__ , a__ ) for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Any = self._prepare_for_class(a__ , a__ ) _lowerCAmelCase : Optional[Any] = self._prepare_for_class(a__ , a__ ) check_equivalence(a__ , a__ , a__ ) _lowerCAmelCase : List[Any] = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _lowerCAmelCase : Tuple = self._prepare_for_class(a__ , a__ , return_labels=a__ ) check_equivalence(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(a__ , a__ ) _lowerCAmelCase : Dict = self._prepare_for_class(a__ , a__ ) check_equivalence(a__ , a__ , a__ , {"""output_hidden_states""": True} ) _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _lowerCAmelCase : Any = self._prepare_for_class(a__ , a__ , return_labels=a__ ) check_equivalence(a__ , a__ , a__ , {"""output_hidden_states""": True} ) @require_torch class __A ( unittest.TestCase , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = (MaskFormerSwinBackbone,) if is_torch_available() else () _UpperCamelCase : Optional[Any] = MaskFormerSwinConfig def __A ( self ): _lowerCAmelCase : Tuple = MaskFormerSwinModelTester(self ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[Any] = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = backbone_class(a__ ) backbone.to(a__ ) backbone.eval() _lowerCAmelCase : Optional[Any] = backbone(**a__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _lowerCAmelCase : str = backbone(**a__ , output_hidden_states=a__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _lowerCAmelCase : Any = backbone(**a__ , output_attentions=a__ ) self.assertIsNotNone(outputs.attentions )
663
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
1
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __A : def __A ( self , a__ ): raise NotImplementedError() def __A ( self ): raise NotImplementedError() class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ = False , **a__ ): _lowerCAmelCase : int = tokenizer _lowerCAmelCase : List[Any] = skip_prompt _lowerCAmelCase : int = decode_kwargs # variables used in the streaming process _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = True def __A ( self , a__ ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: _lowerCAmelCase : Dict = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _lowerCAmelCase : List[Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _lowerCAmelCase : Union[str, Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): _lowerCAmelCase : int = text[self.print_len :] _lowerCAmelCase : List[str] = [] _lowerCAmelCase : List[Any] = 0 # If the last token is a CJK character, we print the characters. elif len(a__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _lowerCAmelCase : List[str] = text[self.print_len :] self.print_len += len(a__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _lowerCAmelCase : Optional[int] = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(a__ ) self.on_finalized_text(a__ ) def __A ( self ): # Flush the cache, if it exists if len(self.token_cache ) > 0: _lowerCAmelCase : Optional[Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _lowerCAmelCase : Union[str, Any] = text[self.print_len :] _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Tuple = 0 else: _lowerCAmelCase : Optional[Any] = """""" _lowerCAmelCase : Dict = True self.on_finalized_text(a__ , stream_end=a__ ) def __A ( self , a__ , a__ = False ): print(a__ , flush=a__ , end="""""" if not stream_end else None ) def __A ( self , a__ ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ = False , a__ = None , **a__ ): super().__init__(a__ , a__ , **a__ ) _lowerCAmelCase : List[Any] = Queue() _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Union[str, Any] = timeout def __A ( self , a__ , a__ = False ): self.text_queue.put(a__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): return self def __A ( self ): _lowerCAmelCase : List[str] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
663
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
1
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = "EncodecFeatureExtractor" _UpperCamelCase : Optional[int] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , a__ , a__ ): super().__init__(a__ , a__ ) _lowerCAmelCase : Optional[Any] = self.feature_extractor _lowerCAmelCase : Dict = False def __A ( self , a__=None , a__=None , a__=True ): return self.tokenizer.get_decoder_prompt_ids(task=a__ , language=a__ , no_timestamps=a__ ) def __call__( self , *a__ , **a__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a__ , **a__ ) _lowerCAmelCase : Any = kwargs.pop("""audio""" , a__ ) _lowerCAmelCase : Dict = kwargs.pop("""sampling_rate""" , a__ ) _lowerCAmelCase : List[Any] = kwargs.pop("""text""" , a__ ) if len(a__ ) > 0: _lowerCAmelCase : List[str] = args[0] _lowerCAmelCase : str = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: _lowerCAmelCase : Union[str, Any] = self.tokenizer(a__ , **a__ ) if audio is not None: _lowerCAmelCase : List[str] = self.feature_extractor(a__ , *a__ , sampling_rate=a__ , **a__ ) if audio is None: return inputs elif text is None: return audio_inputs else: _lowerCAmelCase : Optional[int] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: _lowerCAmelCase : Union[str, Any] = audio_inputs["""padding_mask"""] return inputs def __A ( self , *a__ , **a__ ): _lowerCAmelCase : Optional[int] = kwargs.pop("""audio""" , a__ ) _lowerCAmelCase : Dict = kwargs.pop("""padding_mask""" , a__ ) if len(a__ ) > 0: _lowerCAmelCase : Optional[int] = args[0] _lowerCAmelCase : str = args[1:] if audio_values is not None: return self._decode_audio(a__ , padding_mask=a__ ) else: return self.tokenizer.batch_decode(*a__ , **a__ ) def __A ( self , *a__ , **a__ ): return self.tokenizer.decode(*a__ , **a__ ) def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Optional[Any] = to_numpy(a__ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = audio_values.shape if padding_mask is None: return list(a__ ) _lowerCAmelCase : Any = to_numpy(a__ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _lowerCAmelCase : List[str] = seq_len - padding_mask.shape[-1] _lowerCAmelCase : Optional[int] = 1 - self.feature_extractor.padding_value _lowerCAmelCase : List[str] = np.pad(a__ , ((0, 0), (0, difference)) , """constant""" , constant_values=a__ ) _lowerCAmelCase : List[str] = audio_values.tolist() for i in range(a__ ): _lowerCAmelCase : Union[str, Any] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _lowerCAmelCase : Optional[int] = sliced_audio.reshape(a__ , -1 ) return audio_values
663
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _a : int = logging.get_logger(__name__) @dataclass class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **a__ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowerCAmelCase : Union[str, Any] = deprecated_arg[3:] _lowerCAmelCase : Optional[Any] = not kwargs.pop(a__ ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) _lowerCAmelCase : Dict = kwargs.pop("""tpu_name""" , self.tpu_name ) _lowerCAmelCase : Optional[Any] = kwargs.pop("""device_idx""" , self.device_idx ) _lowerCAmelCase : int = kwargs.pop("""eager_mode""" , self.eager_mode ) _lowerCAmelCase : List[str] = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**a__ ) _UpperCamelCase : str = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Name of TPU"} , ) _UpperCamelCase : int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) _UpperCamelCase : bool = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Benchmark models in eager model."} ) _UpperCamelCase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def __A ( self ): requires_backends(self , ["""tf"""] ) _lowerCAmelCase : int = None if self.tpu: try: if self.tpu_name: _lowerCAmelCase : int = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _lowerCAmelCase : int = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _lowerCAmelCase : List[Any] = None return tpu @cached_property def __A ( self ): requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _lowerCAmelCase : List[str] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) _lowerCAmelCase : Dict = tf.distribute.OneDeviceStrategy(device=F"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU _lowerCAmelCase : str = tf.distribute.OneDeviceStrategy(device=F"/cpu:{self.device_idx}" ) return strategy @property def __A ( self ): requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def __A ( self ): requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def __A ( self ): requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def __A ( self ): requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __A ( self ): return self.n_gpu > 0
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : list[list[int]] ) -> int: def update_area_of_max_square(_lowerCamelCase : int ,_lowerCamelCase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _lowerCAmelCase : List[str] = update_area_of_max_square(_lowerCamelCase ,col + 1 ) _lowerCAmelCase : Optional[int] = update_area_of_max_square(row + 1 ,col + 1 ) _lowerCAmelCase : Optional[int] = update_area_of_max_square(row + 1 ,_lowerCamelCase ) if mat[row][col]: _lowerCAmelCase : Dict = 1 + min([right, diagonal, down] ) _lowerCAmelCase : Optional[int] = max(largest_square_area[0] ,_lowerCamelCase ) return sub_problem_sol else: return 0 _lowerCAmelCase : int = [0] update_area_of_max_square(0 ,0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : list[list[int]] ) -> int: def update_area_of_max_square_using_dp_array( _lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _lowerCAmelCase : str = update_area_of_max_square_using_dp_array(_lowerCamelCase ,col + 1 ,_lowerCamelCase ) _lowerCAmelCase : List[Any] = update_area_of_max_square_using_dp_array(row + 1 ,col + 1 ,_lowerCamelCase ) _lowerCAmelCase : str = update_area_of_max_square_using_dp_array(row + 1 ,_lowerCamelCase ,_lowerCamelCase ) if mat[row][col]: _lowerCAmelCase : Any = 1 + min([right, diagonal, down] ) _lowerCAmelCase : Any = max(largest_square_area[0] ,_lowerCamelCase ) _lowerCAmelCase : str = sub_problem_sol return sub_problem_sol else: return 0 _lowerCAmelCase : Union[str, Any] = [0] _lowerCAmelCase : Tuple = [[-1] * cols for _ in range(_lowerCamelCase )] update_area_of_max_square_using_dp_array(0 ,0 ,_lowerCamelCase ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : list[list[int]] ) -> int: _lowerCAmelCase : int = [[0] * (cols + 1) for _ in range(rows + 1 )] _lowerCAmelCase : str = 0 for row in range(rows - 1 ,-1 ,-1 ): for col in range(cols - 1 ,-1 ,-1 ): _lowerCAmelCase : Tuple = dp_array[row][col + 1] _lowerCAmelCase : Optional[Any] = dp_array[row + 1][col + 1] _lowerCAmelCase : Dict = dp_array[row + 1][col] if mat[row][col] == 1: _lowerCAmelCase : Dict = 1 + min(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : int = max(dp_array[row][col] ,_lowerCamelCase ) else: _lowerCAmelCase : int = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : list[list[int]] ) -> int: _lowerCAmelCase : int = [0] * (cols + 1) _lowerCAmelCase : Optional[Any] = [0] * (cols + 1) _lowerCAmelCase : List[Any] = 0 for row in range(rows - 1 ,-1 ,-1 ): for col in range(cols - 1 ,-1 ,-1 ): _lowerCAmelCase : List[str] = current_row[col + 1] _lowerCAmelCase : Dict = next_row[col + 1] _lowerCAmelCase : List[str] = next_row[col] if mat[row][col] == 1: _lowerCAmelCase : Any = 1 + min(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[int] = max(current_row[col] ,_lowerCamelCase ) else: _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
663
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Union[str, Any] ) -> List[Any]: print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) ,end="""\t""" ) else: print("""INF""" ,end="""\t""" ) print() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Union[str, Any] ) -> str: _lowerCAmelCase : List[str] = [[float("""inf""" ) for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): _lowerCAmelCase : Any = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_lowerCamelCase ): # looping through rows of graph array for i in range(_lowerCamelCase ): # looping through columns of graph array for j in range(_lowerCamelCase ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): _lowerCAmelCase : List[str] = dist[i][k] + dist[k][j] _print_dist(_lowerCamelCase ,_lowerCamelCase ) return dist, v if __name__ == "__main__": _a : Optional[Any] = int(input('Enter number of vertices: ')) _a : Dict = int(input('Enter number of edges: ')) _a : Any = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): _a : int = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) _a : Optional[Any] = int(input('Enter source:')) _a : List[str] = int(input('Enter destination:')) _a : Tuple = float(input('Enter weight:')) _a : Tuple = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
663
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
1
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _a : Optional[int] = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } _a : List[Any] = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' _a : Optional[Any] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> dict[str, int]: _lowerCAmelCase : Optional[int] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def SCREAMING_SNAKE_CASE ( _lowerCamelCase : tuple ) -> str: return x[0] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> str: _lowerCAmelCase : Any = get_letter_count(_lowerCamelCase ) _lowerCAmelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_lowerCamelCase ) _lowerCAmelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find ,reverse=_lowerCamelCase ) _lowerCAmelCase : Dict = """""".join(freq_to_letter[freq] ) _lowerCAmelCase : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_lowerCamelCase ,reverse=_lowerCamelCase ) _lowerCAmelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> int: _lowerCAmelCase : Union[str, Any] = get_frequency_order(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
663
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.0_2 , a__=3 , a__=None , ): _lowerCAmelCase : int = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : Dict = is_training _lowerCAmelCase : List[str] = use_labels _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Union[str, Any] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Optional[int] = (image_size // patch_size) ** 2 _lowerCAmelCase : Tuple = num_patches + 1 def __A ( self ): _lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Union[str, Any] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def __A ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFViTModel(config=a__ ) _lowerCAmelCase : Optional[Any] = model(a__ , training=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _lowerCAmelCase : str = self.image_size // 2 _lowerCAmelCase : Optional[Any] = pixel_values[:, :, :image_size, :image_size] _lowerCAmelCase : List[str] = model(a__ , interpolate_pos_encoding=a__ , training=a__ ) _lowerCAmelCase : int = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : List[str] = TFViTForImageClassification(a__ ) _lowerCAmelCase : Any = model(a__ , labels=a__ , training=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _lowerCAmelCase : Any = self.image_size // 2 _lowerCAmelCase : int = pixel_values[:, :, :image_size, :image_size] _lowerCAmelCase : Dict = model(a__ , interpolate_pos_encoding=a__ , training=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Any = TFViTForImageClassification(a__ ) _lowerCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _UpperCamelCase : List[str] = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[Any] = False def __A ( self ): _lowerCAmelCase : List[str] = TFViTModelTester(self ) _lowerCAmelCase : Tuple = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __A ( self ): pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _lowerCAmelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , tf.keras.layers.Layer ) ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = model_class(a__ ) _lowerCAmelCase : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def __A ( self ): _lowerCAmelCase : Optional[int] = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE ( ) -> Dict: _lowerCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __A ( unittest.TestCase ): @cached_property def __A ( self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def __A ( self ): _lowerCAmelCase : Dict = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) _lowerCAmelCase : List[Any] = self.default_image_processor _lowerCAmelCase : Union[str, Any] = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=a__ , return_tensors="""tf""" ) # forward pass _lowerCAmelCase : Tuple = model(**a__ ) # verify the logits _lowerCAmelCase : int = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) _lowerCAmelCase : Optional[Any] = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , a__ , atol=1e-4 )
663
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
1
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
1
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __A ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=18 , a__=30 , a__=400 , a__=True , a__=None , a__=True , ): _lowerCAmelCase : List[Any] = size if size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : Union[str, Any] = min_resolution _lowerCAmelCase : str = max_resolution _lowerCAmelCase : Optional[Any] = do_resize _lowerCAmelCase : Tuple = size _lowerCAmelCase : Optional[Any] = do_normalize def __A ( self ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def __A ( self ): _lowerCAmelCase : Any = ImageGPTImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , """clusters""" ) ) self.assertTrue(hasattr(a__ , """do_resize""" ) ) self.assertTrue(hasattr(a__ , """size""" ) ) self.assertTrue(hasattr(a__ , """do_normalize""" ) ) def __A ( self ): _lowerCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __A ( self ): _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) _lowerCAmelCase : List[str] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(a__ , obj[key] ) ) else: self.assertEqual(obj[key] , a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Union[str, Any] = os.path.join(a__ , """image_processor.json""" ) image_processor_first.to_json_file(a__ ) _lowerCAmelCase : str = self.image_processing_class.from_json_file(a__ ).to_dict() _lowerCAmelCase : Tuple = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(a__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , a__ ) def __A ( self ): _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(a__ ) _lowerCAmelCase : str = self.image_processing_class.from_pretrained(a__ ).to_dict() _lowerCAmelCase : str = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(a__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , a__ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def __A ( self ): pass def SCREAMING_SNAKE_CASE ( ) -> Dict: _lowerCAmelCase : str = load_dataset("""hf-internal-testing/fixtures_image_utils""" ,split="""test""" ) _lowerCAmelCase : List[Any] = Image.open(dataset[4]["""file"""] ) _lowerCAmelCase : Tuple = Image.open(dataset[5]["""file"""] ) _lowerCAmelCase : List[str] = [imagea, imagea] return images @require_vision @require_torch class __A ( unittest.TestCase ): @slow def __A ( self ): _lowerCAmelCase : Union[str, Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _lowerCAmelCase : Dict = prepare_images() # test non-batched _lowerCAmelCase : Tuple = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) _lowerCAmelCase : Optional[int] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , a__ ) # test batched _lowerCAmelCase : List[Any] = image_processing(a__ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) _lowerCAmelCase : List[Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , a__ )
663
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Dict = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
1
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a : List[str] = 'src/diffusers' _a : int = '.' # This is to make sure the diffusers module imported is the one in the repo. _a : Tuple = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) _a : Dict = spec.loader.load_module() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : List[Any] ) -> Optional[Any]: return line.startswith(_lowerCamelCase ) or len(_lowerCamelCase ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" ,_lowerCamelCase ) is not None def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> List[str]: _lowerCAmelCase : Dict = object_name.split(""".""" ) _lowerCAmelCase : Union[str, Any] = 0 # First let's find the module where our object lives. _lowerCAmelCase : List[str] = parts[i] while i < len(_lowerCamelCase ) and not os.path.isfile(os.path.join(_lowerCamelCase ,f"{module}.py" ) ): i += 1 if i < len(_lowerCamelCase ): _lowerCAmelCase : Any = os.path.join(_lowerCamelCase ,parts[i] ) if i >= len(_lowerCamelCase ): raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(_lowerCamelCase ,f"{module}.py" ) ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _lowerCAmelCase : List[Any] = f.readlines() # Now let's find the class / func in the code! _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(_lowerCamelCase ) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)" ,lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_lowerCamelCase ): raise ValueError(f" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCAmelCase : Tuple = line_index while line_index < len(_lowerCamelCase ) and _should_continue(lines[line_index] ,_lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase : int = lines[start_index:line_index] return "".join(_lowerCamelCase ) _a : Dict = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') _a : str = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') _a : List[str] = re.compile(r'<FILL\s+[^>]*>') def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> Tuple: _lowerCAmelCase : int = code.split("""\n""" ) _lowerCAmelCase : List[str] = 0 while idx < len(_lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_lowerCamelCase ): return re.search(r"""^(\s*)\S""" ,lines[idx] ).groups()[0] return "" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: _lowerCAmelCase : str = len(get_indent(_lowerCamelCase ) ) > 0 if has_indent: _lowerCAmelCase : str = f"class Bla:\n{code}" _lowerCAmelCase : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ,preview=_lowerCamelCase ) _lowerCAmelCase : List[str] = black.format_str(_lowerCamelCase ,mode=_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Tuple = style_docstrings_in_code(_lowerCamelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : str=False ) -> str: with open(_lowerCamelCase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _lowerCAmelCase : Any = f.readlines() _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = search.groups() _lowerCAmelCase : str = find_code_in_diffusers(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = get_indent(_lowerCamelCase ) _lowerCAmelCase : str = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCAmelCase : Tuple = theoretical_indent _lowerCAmelCase : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCAmelCase : List[str] = True while line_index < len(_lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(_lowerCamelCase ): break _lowerCAmelCase : Any = lines[line_index] _lowerCAmelCase : Tuple = _should_continue(_lowerCamelCase ,_lowerCamelCase ) and re.search(f"^{indent}# End copy" ,_lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase : Optional[int] = lines[start_index:line_index] _lowerCAmelCase : str = """""".join(_lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCAmelCase : Union[str, Any] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(_lowerCamelCase ) is None] _lowerCAmelCase : Optional[Any] = """\n""".join(_lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_lowerCamelCase ) > 0: _lowerCAmelCase : Optional[Any] = replace_pattern.replace("""with""" ,"""""" ).split(""",""" ) _lowerCAmelCase : Any = [_re_replace_pattern.search(_lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = pattern.groups() _lowerCAmelCase : Optional[Any] = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) if option.strip() == "all-casing": _lowerCAmelCase : List[Any] = re.sub(obja.lower() ,obja.lower() ,_lowerCamelCase ) _lowerCAmelCase : int = re.sub(obja.upper() ,obja.upper() ,_lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCAmelCase : Dict = blackify(lines[start_index - 1] + theoretical_code ) _lowerCAmelCase : Optional[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCAmelCase : Tuple = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCAmelCase : Optional[Any] = start_index + 1 if overwrite and len(_lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}." ) with open(_lowerCamelCase ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) return diffs def SCREAMING_SNAKE_CASE ( _lowerCamelCase : bool = False ) -> str: _lowerCAmelCase : Optional[Any] = glob.glob(os.path.join(_lowerCamelCase ,"""**/*.py""" ) ,recursive=_lowerCamelCase ) _lowerCAmelCase : str = [] for filename in all_files: _lowerCAmelCase : Union[str, Any] = is_copy_consistent(_lowerCamelCase ,_lowerCamelCase ) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(_lowerCamelCase ) > 0: _lowerCAmelCase : List[str] = """\n""".join(_lowerCamelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _a : int = parser.parse_args() check_copies(args.fix_and_overwrite)
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ,_lowerCamelCase : list ,_lowerCamelCase : int ) -> list: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) _lowerCAmelCase : Dict = [[0] * n for i in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = y_points[i] for i in range(2 ,_lowerCamelCase ): for j in range(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : List[Any] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
663
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) _UpperCamelCase : ClassVar[Features] = Features({"audio": Audio()} ) _UpperCamelCase : ClassVar[Features] = Features({"transcription": Value("string" )} ) _UpperCamelCase : str = "audio" _UpperCamelCase : str = "transcription" def __A ( self , a__ ): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column] , a__ ): raise ValueError(F"Column {self.audio_column} is not an Audio type." ) _lowerCAmelCase : Any = copy.deepcopy(self ) _lowerCAmelCase : List[Any] = self.input_schema.copy() _lowerCAmelCase : Tuple = features[self.audio_column] _lowerCAmelCase : Optional[Any] = input_schema return task_template @property def __A ( self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
663
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : List[str] ,_lowerCamelCase : Dict ,_lowerCamelCase : Tuple ) -> Tuple: # Return True if there is node that has not iterated. _lowerCAmelCase : Dict = [False] * len(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [] queue.append(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = True while queue: _lowerCAmelCase : List[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCAmelCase : Any = True _lowerCAmelCase : Any = u return visited[t] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : List[Any] ) -> Dict: # This array is filled by BFS and to store path _lowerCAmelCase : Any = [-1] * (len(_lowerCamelCase )) _lowerCAmelCase : List[str] = 0 while bfs(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = float("""Inf""" ) _lowerCAmelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path _lowerCAmelCase : List[str] = min(_lowerCamelCase ,graph[parent[s]][s] ) _lowerCAmelCase : Any = parent[s] max_flow += path_flow _lowerCAmelCase : Union[str, Any] = sink while v != source: _lowerCAmelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCAmelCase : Optional[int] = parent[v] return max_flow _a : Any = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a : str = 0, 5 print(ford_fulkerson(graph, source, sink))
663
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Union[str, Any] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _lowerCAmelCase : List[Any] = 6 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Optional[int] = 1901 _lowerCAmelCase : Optional[Any] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : Dict = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _lowerCAmelCase : List[Any] = day - 29 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : Tuple = day - days_per_month[month - 2] if month > 12: year += 1 _lowerCAmelCase : str = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
663
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
1
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __A ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=18 , a__=30 , a__=400 , a__=True , a__=None , a__=True , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , a__=False , ): _lowerCAmelCase : int = size if size is not None else {"""height""": 20, """width""": 20} _lowerCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase : Tuple = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : str = num_channels _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : Dict = min_resolution _lowerCAmelCase : Any = max_resolution _lowerCAmelCase : Any = do_resize _lowerCAmelCase : Dict = size _lowerCAmelCase : Optional[Any] = do_center_crop _lowerCAmelCase : int = crop_size _lowerCAmelCase : Dict = do_normalize _lowerCAmelCase : int = image_mean _lowerCAmelCase : List[str] = image_std _lowerCAmelCase : Optional[int] = do_reduce_labels def __A ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def SCREAMING_SNAKE_CASE ( ) -> List[str]: _lowerCAmelCase : Optional[Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""" ,split="""test""" ) _lowerCAmelCase : List[str] = Image.open(dataset[0]["""file"""] ) _lowerCAmelCase : List[Any] = Image.open(dataset[1]["""file"""] ) return image, map def SCREAMING_SNAKE_CASE ( ) -> int: _lowerCAmelCase : Dict = load_dataset("""hf-internal-testing/fixtures_ade20k""" ,split="""test""" ) _lowerCAmelCase : Union[str, Any] = Image.open(ds[0]["""file"""] ) _lowerCAmelCase : int = Image.open(ds[1]["""file"""] ) _lowerCAmelCase : int = Image.open(ds[2]["""file"""] ) _lowerCAmelCase : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[str] = BeitImageProcessor if is_vision_available() else None def __A ( self ): _lowerCAmelCase : Union[str, Any] = BeitImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , """do_resize""" ) ) self.assertTrue(hasattr(a__ , """size""" ) ) self.assertTrue(hasattr(a__ , """do_center_crop""" ) ) self.assertTrue(hasattr(a__ , """center_crop""" ) ) self.assertTrue(hasattr(a__ , """do_normalize""" ) ) self.assertTrue(hasattr(a__ , """image_mean""" ) ) self.assertTrue(hasattr(a__ , """image_std""" ) ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , a__ ) _lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=a__ ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , a__ ) def __A ( self ): pass def __A ( self ): # Initialize image_processing _lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _lowerCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : Union[str, Any] = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input _lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input _lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) _lowerCAmelCase : Optional[int] = [] for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(a__ , a__ , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) _lowerCAmelCase , _lowerCAmelCase : Dict = prepare_semantic_single_inputs() _lowerCAmelCase : Tuple = image_processing(a__ , a__ , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) _lowerCAmelCase , _lowerCAmelCase : Dict = prepare_semantic_batch_inputs() _lowerCAmelCase : List[Any] = image_processing(a__ , a__ , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _lowerCAmelCase , _lowerCAmelCase : int = prepare_semantic_single_inputs() _lowerCAmelCase : Tuple = image_processing(a__ , a__ , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : Any = image_processing(a__ , a__ , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" from math import factorial, radians def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ,_lowerCamelCase : int = 18 ,_lowerCamelCase : int = 10 ) -> float: _lowerCAmelCase : str = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians _lowerCAmelCase : Dict = radians(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = angle_in_radians _lowerCAmelCase : Union[str, Any] = 3 _lowerCAmelCase : List[str] = -1 for _ in range(_lowerCamelCase ): result += (b * (angle_in_radians**a)) / factorial(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_lowerCamelCase ,_lowerCamelCase ) if __name__ == "__main__": __import__('doctest').testmod()
663
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
1
"""simple docstring""" from __future__ import annotations from typing import Any class __A : def __init__( self , a__ = 6 ): _lowerCAmelCase : Node | None = None _lowerCAmelCase : Node | None = None self.create_linked_list(a__ ) def __A ( self , a__ ): _lowerCAmelCase : List[Any] = Node() _lowerCAmelCase : Any = current_node _lowerCAmelCase : Optional[Any] = current_node _lowerCAmelCase : Any = current_node for _ in range(1 , a__ ): _lowerCAmelCase : Dict = Node() _lowerCAmelCase : Union[str, Any] = current_node _lowerCAmelCase : Optional[Any] = previous_node _lowerCAmelCase : Optional[Any] = current_node _lowerCAmelCase : List[str] = self.front _lowerCAmelCase : Dict = previous_node def __A ( self ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __A ( self ): self.check_can_perform_operation() return self.front.data if self.front else None def __A ( self , a__ ): if self.rear is None: return self.check_is_full() if not self.is_empty(): _lowerCAmelCase : Dict = self.rear.next if self.rear: _lowerCAmelCase : int = data def __A ( self ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: _lowerCAmelCase : Tuple = self.front.data _lowerCAmelCase : Tuple = None return data _lowerCAmelCase : Optional[int] = self.front _lowerCAmelCase : List[Any] = old_front.next _lowerCAmelCase : int = old_front.data _lowerCAmelCase : Dict = None return data def __A ( self ): if self.is_empty(): raise Exception("""Empty Queue""" ) def __A ( self ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __A : def __init__( self ): _lowerCAmelCase : Any | None = None _lowerCAmelCase : Node | None = None _lowerCAmelCase : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
663
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
1
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _a : Optional[int] = logging.get_logger('transformers.models.speecht5') _a : List[str] = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } _a : Optional[int] = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } _a : Tuple = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } _a : List[str] = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } _a : Dict = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } _a : Any = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } _a : Dict = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } _a : Any = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } _a : Tuple = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _a : Tuple = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _a : Tuple = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _a : Optional[Any] = [] _a : Any = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] _a : Optional[Any] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] _a : Union[str, Any] = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] _a : List[Any] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ,_lowerCamelCase : str ,_lowerCamelCase : List[Any] ) -> Optional[int]: for attribute in key.split(""".""" ): _lowerCAmelCase : Optional[Any] = getattr(_lowerCamelCase ,_lowerCamelCase ) if weight_type is not None: _lowerCAmelCase : str = getattr(_lowerCamelCase ,_lowerCamelCase ).shape else: _lowerCAmelCase : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : List[str] = value elif weight_type == "weight_g": _lowerCAmelCase : Optional[Any] = value elif weight_type == "weight_v": _lowerCAmelCase : Optional[Any] = value elif weight_type == "bias": _lowerCAmelCase : Tuple = value elif weight_type == "running_mean": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "running_var": _lowerCAmelCase : str = value elif weight_type == "num_batches_tracked": _lowerCAmelCase : Dict = value else: _lowerCAmelCase : List[Any] = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ) -> Dict: for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : int ,_lowerCamelCase : Union[str, Any] ) -> str: _lowerCAmelCase : str = [] if task == "s2t": _lowerCAmelCase : Tuple = hf_model.speechta.encoder.prenet.feature_encoder _lowerCAmelCase : str = MAPPING_S2T _lowerCAmelCase : Union[str, Any] = IGNORE_KEYS_S2T elif task == "t2s": _lowerCAmelCase : Tuple = None _lowerCAmelCase : Optional[int] = MAPPING_T2S _lowerCAmelCase : Dict = IGNORE_KEYS_T2S elif task == "s2s": _lowerCAmelCase : Dict = hf_model.speechta.encoder.prenet.feature_encoder _lowerCAmelCase : str = MAPPING_S2S _lowerCAmelCase : List[str] = IGNORE_KEYS_S2S else: raise ValueError(f"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCamelCase ,_lowerCamelCase ): logger.info(f"{name} was ignored" ) continue _lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,hf_model.config.feat_extract_norm == """group""" ,) _lowerCAmelCase : int = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: _lowerCAmelCase : List[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _lowerCAmelCase : List[str] = True if "*" in mapped_key: _lowerCAmelCase : Optional[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase : List[Any] = mapped_key.replace("""*""" ,_lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase : Tuple = """weight_g""" elif "weight_v" in name: _lowerCAmelCase : Optional[int] = """weight_v""" elif "bias" in name: _lowerCAmelCase : Dict = """bias""" elif "weight" in name: _lowerCAmelCase : Dict = """weight""" elif "running_mean" in name: _lowerCAmelCase : str = """running_mean""" elif "running_var" in name: _lowerCAmelCase : int = """running_var""" elif "num_batches_tracked" in name: _lowerCAmelCase : Optional[int] = """num_batches_tracked""" else: _lowerCAmelCase : Union[str, Any] = None set_recursively(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Any ) -> Optional[int]: _lowerCAmelCase : List[str] = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase : List[Any] = name.split(""".""" ) _lowerCAmelCase : str = int(items[0] ) _lowerCAmelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Any=None ,_lowerCamelCase : Optional[Any]=None ,_lowerCamelCase : Optional[int]=None ,) -> Union[str, Any]: if config_path is not None: _lowerCAmelCase : Dict = SpeechTaConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : Optional[Any] = SpeechTaConfig() if task == "s2t": _lowerCAmelCase : List[str] = config.max_text_positions _lowerCAmelCase : Tuple = SpeechTaForSpeechToText(_lowerCamelCase ) elif task == "t2s": _lowerCAmelCase : Union[str, Any] = 1876 _lowerCAmelCase : Tuple = 600 _lowerCAmelCase : Any = config.max_speech_positions _lowerCAmelCase : Optional[int] = SpeechTaForTextToSpeech(_lowerCamelCase ) elif task == "s2s": _lowerCAmelCase : int = 1876 _lowerCAmelCase : Optional[int] = config.max_speech_positions _lowerCAmelCase : Optional[int] = SpeechTaForSpeechToSpeech(_lowerCamelCase ) else: raise ValueError(f"Unknown task name: {task}" ) if vocab_path: _lowerCAmelCase : List[str] = SpeechTaTokenizer(_lowerCamelCase ,model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _lowerCAmelCase : int = AddedToken("""<mask>""" ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) _lowerCAmelCase : str = SpeechTaFeatureExtractor() _lowerCAmelCase : Optional[int] = SpeechTaProcessor(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = torch.load(_lowerCamelCase ) recursively_load_weights(fairseq_checkpoint["""model"""] ,_lowerCamelCase ,_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _a : Optional[int] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
663
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
1
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests _a : Union[str, Any] = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user _a : Optional[Any] = BASE_URL + '/user' # https://github.com/settings/tokens _a : List[Any] = os.environ.get('USER_TOKEN', '') def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> dict[Any, Any]: _lowerCAmelCase : Dict = { """Authorization""": f"token {auth_token}", """Accept""": """application/vnd.github.v3+json""", } return requests.get(_lowerCamelCase ,headers=_lowerCamelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
663
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
1