code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> float: def get_matched_characters(_lowerCamelCase : str ,_lowerCamelCase : str ) -> str: _lowerCAmelCase : Any = [] _lowerCAmelCase : List[Any] = min(len(_stra ) ,len(_stra ) ) // 2 for i, l in enumerate(_stra ): _lowerCAmelCase : Tuple = int(max(0 ,i - limit ) ) _lowerCAmelCase : Union[str, Any] = int(min(i + limit + 1 ,len(_stra ) ) ) if l in _stra[left:right]: matched.append(_lowerCamelCase ) _lowerCAmelCase : List[str] = f"{_stra[0:_stra.index(_lowerCamelCase )]} {_stra[_stra.index(_lowerCamelCase ) + 1:]}" return "".join(_lowerCamelCase ) # matching characters _lowerCAmelCase : Any = get_matched_characters(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[int] = get_matched_characters(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = len(_lowerCamelCase ) # transposition _lowerCAmelCase : Union[str, Any] = ( len([(ca, ca) for ca, ca in zip(_lowerCamelCase ,_lowerCamelCase ) if ca != ca] ) // 2 ) if not match_count: _lowerCAmelCase : int = 0.0 else: _lowerCAmelCase : Optional[Any] = ( 1 / 3 * ( match_count / len(_lowerCamelCase ) + match_count / len(_lowerCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _lowerCAmelCase : Dict = 0 for ca, ca in zip(stra[:4] ,stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
663
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> List[str]: _lowerCAmelCase : List[Any] = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: _lowerCAmelCase : List[Any] = 1024 _lowerCAmelCase : Tuple = 4096 _lowerCAmelCase : Optional[int] = 24 _lowerCAmelCase : Any = 16 _lowerCAmelCase : Any = [5, 11, 17, 23] _lowerCAmelCase : List[str] = [256, 512, 1024, 1024] _lowerCAmelCase : Dict = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _lowerCAmelCase : Tuple = 768 _lowerCAmelCase : List[str] = [1, 1, 1, 0.5] _lowerCAmelCase : int = [256, 512, 768, 768] _lowerCAmelCase : Optional[Any] = 150 _lowerCAmelCase : Optional[Any] = 16 _lowerCAmelCase : Dict = (1, 384, 384) _lowerCAmelCase : str = False _lowerCAmelCase : int = """project""" if "ade" in checkpoint_url: _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 768 _lowerCAmelCase : Dict = [1, 1, 1, 0.5] _lowerCAmelCase : Any = 150 _lowerCAmelCase : str = 16 _lowerCAmelCase : Dict = """huggingface/label-files""" _lowerCAmelCase : Optional[int] = """ade20k-id2label.json""" _lowerCAmelCase : Optional[Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase ,_lowerCamelCase ,repo_type="""dataset""" ) ) ,"""r""" ) ) _lowerCAmelCase : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : List[Any] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : List[Any] = [1, 150, 480, 480] return config, expected_shape def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Union[str, Any]: _lowerCAmelCase : Union[str, Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> Dict: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCAmelCase : List[Any] = name.replace("""pretrained.model""" ,"""dpt.encoder""" ) if "pretrained.model" in name: _lowerCAmelCase : int = name.replace("""pretrained.model""" ,"""dpt.embeddings""" ) if "patch_embed" in name: _lowerCAmelCase : str = name.replace("""patch_embed""" ,"""""" ) if "pos_embed" in name: _lowerCAmelCase : Optional[int] = name.replace("""pos_embed""" ,"""position_embeddings""" ) if "attn.proj" in name: _lowerCAmelCase : int = name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "proj" in name and "project" not in name: _lowerCAmelCase : int = name.replace("""proj""" ,"""projection""" ) if "blocks" in name: _lowerCAmelCase : str = name.replace("""blocks""" ,"""layer""" ) if "mlp.fc1" in name: _lowerCAmelCase : List[Any] = name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: _lowerCAmelCase : int = name.replace("""mlp.fc2""" ,"""output.dense""" ) if "norm1" in name and "backbone" not in name: _lowerCAmelCase : str = name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name and "backbone" not in name: _lowerCAmelCase : int = name.replace("""norm2""" ,"""layernorm_after""" ) if "scratch.output_conv" in name: _lowerCAmelCase : str = name.replace("""scratch.output_conv""" ,"""head""" ) if "scratch" in name: _lowerCAmelCase : List[str] = name.replace("""scratch""" ,"""neck""" ) if "layer1_rn" in name: _lowerCAmelCase : Dict = name.replace("""layer1_rn""" ,"""convs.0""" ) if "layer2_rn" in name: _lowerCAmelCase : List[Any] = name.replace("""layer2_rn""" ,"""convs.1""" ) if "layer3_rn" in name: _lowerCAmelCase : Optional[Any] = name.replace("""layer3_rn""" ,"""convs.2""" ) if "layer4_rn" in name: _lowerCAmelCase : List[str] = name.replace("""layer4_rn""" ,"""convs.3""" ) if "refinenet" in name: _lowerCAmelCase : Optional[Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCAmelCase : List[str] = name.replace(f"refinenet{layer_idx}" ,f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: _lowerCAmelCase : Optional[Any] = name.replace("""out_conv""" ,"""projection""" ) if "resConfUnit1" in name: _lowerCAmelCase : Optional[int] = name.replace("""resConfUnit1""" ,"""residual_layer1""" ) if "resConfUnit2" in name: _lowerCAmelCase : Optional[int] = name.replace("""resConfUnit2""" ,"""residual_layer2""" ) if "conv1" in name: _lowerCAmelCase : Optional[Any] = name.replace("""conv1""" ,"""convolution1""" ) if "conv2" in name: _lowerCAmelCase : Optional[Any] = name.replace("""conv2""" ,"""convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess1.0.project.0""" ,"""neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess2.0.project.0""" ,"""neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCAmelCase : List[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""" ,"""neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCAmelCase : int = name.replace("""pretrained.act_postprocess4.0.project.0""" ,"""neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCAmelCase : int = name.replace("""pretrained.act_postprocess1.3""" ,"""neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: _lowerCAmelCase : List[str] = name.replace("""pretrained.act_postprocess1.4""" ,"""neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: _lowerCAmelCase : List[str] = name.replace("""pretrained.act_postprocess2.3""" ,"""neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: _lowerCAmelCase : Union[str, Any] = name.replace("""pretrained.act_postprocess2.4""" ,"""neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: _lowerCAmelCase : Any = name.replace("""pretrained.act_postprocess3.3""" ,"""neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: _lowerCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess4.3""" ,"""neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: _lowerCAmelCase : Dict = name.replace("""pretrained.act_postprocess4.4""" ,"""neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: _lowerCAmelCase : List[Any] = name.replace("""pretrained""" ,"""dpt""" ) if "bn" in name: _lowerCAmelCase : Tuple = name.replace("""bn""" ,"""batch_norm""" ) if "head" in name: _lowerCAmelCase : Dict = name.replace("""head""" ,"""head.head""" ) if "encoder.norm" in name: _lowerCAmelCase : Union[str, Any] = name.replace("""encoder.norm""" ,"""layernorm""" ) if "auxlayer" in name: _lowerCAmelCase : Any = name.replace("""auxlayer""" ,"""auxiliary_head.head""" ) if "backbone" in name: _lowerCAmelCase : int = name.replace("""backbone""" ,"""backbone.bit.encoder""" ) if ".." in name: _lowerCAmelCase : Dict = name.replace("""..""" ,""".""" ) if "stem.conv" in name: _lowerCAmelCase : Any = name.replace("""stem.conv""" ,"""bit.embedder.convolution""" ) if "blocks" in name: _lowerCAmelCase : List[str] = name.replace("""blocks""" ,"""layers""" ) if "convolution" in name and "backbone" in name: _lowerCAmelCase : str = name.replace("""convolution""" ,"""conv""" ) if "layer" in name and "backbone" in name: _lowerCAmelCase : Any = name.replace("""layer""" ,"""layers""" ) if "backbone.bit.encoder.bit" in name: _lowerCAmelCase : str = name.replace("""backbone.bit.encoder.bit""" ,"""backbone.bit""" ) if "embedder.conv" in name: _lowerCAmelCase : List[str] = name.replace("""embedder.conv""" ,"""embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: _lowerCAmelCase : List[str] = name.replace("""backbone.bit.encoder.stem.norm""" ,"""backbone.bit.embedder.norm""" ) return name def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Optional[Any] ) -> List[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : str = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) _lowerCAmelCase : Optional[int] = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Any = in_proj_weight[: config.hidden_size, :] _lowerCAmelCase : int = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase ,stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Tuple ,_lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase , _lowerCAmelCase : Tuple = get_dpt_config(_lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _lowerCAmelCase : Optional[Any] = torch.load(_lowerCamelCase ,map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(_lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): _lowerCAmelCase : List[Any] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase ,_lowerCamelCase ) # load HuggingFace model _lowerCAmelCase : List[str] = DPTForSemanticSegmentation(_lowerCamelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # Check outputs on an image _lowerCAmelCase : Union[str, Any] = 480 if """ade""" in checkpoint_url else 384 _lowerCAmelCase : Optional[Any] = DPTImageProcessor(size=_lowerCamelCase ) _lowerCAmelCase : List[Any] = prepare_img() _lowerCAmelCase : Optional[Any] = image_processor(_lowerCamelCase ,return_tensors="""pt""" ) # forward pass _lowerCAmelCase : Optional[Any] = model(**_lowerCamelCase ).logits if """ade""" in checkpoint_url else model(**_lowerCamelCase ).predicted_depth if show_prediction: _lowerCAmelCase : Union[str, Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) ,size=(image.size[1], image.size[0]) ,mode="""bicubic""" ,align_corners=_lowerCamelCase ,) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) _a : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
663
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : int ) -> bool: if len(_lowerCamelCase ) == 0: return False _lowerCAmelCase : Tuple = len(_lowerCamelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] ,_lowerCamelCase ) else: return binary_search(a_list[midpoint + 1 :] ,_lowerCamelCase ) if __name__ == "__main__": _a : List[str] = input('Enter numbers separated by comma:\n').strip() _a : Any = [int(item.strip()) for item in user_input.split(',')] _a : Union[str, Any] = int(input('Enter the number to be found in the list:\n').strip()) _a : int = '' if binary_search(sequence, target) else 'not ' print(F"""{target} was {not_str}found in {sequence}""")
663
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
1
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _a : Tuple = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) _a : int = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE ( ) -> Any: _lowerCAmelCase : Tuple = """https://pypi.org/pypi/diffusers/json""" _lowerCAmelCase : Optional[Any] = json.loads(request.urlopen(_lowerCamelCase ).read() )["""releases"""].keys() return sorted(_lowerCamelCase ,key=lambda _lowerCamelCase : version.Version(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( ) -> Dict: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) _lowerCAmelCase : List[Any] = Path(_lowerCamelCase ) / """__init__.py""" if not init_path.exists(): init_path.touch() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, os.PathLike] ) -> Any: init_hf_modules() _lowerCAmelCase : List[str] = Path(_lowerCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) _lowerCAmelCase : str = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> int: with open(_lowerCamelCase ,"""r""" ,encoding="""utf-8""" ) as f: _lowerCAmelCase : List[Any] = f.read() # Imports of the form `import .xxx` _lowerCAmelCase : str = re.findall("""^\s*import\s+\.(\S+)\s*$""" ,_lowerCamelCase ,flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" ,_lowerCamelCase ,flags=re.MULTILINE ) # Unique-ify return list(set(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> Any: _lowerCAmelCase : List[str] = False _lowerCAmelCase : List[str] = [module_file] _lowerCAmelCase : List[str] = [] # Let's recurse through all relative imports while not no_change: _lowerCAmelCase : Tuple = [] for f in files_to_check: new_imports.extend(get_relative_imports(_lowerCamelCase ) ) _lowerCAmelCase : Optional[Any] = Path(_lowerCamelCase ).parent _lowerCAmelCase : Optional[int] = [str(module_path / m ) for m in new_imports] _lowerCAmelCase : Tuple = [f for f in new_import_files if f not in all_relative_imports] _lowerCAmelCase : Optional[int] = [f"{f}.py" for f in new_import_files] _lowerCAmelCase : Tuple = len(_lowerCamelCase ) == 0 all_relative_imports.extend(_lowerCamelCase ) return all_relative_imports def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> Optional[Any]: with open(_lowerCamelCase ,"""r""" ,encoding="""utf-8""" ) as f: _lowerCAmelCase : str = f.read() # Imports of the form `import xxx` _lowerCAmelCase : List[Any] = re.findall("""^\s*import\s+(\S+)\s*$""" ,_lowerCamelCase ,flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" ,_lowerCamelCase ,flags=re.MULTILINE ) # Only keep the top-level module _lowerCAmelCase : List[Any] = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all _lowerCAmelCase : Optional[int] = list(set(_lowerCamelCase ) ) _lowerCAmelCase : List[str] = [] for imp in imports: try: importlib.import_module(_lowerCamelCase ) except ImportError: missing_packages.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ f"{', '.join(_lowerCamelCase )}. Run `pip install {' '.join(_lowerCamelCase )}`" ) return get_relative_imports(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : List[str] ) -> int: _lowerCAmelCase : Any = module_path.replace(os.path.sep ,""".""" ) _lowerCAmelCase : List[Any] = importlib.import_module(_lowerCamelCase ) if class_name is None: return find_pipeline_class(_lowerCamelCase ) return getattr(_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> List[Any]: from ..pipelines import DiffusionPipeline _lowerCAmelCase : int = dict(inspect.getmembers(_lowerCamelCase ,inspect.isclass ) ) _lowerCAmelCase : Union[str, Any] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls ,_lowerCamelCase ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" f" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" f" {loaded_module}." ) _lowerCAmelCase : Union[str, Any] = cls return pipeline_class def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, os.PathLike] ,_lowerCamelCase : str ,_lowerCamelCase : Optional[Union[str, os.PathLike]] = None ,_lowerCamelCase : bool = False ,_lowerCamelCase : bool = False ,_lowerCamelCase : Optional[Dict[str, str]] = None ,_lowerCamelCase : Optional[Union[bool, str]] = None ,_lowerCamelCase : Optional[str] = None ,_lowerCamelCase : bool = False ,) -> Union[str, Any]: _lowerCAmelCase : int = str(_lowerCamelCase ) _lowerCAmelCase : List[Any] = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): _lowerCAmelCase : Dict = module_file_or_url _lowerCAmelCase : List[Any] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: _lowerCAmelCase : List[str] = get_diffusers_versions() # cut ".dev0" _lowerCAmelCase : Optional[int] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: _lowerCAmelCase : Any = latest_version if latest_version[1:] in available_versions else """main""" logger.info(f"Defaulting to latest_version: {revision}." ) elif revision in available_versions: _lowerCAmelCase : Dict = f"v{revision}" elif revision == "main": _lowerCAmelCase : Tuple = revision else: raise ValueError( f"`custom_revision`: {revision} does not exist. Please make sure to choose one of" f" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub _lowerCAmelCase : Union[str, Any] = COMMUNITY_PIPELINES_URL.format(revision=_lowerCamelCase ,pipeline=_lowerCamelCase ) try: _lowerCAmelCase : str = cached_download( _lowerCamelCase ,cache_dir=_lowerCamelCase ,force_download=_lowerCamelCase ,proxies=_lowerCamelCase ,resume_download=_lowerCamelCase ,local_files_only=_lowerCamelCase ,use_auth_token=_lowerCamelCase ,) _lowerCAmelCase : int = """git""" _lowerCAmelCase : Union[str, Any] = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached _lowerCAmelCase : int = hf_hub_download( _lowerCamelCase ,_lowerCamelCase ,cache_dir=_lowerCamelCase ,force_download=_lowerCamelCase ,proxies=_lowerCamelCase ,resume_download=_lowerCamelCase ,local_files_only=_lowerCamelCase ,use_auth_token=_lowerCamelCase ,) _lowerCAmelCase : Optional[int] = os.path.join("""local""" ,"""--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment _lowerCAmelCase : List[Any] = check_imports(_lowerCamelCase ) # Now we move the module inside our cached dynamic modules. _lowerCAmelCase : int = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_lowerCamelCase ) _lowerCAmelCase : int = Path(_lowerCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_lowerCamelCase ,submodule_path / module_file ) for module_needed in modules_needed: _lowerCAmelCase : Dict = f"{module_needed}.py" shutil.copy(os.path.join(_lowerCamelCase ,_lowerCamelCase ) ,submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : str = use_auth_token elif use_auth_token is True: _lowerCAmelCase : str = HfFolder.get_token() else: _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Tuple = model_info(_lowerCamelCase ,revision=_lowerCamelCase ,token=_lowerCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _lowerCAmelCase : Union[str, Any] = submodule_path / commit_hash _lowerCAmelCase : Any = full_submodule + os.path.sep + commit_hash create_dynamic_module(_lowerCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(_lowerCamelCase ,submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _lowerCamelCase ,f"{module_needed}.py" ,cache_dir=_lowerCamelCase ,force_download=_lowerCamelCase ,resume_download=_lowerCamelCase ,proxies=_lowerCamelCase ,use_auth_token=_lowerCamelCase ,revision=_lowerCamelCase ,local_files_only=_lowerCamelCase ,) return os.path.join(_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, os.PathLike] ,_lowerCamelCase : str ,_lowerCamelCase : Optional[str] = None ,_lowerCamelCase : Optional[Union[str, os.PathLike]] = None ,_lowerCamelCase : bool = False ,_lowerCamelCase : bool = False ,_lowerCamelCase : Optional[Dict[str, str]] = None ,_lowerCamelCase : Optional[Union[bool, str]] = None ,_lowerCamelCase : Optional[str] = None ,_lowerCamelCase : bool = False ,**_lowerCamelCase : List[str] ,) -> Dict: _lowerCAmelCase : Optional[int] = get_cached_module_file( _lowerCamelCase ,_lowerCamelCase ,cache_dir=_lowerCamelCase ,force_download=_lowerCamelCase ,resume_download=_lowerCamelCase ,proxies=_lowerCamelCase ,use_auth_token=_lowerCamelCase ,revision=_lowerCamelCase ,local_files_only=_lowerCamelCase ,) return get_class_in_module(_lowerCamelCase ,final_module.replace(""".py""" ,"""""" ) )
663
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
1
"""simple docstring""" from collections import defaultdict def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> bool: _lowerCAmelCase : List[Any] = first_str.lower().strip() _lowerCAmelCase : Union[str, Any] = second_str.lower().strip() # Remove whitespace _lowerCAmelCase : str = first_str.replace(""" """ ,"""""" ) _lowerCAmelCase : Any = second_str.replace(""" """ ,"""""" ) # Strings of different lengths are not anagrams if len(_lowerCamelCase ) != len(_lowerCamelCase ): return False # Default values for count should be 0 _lowerCAmelCase : defaultdict[str, int] = defaultdict(_lowerCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowerCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _a : Union[str, Any] = input('Enter the first string ').strip() _a : Union[str, Any] = input('Enter the second string ').strip() _a : List[str] = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
663
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
1
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: _a : str = None try: import msvcrt except ImportError: _a : List[str] = None try: import fcntl except ImportError: _a : int = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _a : int = OSError # Data # ------------------------------------------------ _a : Dict = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] _a : Union[str, Any] = '3.0.12' _a : Optional[int] = None def SCREAMING_SNAKE_CASE ( ) -> str: global _logger _lowerCAmelCase : Tuple = _logger or logging.getLogger(__name__ ) return _logger class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): _lowerCAmelCase : str = lock_file return None def __str__( self ): _lowerCAmelCase : List[str] = F"The file lock '{self.lock_file}' could not be acquired." return temp class __A : def __init__( self , a__ ): _lowerCAmelCase : List[str] = lock return None def __enter__( self ): return self.lock def __exit__( self , a__ , a__ , a__ ): self.lock.release() return None class __A : def __init__( self , a__ , a__=-1 , a__=None ): _lowerCAmelCase : Optional[Any] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long _lowerCAmelCase : Any = self.hash_filename_if_too_long(a__ , a__ ) # The path to the lock file. _lowerCAmelCase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _lowerCAmelCase : str = None # The default timeout value. _lowerCAmelCase : Tuple = timeout # We use this lock primarily for the lock counter. _lowerCAmelCase : List[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _lowerCAmelCase : Any = 0 return None @property def __A ( self ): return self._lock_file @property def __A ( self ): return self._timeout @timeout.setter def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = float(a__ ) return None def __A ( self ): raise NotImplementedError() def __A ( self ): raise NotImplementedError() @property def __A ( self ): return self._lock_file_fd is not None def __A ( self , a__=None , a__=0.0_5 ): # Use the default timeout, if no timeout is provided. if timeout is None: _lowerCAmelCase : Tuple = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _lowerCAmelCase : int = id(self ) _lowerCAmelCase : Optional[Any] = self._lock_file _lowerCAmelCase : Dict = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(a__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _lowerCAmelCase : str = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __A ( self , a__=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _lowerCAmelCase : List[str] = id(self ) _lowerCAmelCase : Dict = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() _lowerCAmelCase : Optional[int] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self ): self.acquire() return self def __exit__( self , a__ , a__ , a__ ): self.release() return None def __del__( self ): self.release(force=a__ ) return None def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[Any] = os.path.basename(a__ ) if len(a__ ) > max_length and max_length > 0: _lowerCAmelCase : Any = os.path.dirname(a__ ) _lowerCAmelCase : Dict = str(hash(a__ ) ) _lowerCAmelCase : Dict = filename[: max_length - len(a__ ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(a__ , a__ ) else: return path class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__=-1 , a__=None ): from .file_utils import relative_to_absolute_path super().__init__(a__ , timeout=a__ , max_filename_length=a__ ) _lowerCAmelCase : Union[str, Any] = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def __A ( self ): _lowerCAmelCase : Tuple = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _lowerCAmelCase : Union[str, Any] = os.open(self._lock_file , a__ ) except OSError: pass else: try: msvcrt.locking(a__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a__ ) else: _lowerCAmelCase : str = fd return None def __A ( self ): _lowerCAmelCase : Tuple = self._lock_file_fd _lowerCAmelCase : List[str] = None msvcrt.locking(a__ , msvcrt.LK_UNLCK , 1 ) os.close(a__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__=-1 , a__=None ): _lowerCAmelCase : Tuple = os.statvfs(os.path.dirname(a__ ) ).f_namemax super().__init__(a__ , timeout=a__ , max_filename_length=a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC _lowerCAmelCase : str = os.open(self._lock_file , a__ ) try: fcntl.flock(a__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a__ ) else: _lowerCAmelCase : Any = fd return None def __A ( self ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _lowerCAmelCase : Union[str, Any] = self._lock_file_fd _lowerCAmelCase : Dict = None fcntl.flock(a__ , fcntl.LOCK_UN ) os.close(a__ ) return None class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self ): _lowerCAmelCase : int = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _lowerCAmelCase : Any = os.open(self._lock_file , a__ ) except OSError: pass else: _lowerCAmelCase : Any = fd return None def __A ( self ): os.close(self._lock_file_fd ) _lowerCAmelCase : List[str] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _a : Optional[int] = None if msvcrt: _a : List[str] = WindowsFileLock elif fcntl: _a : Dict = UnixFileLock else: _a : int = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def SCREAMING_SNAKE_CASE ( ) -> int: _lowerCAmelCase : Optional[Any] = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" _lowerCAmelCase : List[Any] = Image.open(requests.get(_lowerCamelCase ,stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ) -> str: _lowerCAmelCase : int = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : List[Any] ) -> List[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : List[str] ) -> str: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : int = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias" ) _lowerCAmelCase : List[Any] = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _lowerCAmelCase : Any = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase ,requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : Optional[Any] = qkv_bias def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> List[str]: _lowerCAmelCase : int = 364 if """coco""" in model_name else 224 _lowerCAmelCase : int = InstructBlipVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xl""" ,dense_act_fn="""gelu""" ,bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : Optional[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" ,dense_act_fn="""gelu""" ,bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: _lowerCAmelCase : Dict = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" ,vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: _lowerCAmelCase : Tuple = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" ,vocab_size=32001 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 _lowerCAmelCase : List[Any] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() _lowerCAmelCase : Optional[Any] = InstructBlipConfig(vision_config=_lowerCamelCase ,text_config=_lowerCamelCase ,qformer_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : List[Any]=None ,_lowerCamelCase : Any=False ) -> Any: _lowerCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-uncased""" ,truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: _lowerCAmelCase : str = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" ,truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) _lowerCAmelCase : Any = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" ,truncation_side="""left""" ,bos_token="""</s>""" ,unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) _lowerCAmelCase , _lowerCAmelCase : Dict = get_blipa_config(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = InstructBlipForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : List[Any] = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Union[str, Any] = """cuda:1""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase : Optional[int] = """cuda:2""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = load_model_and_preprocess( name=_lowerCamelCase ,model_type=_lowerCamelCase ,is_eval=_lowerCamelCase ,device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[str] = original_model.state_dict() _lowerCAmelCase : Any = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : int = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : Tuple = key.replace("""Qformer.bert""" ,"""qformer""" ) if "attention.self" in key: _lowerCAmelCase : int = key.replace("""self""" ,"""attention""" ) if "llm_proj" in key: _lowerCAmelCase : Dict = key.replace("""llm_proj""" ,"""language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Dict = key.replace("""t5_proj""" ,"""language_projection""" ) if key.startswith("""llm_model""" ): _lowerCAmelCase : str = key.replace("""llm_model""" ,"""language_model""" ) if key.startswith("""t5""" ): _lowerCAmelCase : Optional[Any] = key.replace("""t5""" ,"""language""" ) _lowerCAmelCase : Dict = val # read in qv biases read_in_q_v_bias(_lowerCamelCase ,_lowerCamelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_lowerCamelCase ,strict=_lowerCamelCase ) _lowerCAmelCase : int = load_demo_image() _lowerCAmelCase : Dict = """What is unusual about this image?""" # create processor _lowerCAmelCase : int = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} ,image_mean=_lowerCamelCase ,image_std=_lowerCamelCase ) _lowerCAmelCase : List[str] = InstructBlipProcessor( image_processor=_lowerCamelCase ,tokenizer=_lowerCamelCase ,qformer_tokenizer=_lowerCamelCase ,) _lowerCAmelCase : Optional[Any] = processor(images=_lowerCamelCase ,text=_lowerCamelCase ,return_tensors="""pt""" ).to(_lowerCamelCase ) # make sure processor creates exact same pixel values _lowerCAmelCase : Any = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) ,_lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "vicuna" in model_name: _lowerCAmelCase : Dict = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits _lowerCAmelCase : str = hf_model(**_lowerCamelCase ).logits else: _lowerCAmelCase : Dict = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Union[str, Any] = tokenizer("""\n""" ,return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id ,-100 ) _lowerCAmelCase : str = hf_model(**_lowerCamelCase ,labels=_lowerCamelCase ).logits print("""First values of original logits:""" ,original_logits[0, :3, :3] ) print("""First values of HF logits:""" ,logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape _lowerCAmelCase : Optional[Any] = 1e-4 if """vicuna""" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) ,_lowerCamelCase ,atol=_lowerCamelCase ) print("""Looks ok!""" ) print("""Generating with original model...""" ) _lowerCAmelCase : str = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} ,num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) _lowerCAmelCase : int = hf_model.generate( **_lowerCamelCase ,do_sample=_lowerCamelCase ,num_beams=5 ,max_length=256 ,min_length=1 ,top_p=0.9 ,repetition_penalty=1.5 ,length_penalty=1.0 ,temperature=1 ,) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? _lowerCAmelCase : List[str] = 2 print("""Original generation:""" ,_lowerCamelCase ) _lowerCAmelCase : List[str] = processor.batch_decode(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [text.strip() for text in output_text] print("""HF generation:""" ,_lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f"Salesforce/{model_name}" ) hf_model.push_to_hub(f"Salesforce/{model_name}" ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() _a : str = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) _a : Any = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
663
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
1
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a : int = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any] = logging.get_logger(__name__) _a : int = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = "vivit" def __init__( self , a__=224 , a__=32 , a__=[2, 16, 16] , a__=3 , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu_fast" , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=1e-06 , a__=True , **a__ , ): _lowerCAmelCase : str = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : str = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : Union[str, Any] = num_frames _lowerCAmelCase : Optional[Any] = tubelet_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : int = qkv_bias super().__init__(**a__ )
663
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
1
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __A ( unittest.TestCase ): def __init__( self , a__ ): _lowerCAmelCase : int = parent def __A ( self ): return {} def SCREAMING_SNAKE_CASE ( ) -> List[Any]: _lowerCAmelCase : List[Any] = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" _lowerCAmelCase : str = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = MarkupLMFeatureExtractor if is_bsa_available() else None def __A ( self ): _lowerCAmelCase : Tuple = MarkupLMFeatureExtractionTester(self ) @property def __A ( self ): return self.feature_extract_tester.prepare_feat_extract_dict() def __A ( self ): # Initialize feature_extractor _lowerCAmelCase : List[Any] = self.feature_extraction_class() # Test not batched input _lowerCAmelCase : Union[str, Any] = get_html_strings()[0] _lowerCAmelCase : Any = feature_extractor(a__ ) # fmt: off _lowerCAmelCase : Tuple = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] _lowerCAmelCase : Optional[int] = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , a__ ) self.assertEqual(encoding.xpaths , a__ ) # Test batched _lowerCAmelCase : Optional[Any] = get_html_strings() _lowerCAmelCase : Any = feature_extractor(a__ ) # fmt: off _lowerCAmelCase : Union[str, Any] = expected_nodes + [["""My First Heading""", """My first paragraph."""]] _lowerCAmelCase : int = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , a__ ) self.assertEqual(encoding.xpaths , a__ )
663
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
1
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A ( unittest.TestCase ): @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.dummy_uncond_unet _lowerCAmelCase : List[str] = DDIMScheduler() _lowerCAmelCase : List[Any] = self.dummy_vq_model _lowerCAmelCase : Tuple = LDMPipeline(unet=a__ , vqvae=a__ , scheduler=a__ ) ldm.to(a__ ) ldm.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : int = torch.manual_seed(0 ) _lowerCAmelCase : str = ldm(generator=a__ , num_inference_steps=2 , output_type="""numpy""" ).images _lowerCAmelCase : List[Any] = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = ldm(generator=a__ , num_inference_steps=2 , output_type="""numpy""" , return_dict=a__ )[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : int = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) _lowerCAmelCase : Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : List[str] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(a__ ) ldm.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : int = ldm(generator=a__ , num_inference_steps=5 , output_type="""numpy""" ).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : List[Any] = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) _lowerCAmelCase : Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
663
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : List[str] = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva _a : Union[str, Any] = '' _a : Optional[Any] = '' _a : List[str] = '' _a : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def SCREAMING_SNAKE_CASE ( ) -> None: _lowerCAmelCase , _lowerCAmelCase : int = get_dataset(_lowerCamelCase ,_lowerCamelCase ) print("""Processing...""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = update_image_and_anno(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) for index, image in enumerate(_lowerCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase : Tuple = random_chars(32 ) _lowerCAmelCase : Union[str, Any] = paths[index].split(os.sep )[-1].rsplit(""".""" ,1 )[0] _lowerCAmelCase : List[str] = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(f"/{file_root}.jpg" ,_lowerCamelCase ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"Success {index+1}/{len(_lowerCamelCase )} with {file_name}" ) _lowerCAmelCase : Tuple = [] for anno in new_annos[index]: _lowerCAmelCase : str = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(_lowerCamelCase ) with open(f"/{file_root}.txt" ,"""w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> tuple[list, list]: _lowerCAmelCase : Dict = [] _lowerCAmelCase : Optional[Any] = [] for label_file in glob.glob(os.path.join(_lowerCamelCase ,"""*.txt""" ) ): _lowerCAmelCase : Optional[int] = label_file.split(os.sep )[-1].rsplit(""".""" ,1 )[0] with open(_lowerCamelCase ) as in_file: _lowerCAmelCase : Union[str, Any] = in_file.readlines() _lowerCAmelCase : str = os.path.join(_lowerCamelCase ,f"{label_name}.jpg" ) _lowerCAmelCase : Dict = [] for obj_list in obj_lists: _lowerCAmelCase : Dict = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ,_lowerCamelCase : list ,_lowerCamelCase : int = 1 ) -> tuple[list, list, list]: _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : str = [] _lowerCAmelCase : Tuple = [] for idx in range(len(_lowerCamelCase ) ): _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Dict = img_list[idx] path_list.append(_lowerCamelCase ) _lowerCAmelCase : Any = anno_list[idx] _lowerCAmelCase : Any = cva.imread(_lowerCamelCase ) if flip_type == 1: _lowerCAmelCase : List[Any] = cva.flip(_lowerCamelCase ,_lowerCamelCase ) for bbox in img_annos: _lowerCAmelCase : Union[str, Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase : str = cva.flip(_lowerCamelCase ,_lowerCamelCase ) for bbox in img_annos: _lowerCAmelCase : Optional[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowerCamelCase ) new_imgs_list.append(_lowerCamelCase ) return new_imgs_list, new_annos_lists, path_list def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase : Optional[int] = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
663
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
1
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore _a : Union[str, Any] = namedtuple('covid_data', 'cases deaths recovered') def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: _lowerCAmelCase : Dict = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(_lowerCamelCase ).content ).xpath(_lowerCamelCase ) ) _a : List[Any] = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
663
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
1
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _a : Optional[Any] = getLogger(__name__) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : str ,_lowerCamelCase : str ,_lowerCamelCase : int = 8 ,_lowerCamelCase : int = 1024 ,_lowerCamelCase : Optional[Any]="val" ,_lowerCamelCase : List[str]=None ,_lowerCamelCase : List[str]=False ,_lowerCamelCase : Tuple="summarization" ,_lowerCamelCase : Dict=None ,_lowerCamelCase : int=1 ,_lowerCamelCase : Dict = None ,_lowerCamelCase : str="" ,**_lowerCamelCase : Optional[Any] ,) -> Dict: _lowerCAmelCase : List[str] = str(_lowerCamelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" ,rank=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = Path(_lowerCamelCase ) _lowerCAmelCase : List[Any] = save_dir.joinpath(f"rank_{local_rank}_output.json" ) torch.cuda.set_device(_lowerCamelCase ) _lowerCAmelCase : str = AutoModelForSeqaSeqLM.from_pretrained(_lowerCamelCase ).cuda() if fpaa: _lowerCAmelCase : Tuple = model.half() # determine if we need to increase num_beams use_task_specific_params(_lowerCamelCase ,_lowerCamelCase ) # update config with task specific params _lowerCAmelCase : List[Any] = generate_kwargs.pop("""num_beams""" ,model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _lowerCAmelCase : Optional[int] = num_return_sequences _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(_lowerCamelCase ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: _lowerCAmelCase : List[str] = tokenizer.model_max_length if prefix is None: _lowerCAmelCase : Union[str, Any] = prefix or getattr(model.config ,"""prefix""" ,"""""" ) or """""" _lowerCAmelCase : Union[str, Any] = SeqaSeqDataset( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,max_target_length=1024 ,type_path=_lowerCamelCase ,n_obs=_lowerCamelCase ,prefix=_lowerCamelCase ,**_lowerCamelCase ,) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _lowerCAmelCase : List[str] = ds.make_sortish_sampler(_lowerCamelCase ,distributed=_lowerCamelCase ,add_extra_examples=_lowerCamelCase ,shuffle=_lowerCamelCase ) _lowerCAmelCase : Any = DataLoader(_lowerCamelCase ,sampler=_lowerCamelCase ,batch_size=_lowerCamelCase ,collate_fn=ds.collate_fn ) _lowerCAmelCase : int = [] for batch in tqdm(_lowerCamelCase ): _lowerCAmelCase : str = model.generate( input_ids=batch["""input_ids"""].to(model.device ) ,attention_mask=batch["""attention_mask"""].to(model.device ) ,num_return_sequences=_lowerCamelCase ,num_beams=_lowerCamelCase ,**_lowerCamelCase ,) _lowerCAmelCase : str = tokenizer.batch_decode(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ,clean_up_tokenization_spaces=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = batch["""ids"""] if num_return_sequences > 1: _lowerCAmelCase : List[Any] = chunks(_lowerCamelCase ,_lowerCamelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_lowerCamelCase ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(_lowerCamelCase ,_lowerCamelCase ) return results, sampler.num_replicas def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : List[Any] = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" ,type=_lowerCamelCase ,help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" ,type=_lowerCamelCase ,help="""like facebook/bart-large-cnn,t5-base, etc.""" ,default="""sshleifer/distilbart-xsum-12-3""" ,) parser.add_argument("""--save_dir""" ,type=_lowerCamelCase ,help="""where to save""" ,default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" ,type=_lowerCamelCase ,default=_lowerCamelCase ) parser.add_argument( """--type_path""" ,type=_lowerCamelCase ,default="""test""" ,help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" ,type=_lowerCamelCase ,default="""summarization""" ,help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" ,type=_lowerCamelCase ,default=8 ,required=_lowerCamelCase ,help="""batch size""" ) parser.add_argument( """--local_rank""" ,type=_lowerCamelCase ,default=-1 ,required=_lowerCamelCase ,help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" ,type=_lowerCamelCase ,default=_lowerCamelCase ,required=_lowerCamelCase ,help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" ,type=_lowerCamelCase ,default=1 ,required=_lowerCamelCase ,help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" ,type=_lowerCamelCase ,default=600 ,required=_lowerCamelCase ,help="""How long should master process wait for other processes to finish.""" ,) parser.add_argument("""--src_lang""" ,type=_lowerCamelCase ,default=_lowerCamelCase ,required=_lowerCamelCase ) parser.add_argument("""--tgt_lang""" ,type=_lowerCamelCase ,default=_lowerCamelCase ,required=_lowerCamelCase ) parser.add_argument( """--prefix""" ,type=_lowerCamelCase ,required=_lowerCamelCase ,default=_lowerCamelCase ,help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" ,action="""store_true""" ) parser.add_argument("""--debug""" ,action="""store_true""" ) _lowerCAmelCase : List[Any] = time.time() _lowerCAmelCase , _lowerCAmelCase : str = parser.parse_known_args() _lowerCAmelCase : Union[str, Any] = parse_numeric_n_bool_cl_kwargs(_lowerCamelCase ) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}" ) _lowerCAmelCase : str = Path(args.save_dir + """_tmp""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) # this handles locking. _lowerCAmelCase : Any = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _lowerCAmelCase : Union[str, Any] = {} if args.src_lang is not None: _lowerCAmelCase : Any = args.src_lang if args.tgt_lang is not None: _lowerCAmelCase : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = eval_data_dir( args.data_dir ,_lowerCamelCase ,args.model_name ,type_path=args.type_path ,bs=args.bs ,fpaa=args.fpaa ,task=args.task ,local_rank=args.local_rank ,n_obs=args.n_obs ,max_source_length=args.max_source_length ,num_return_sequences=args.num_return_sequences ,prefix=args.prefix ,dataset_kwargs=_lowerCamelCase ,**_lowerCamelCase ,) if args.local_rank <= 0: _lowerCAmelCase : Optional[int] = Path(args.save_dir ) save_dir.mkdir(exist_ok=_lowerCamelCase ) _lowerCAmelCase : List[str] = gather_results_from_each_node(_lowerCamelCase ,_lowerCamelCase ,args.sync_timeout ) _lowerCAmelCase : List[Any] = combine_partial_results(_lowerCamelCase ) if args.num_return_sequences > 1: _lowerCAmelCase : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" ) print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(_lowerCamelCase ,_lowerCamelCase ) return _lowerCAmelCase : Union[str, Any] = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(_lowerCamelCase ) as f: _lowerCAmelCase : List[Any] = [x.rstrip() for x in f.readlines()][: len(_lowerCamelCase )] # Calculate metrics, save metrics, and save _generations.txt _lowerCAmelCase : List[str] = """translation""" in args.task _lowerCAmelCase : List[Any] = calculate_bleu if calc_bleu else calculate_rouge _lowerCAmelCase : str = """bleu""" if calc_bleu else """rouge""" _lowerCAmelCase : Dict = score_fn(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Any = len(_lowerCamelCase ) _lowerCAmelCase : int = time.time() - start_time _lowerCAmelCase : Optional[Any] = round(runtime / metrics["""n_obs"""] ,4 ) _lowerCAmelCase : Any = num_replicas # TODO(@stas00): add whatever metadata to metrics _lowerCAmelCase : Union[str, Any] = save_dir.joinpath(f"{args.type_path}_{metric_name}.json" ) save_json(_lowerCamelCase ,_lowerCamelCase ,indent=_lowerCamelCase ) print(_lowerCamelCase ) write_txt_file(_lowerCamelCase ,save_dir.joinpath(f"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(_lowerCamelCase ,save_dir.joinpath(f"{args.type_path}.target" ) ) else: shutil.rmtree(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> List: _lowerCAmelCase : Union[str, Any] = [] for partial_result in partial_results: records.extend(_lowerCamelCase ) _lowerCAmelCase : Any = sorted(_lowerCamelCase ,key=lambda _lowerCamelCase : x["id"] ) _lowerCAmelCase : str = [x["""pred"""] for x in records] return preds def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : List[str] ,_lowerCamelCase : List[str] ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files _lowerCAmelCase : Optional[int] = time.time() logger.info("""waiting for all nodes to finish""" ) _lowerCAmelCase : str = None while (time.time() - start_wait) < timeout: _lowerCAmelCase : List[Any] = list(save_dir.glob("""rank_*.json""" ) ) if len(_lowerCamelCase ) < num_replicas: continue try: # make sure all json files are fully saved _lowerCAmelCase : Any = lmap(_lowerCamelCase ,_lowerCamelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
663
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
1
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
1
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : List[Any] ,_lowerCamelCase : List[str]=1024 ,_lowerCamelCase : Union[str, Any]=1024 ,_lowerCamelCase : str=False ,**_lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[Any] = SeqaSeqDataset(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,type_path="""train""" ,**_lowerCamelCase ) _lowerCAmelCase : List[Any] = tok.pad_token_id def get_lens(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Any = tqdm( DataLoader(_lowerCamelCase ,batch_size=512 ,num_workers=8 ,shuffle=_lowerCamelCase ,collate_fn=ds.collate_fn ) ,desc=str(ds.len_file ) ,) _lowerCAmelCase : Dict = [] for batch in dl: _lowerCAmelCase : List[str] = batch["""input_ids"""].ne(_lowerCamelCase ).sum(1 ).tolist() _lowerCAmelCase : Optional[Any] = batch["""labels"""].ne(_lowerCamelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_lowerCamelCase ,_lowerCamelCase ): max_lens.append(max(_lowerCamelCase ,_lowerCamelCase ) ) else: max_lens.extend(_lowerCamelCase ) return max_lens _lowerCAmelCase : Optional[Any] = get_lens(_lowerCamelCase ) _lowerCAmelCase : int = SeqaSeqDataset(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,type_path="""val""" ,**_lowerCamelCase ) _lowerCAmelCase : int = get_lens(_lowerCamelCase ) pickle_save(_lowerCamelCase ,train_ds.len_file ) pickle_save(_lowerCamelCase ,val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
663
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a : Dict = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = ['ConvNextFeatureExtractor'] _a : Any = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
663
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
1
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Any = BertTokenizer _UpperCamelCase : str = BertTokenizerFast _UpperCamelCase : List[Any] = True _UpperCamelCase : Optional[Any] = True _UpperCamelCase : Optional[Any] = filter_non_english def __A ( self ): super().setUp() _lowerCAmelCase : Tuple = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = """UNwant\u00E9d,running""" _lowerCAmelCase : Dict = """unwanted, running""" return input_text, output_text def __A ( self ): _lowerCAmelCase : Any = self.tokenizer_class(self.vocab_file ) _lowerCAmelCase : Optional[int] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(a__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [9, 6, 7, 12, 10, 11] ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Union[str, Any] = self.get_tokenizer() _lowerCAmelCase : List[str] = self.get_rust_tokenizer() _lowerCAmelCase : List[str] = """UNwant\u00E9d,running""" _lowerCAmelCase : Tuple = tokenizer.tokenize(a__ ) _lowerCAmelCase : Optional[int] = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokenizer.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : List[str] = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Any = self.get_rust_tokenizer() _lowerCAmelCase : List[Any] = tokenizer.encode(a__ ) _lowerCAmelCase : str = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # With lower casing _lowerCAmelCase : Optional[int] = self.get_tokenizer(do_lower_case=a__ ) _lowerCAmelCase : int = self.get_rust_tokenizer(do_lower_case=a__ ) _lowerCAmelCase : Tuple = """UNwant\u00E9d,running""" _lowerCAmelCase : Optional[Any] = tokenizer.tokenize(a__ ) _lowerCAmelCase : str = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Any = tokenizer.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Dict = self.get_rust_tokenizer() _lowerCAmelCase : List[Any] = tokenizer.encode(a__ ) _lowerCAmelCase : int = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __A ( self ): _lowerCAmelCase : int = BasicTokenizer(do_lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __A ( self ): _lowerCAmelCase : Any = BasicTokenizer(do_lower_case=a__ , strip_accents=a__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = BasicTokenizer(do_lower_case=a__ , strip_accents=a__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __A ( self ): _lowerCAmelCase : List[Any] = BasicTokenizer(do_lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __A ( self ): _lowerCAmelCase : str = BasicTokenizer(do_lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ): _lowerCAmelCase : Optional[Any] = BasicTokenizer(do_lower_case=a__ , strip_accents=a__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ): _lowerCAmelCase : Any = BasicTokenizer(do_lower_case=a__ , strip_accents=a__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ): _lowerCAmelCase : int = BasicTokenizer(do_lower_case=a__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __A ( self ): _lowerCAmelCase : List[Any] = BasicTokenizer() _lowerCAmelCase : int = """a\n'll !!to?'d of, can't.""" _lowerCAmelCase : Tuple = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(a__ ) , a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _lowerCAmelCase : Any = {} for i, token in enumerate(a__ ): _lowerCAmelCase : Dict = i _lowerCAmelCase : Optional[Any] = WordpieceTokenizer(vocab=a__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __A ( self ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __A ( self ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __A ( self ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __A ( self ): _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Tuple = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(a__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(a__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def __A ( self ): _lowerCAmelCase : str = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) _lowerCAmelCase : int = tokenizer.encode("""sequence builders""" , add_special_tokens=a__ ) _lowerCAmelCase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(a__ ) _lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __A ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) _lowerCAmelCase : Any = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _lowerCAmelCase : Dict = tokenizer_r.encode_plus( a__ , return_attention_mask=a__ , return_token_type_ids=a__ , return_offsets_mapping=a__ , add_special_tokens=a__ , ) _lowerCAmelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(a__ , """do_lower_case""" ) else False _lowerCAmelCase : int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __A ( self ): _lowerCAmelCase : int = ["""的""", """人""", """有"""] _lowerCAmelCase : Optional[Any] = """""".join(a__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(a__ , **a__ ) _lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) _lowerCAmelCase : Any = tokenizer_p.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : List[str] = tokenizer_r.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(a__ ) _lowerCAmelCase : List[str] = tokenizer_p.convert_ids_to_tokens(a__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : str = False _lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) _lowerCAmelCase : str = self.tokenizer_class.from_pretrained(a__ , **a__ ) _lowerCAmelCase : Tuple = tokenizer_r.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : Optional[Any] = tokenizer_p.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : str = tokenizer_r.convert_ids_to_tokens(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(a__ ) # it is expected that only the first Chinese character is not preceded by "##". _lowerCAmelCase : List[Any] = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(a__ ) ] self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , a__ )
663
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=128 , a__=32 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ): _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : Optional[int] = seq_length _lowerCAmelCase : Tuple = is_training _lowerCAmelCase : Dict = use_input_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : Dict = use_labels _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Any = num_labels _lowerCAmelCase : Union[str, Any] = num_choices _lowerCAmelCase : List[str] = scope def __A ( self ): _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_input_mask: _lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : List[Any] = None if self.use_token_type_ids: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Any = None _lowerCAmelCase : str = None _lowerCAmelCase : Union[str, Any] = None if self.use_labels: _lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def __A ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[Any] = self.prepare_config_and_inputs() _lowerCAmelCase : int = True _lowerCAmelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = NezhaModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = model(a__ , attention_mask=a__ , token_type_ids=a__ ) _lowerCAmelCase : Dict = model(a__ , token_type_ids=a__ ) _lowerCAmelCase : Union[str, Any] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : List[str] = True _lowerCAmelCase : int = NezhaModel(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Dict = model( a__ , attention_mask=a__ , token_type_ids=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) _lowerCAmelCase : List[Any] = model( a__ , attention_mask=a__ , token_type_ids=a__ , encoder_hidden_states=a__ , ) _lowerCAmelCase : List[str] = model(a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = NezhaForMaskedLM(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Any = NezhaForNextSentencePrediction(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = NezhaForPreTraining(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Union[str, Any] = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , next_sentence_label=a__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = NezhaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Union[str, Any] = model( a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : Tuple = NezhaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Dict = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : Any = NezhaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = self.num_choices _lowerCAmelCase : int = NezhaForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : str = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs _lowerCAmelCase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Tuple = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _UpperCamelCase : List[str] = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : Dict = True def __A ( self , a__ , a__ , a__=False ): _lowerCAmelCase : Optional[Any] = super()._prepare_for_class(a__ , a__ , return_labels=a__ ) if return_labels: if model_class in get_values(a__ ): _lowerCAmelCase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a__ ) _lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) return inputs_dict def __A ( self ): _lowerCAmelCase : Any = NezhaModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a__ ) def __A ( self ): # This regression test was failing with PyTorch < 1.3 ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCAmelCase : str = None self.model_tester.create_and_check_model_as_decoder( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a__ ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*a__ ) def __A ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) @slow def __A ( self ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Any = NezhaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @slow @require_torch_gpu def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _lowerCAmelCase : Dict = True _lowerCAmelCase : Tuple = model_class(config=a__ ) _lowerCAmelCase : Dict = self._prepare_for_class(a__ , a__ ) _lowerCAmelCase : int = torch.jit.trace( a__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a__ , os.path.join(a__ , """bert.pt""" ) ) _lowerCAmelCase : str = torch.jit.load(os.path.join(a__ , """bert.pt""" ) , map_location=a__ ) loaded(inputs_dict["""input_ids"""].to(a__ ) , inputs_dict["""attention_mask"""].to(a__ ) ) @require_torch class __A ( unittest.TestCase ): @slow def __A ( self ): _lowerCAmelCase : Dict = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) _lowerCAmelCase : Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(a__ , attention_mask=a__ )[0] _lowerCAmelCase : str = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , a__ ) _lowerCAmelCase : List[Any] = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a__ , atol=1e-4 ) ) @slow def __A ( self ): _lowerCAmelCase : Any = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) _lowerCAmelCase : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase : Union[str, Any] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(a__ , attention_mask=a__ )[0] _lowerCAmelCase : int = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , a__ ) _lowerCAmelCase : Any = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a__ , atol=1e-4 ) )
663
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _a : Union[str, Any] = logging.get_logger(__name__) _a : Tuple = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _a : Dict = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> List[str]: _lowerCAmelCase : Any = {} with open(_lowerCamelCase ,"""r""" ) as file: for line_number, line in enumerate(_lowerCamelCase ): _lowerCAmelCase : List[str] = line.strip() if line: _lowerCAmelCase : Dict = line.split() _lowerCAmelCase : List[str] = line_number _lowerCAmelCase : Tuple = words[0] _lowerCAmelCase : List[str] = value return result def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : Any ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Any ) -> Dict: for attribute in key.split(""".""" ): _lowerCAmelCase : Dict = getattr(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): _lowerCAmelCase : str = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase : str = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase : List[Any] = getattr(_lowerCamelCase ,_lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase : List[str] = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase : Any = getattr(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = shape_pointer.shape # let's reduce dimension _lowerCAmelCase : List[Any] = value[0] else: _lowerCAmelCase : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : int = value elif weight_type == "weight_g": _lowerCAmelCase : Dict = value elif weight_type == "weight_v": _lowerCAmelCase : int = value elif weight_type == "bias": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase : str = getattr(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = value else: _lowerCAmelCase : str = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Dict ,_lowerCamelCase : str ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : int ) -> Optional[int]: _lowerCAmelCase : str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): _lowerCAmelCase : List[Any] = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase : Union[str, Any] = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase : Tuple = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase : Union[str, Any] = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase : Optional[Any] = key _lowerCAmelCase : List[Any] = value if """lm_head""" in full_key else value[0] _a : Union[str, Any] = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Dict ,_lowerCamelCase : List[Any]=None ,_lowerCamelCase : Union[str, Any]=None ) -> Any: _lowerCAmelCase : Any = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase : Optional[int] = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase : Optional[int] = True if "*" in mapped_key: _lowerCAmelCase : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase : Dict = mapped_key.replace("""*""" ,_lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase : List[str] = """weight_g""" elif "weight_v" in name: _lowerCAmelCase : int = """weight_v""" elif "bias" in name: _lowerCAmelCase : Optional[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : List[str] = """weight""" else: _lowerCAmelCase : Optional[Any] = None if hf_dict is not None: rename_dict(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) else: set_recursively(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) return is_used return is_used def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Optional[int] ) -> Optional[Any]: _lowerCAmelCase : Any = [] _lowerCAmelCase : str = fairseq_model.state_dict() _lowerCAmelCase : Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,hf_model.config.feat_extract_norm == """group""" ,) _lowerCAmelCase : Union[str, Any] = True else: _lowerCAmelCase : Optional[int] = load_wavaveca_layer(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ,_lowerCamelCase : int ,_lowerCamelCase : Union[str, Any] ) -> Dict: _lowerCAmelCase : Optional[int] = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase : int = name.split(""".""" ) _lowerCAmelCase : List[Any] = int(items[0] ) _lowerCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Tuple = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _lowerCAmelCase : str = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : Dict ,_lowerCamelCase : str=None ,_lowerCamelCase : Union[str, Any]=None ,_lowerCamelCase : Optional[Any]=True ,_lowerCamelCase : List[Any]=False ) -> Union[str, Any]: if config_path is not None: _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: _lowerCAmelCase : str = read_txt_into_dict(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = idalabel _lowerCAmelCase : Optional[int] = WavaVecaForSequenceClassification(_lowerCamelCase ) _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=_lowerCamelCase ,return_attention_mask=_lowerCamelCase ,) feature_extractor.save_pretrained(_lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase : Tuple = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase : Optional[Any] = target_dict.pad_index _lowerCAmelCase : str = target_dict.bos_index _lowerCAmelCase : Dict = target_dict.eos_index _lowerCAmelCase : List[Any] = len(target_dict.symbols ) _lowerCAmelCase : Tuple = os.path.join(_lowerCamelCase ,"""vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) _lowerCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : List[str] = 1 with open(_lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=_lowerCamelCase ,) _lowerCAmelCase : List[str] = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase : Any = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=_lowerCamelCase ,return_attention_mask=_lowerCamelCase ,) _lowerCAmelCase : Dict = WavaVecaProcessor(feature_extractor=_lowerCamelCase ,tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCAmelCase : int = WavaVecaForCTC(_lowerCamelCase ) else: _lowerCAmelCase : str = WavaVecaForPreTraining(_lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase : Tuple = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=_lowerCamelCase ) _lowerCAmelCase : List[Any] = model[0].eval() recursively_load_weights(_lowerCamelCase ,_lowerCamelCase ,not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _a : Tuple = parser.parse_args() _a : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
663
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ) -> int: if not nums: return 0 _lowerCAmelCase : Union[str, Any] = nums[0] _lowerCAmelCase : Any = 0 for num in nums[1:]: _lowerCAmelCase , _lowerCAmelCase : List[Any] = ( max_excluding + num, max(_lowerCamelCase ,_lowerCamelCase ), ) return max(_lowerCamelCase ,_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
663
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
1
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __A ( unittest.TestCase ): def __A ( self ): # A mock response for an HTTP head request to emulate server down _lowerCAmelCase : str = mock.Mock() _lowerCAmelCase : Any = 500 _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : str = HTTPError _lowerCAmelCase : str = {} # Download this model to make sure it's in the cache. _lowerCAmelCase : int = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=a__ ) as mock_head: _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __A ( self ): # A mock response for an HTTP head request to emulate server down _lowerCAmelCase : Any = mock.Mock() _lowerCAmelCase : Any = 500 _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : List[Any] = HTTPError _lowerCAmelCase : List[str] = {} # Download this model to make sure it's in the cache. _lowerCAmelCase : List[str] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=a__ ) as mock_head: _lowerCAmelCase : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def __A ( self ): # This test is for deprecated behavior and can be removed in v5 try: _lowerCAmelCase : Tuple = tempfile.mktemp() with open(a__ , """wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , a__ ) _lowerCAmelCase : Optional[int] = AlbertTokenizer.from_pretrained(a__ ) finally: os.remove(a__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" , """wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , a__ ) _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def __A ( self ): # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase : Optional[int] = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class __A ( unittest.TestCase ): _UpperCamelCase : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __A ( cls ): _lowerCAmelCase : int = TOKEN HfFolder.save_token(a__ ) @classmethod def __A ( cls ): try: delete_repo(token=cls._token , repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def __A ( self ): with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Optional[Any] = os.path.join(a__ , """vocab.txt""" ) with open(a__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _lowerCAmelCase : Any = BertTokenizer(a__ ) tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token ) _lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(a__ , repo_id="""test-tokenizer""" , push_to_hub=a__ , use_auth_token=self._token ) _lowerCAmelCase : str = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __A ( self ): with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Dict = os.path.join(a__ , """vocab.txt""" ) with open(a__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _lowerCAmelCase : Optional[int] = BertTokenizer(a__ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token ) _lowerCAmelCase : List[str] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( a__ , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=a__ , use_auth_token=self._token ) _lowerCAmelCase : List[str] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __A ( self ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : str = os.path.join(a__ , """vocab.txt""" ) with open(a__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _lowerCAmelCase : Optional[int] = CustomTokenizer(a__ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" , trust_remote_code=a__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : int = os.path.join(a__ , """vocab.txt""" ) with open(a__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _lowerCAmelCase : List[Any] = BertTokenizerFast.from_pretrained(a__ ) bert_tokenizer.save_pretrained(a__ ) _lowerCAmelCase : Union[str, Any] = CustomTokenizerFast.from_pretrained(a__ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) _lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" , trust_remote_code=a__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" ) _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( F"{USER}/test-dynamic-tokenizer" , use_fast=a__ , trust_remote_code=a__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : List[Any] = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def __A ( self ): _lowerCAmelCase : Dict = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] ) def __A ( self ): _lowerCAmelCase : Optional[Any] = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] ) def __A ( self ): _lowerCAmelCase : int = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def __A ( self ): _lowerCAmelCase : int = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def __A ( self ): _lowerCAmelCase : List[Any] = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] ) def __A ( self ): _lowerCAmelCase : str = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] ) def __A ( self ): # Even if the offsets are wrong, we necessarily output correct string # parts. _lowerCAmelCase : Optional[int] = Trie() _lowerCAmelCase : Any = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(a__ , ["""AB""", """C"""] )
663
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
1
"""simple docstring""" import os def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(_lowerCamelCase ) ,_lowerCamelCase ) ) as input_file: _lowerCAmelCase : Dict = [ [int(_lowerCamelCase ) for element in line.split(""",""" )] for line in input_file.readlines() ] _lowerCAmelCase : str = len(_lowerCamelCase ) _lowerCAmelCase : Tuple = len(matrix[0] ) _lowerCAmelCase : Dict = [[-1 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): _lowerCAmelCase : List[Any] = matrix[i][0] for j in range(1 ,_lowerCamelCase ): for i in range(_lowerCamelCase ): _lowerCAmelCase : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 ,_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = min( minimal_path_sums[i][j] ,minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 ,-1 ,-1 ): _lowerCAmelCase : List[Any] = min( minimal_path_sums[i][j] ,minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
663
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
1
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Tuple = logging.get_logger(__name__) _a : str = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class __A ( _lowerCamelCase ): _UpperCamelCase : Optional[int] = "unispeech-sat" def __init__( self , a__=32 , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.1 , a__=0.1 , a__=0.0_2 , a__=1e-5 , a__="group" , a__="gelu" , a__=(512, 512, 512, 512, 512, 512, 512) , a__=(5, 2, 2, 2, 2, 2, 2) , a__=(10, 3, 3, 3, 3, 2, 2) , a__=False , a__=128 , a__=16 , a__=False , a__=True , a__=0.0_5 , a__=10 , a__=2 , a__=0.0 , a__=10 , a__=0 , a__=320 , a__=2 , a__=0.1 , a__=100 , a__=256 , a__=256 , a__=0.1 , a__="mean" , a__=False , a__=False , a__=256 , a__=(512, 512, 512, 512, 1500) , a__=(5, 3, 3, 1, 1) , a__=(1, 2, 3, 1, 1) , a__=512 , a__=0 , a__=1 , a__=2 , a__=504 , **a__ , ): super().__init__(**A__ , pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ ) _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : Tuple = feat_extract_norm _lowerCAmelCase : int = feat_extract_activation _lowerCAmelCase : List[Any] = list(A__ ) _lowerCAmelCase : List[str] = list(A__ ) _lowerCAmelCase : List[Any] = list(A__ ) _lowerCAmelCase : Any = conv_bias _lowerCAmelCase : str = num_conv_pos_embeddings _lowerCAmelCase : Any = num_conv_pos_embedding_groups _lowerCAmelCase : int = len(self.conv_dim ) _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Optional[Any] = hidden_dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : Union[str, Any] = activation_dropout _lowerCAmelCase : str = feat_proj_dropout _lowerCAmelCase : Any = final_dropout _lowerCAmelCase : int = layerdrop _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : List[Any] = num_clusters _lowerCAmelCase : str = do_stable_layer_norm _lowerCAmelCase : int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Any = apply_spec_augment _lowerCAmelCase : List[Any] = mask_time_prob _lowerCAmelCase : List[Any] = mask_time_length _lowerCAmelCase : List[Any] = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : Union[str, Any] = mask_feature_length _lowerCAmelCase : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : List[Any] = num_codevectors_per_group _lowerCAmelCase : Union[str, Any] = num_codevector_groups _lowerCAmelCase : Optional[Any] = contrastive_logits_temperature _lowerCAmelCase : str = feat_quantizer_dropout _lowerCAmelCase : Dict = num_negatives _lowerCAmelCase : Optional[int] = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Any = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[int] = ctc_loss_reduction _lowerCAmelCase : List[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : Any = list(A__ ) _lowerCAmelCase : Optional[int] = list(A__ ) _lowerCAmelCase : int = list(A__ ) _lowerCAmelCase : Union[str, Any] = xvector_output_dim @property def __A ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
700
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
0
"""simple docstring""" from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _a : Optional[int] = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Union[str, Any]=None ) -> Any: require_version(deps[pkg] ,__A )
701
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
0
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a : List[str] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __A : _UpperCamelCase : List[str] = PegasusConfig _UpperCamelCase : Dict = {} _UpperCamelCase : Optional[Any] = """gelu""" def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=False , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__=0.1 , a__=0.1 , a__=20 , a__=2 , a__=1 , a__=0 , ): _lowerCAmelCase : Dict = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : Optional[int] = seq_length _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Any = eos_token_id _lowerCAmelCase : str = pad_token_id _lowerCAmelCase : Union[str, Any] = bos_token_id def __A ( self ): _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _lowerCAmelCase : Tuple = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCAmelCase : Optional[int] = np.concatenate([input_ids, eos_tensor] , axis=1 ) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCAmelCase : Tuple = prepare_pegasus_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Any = 20 _lowerCAmelCase : int = model_class_name(UpperCAmelCase_ ) _lowerCAmelCase : Optional[int] = model.encode(inputs_dict["""input_ids"""] ) _lowerCAmelCase , _lowerCAmelCase : Any = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _lowerCAmelCase : List[str] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _lowerCAmelCase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCAmelCase : Any = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) _lowerCAmelCase : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _lowerCAmelCase : Tuple = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) _lowerCAmelCase : str = model.decode(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = 20 _lowerCAmelCase : List[str] = model_class_name(UpperCAmelCase_ ) _lowerCAmelCase : Optional[Any] = model.encode(inputs_dict["""input_ids"""] ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _lowerCAmelCase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowerCAmelCase : List[str] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) _lowerCAmelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _lowerCAmelCase : int = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) _lowerCAmelCase : Any = model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ ) _lowerCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : List[Any] ,_lowerCamelCase : int ,_lowerCamelCase : Union[str, Any]=None ,_lowerCamelCase : int=None ,) -> Dict: if attention_mask is None: _lowerCAmelCase : List[Any] = np.not_equal(_SCREAMING_SNAKE_CASE ,config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _lowerCAmelCase : Union[str, Any] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ), ] ,axis=-1 ,) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __A ( snake_case__ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _UpperCamelCase : Union[str, Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _UpperCamelCase : List[str] = True _UpperCamelCase : str = False _UpperCamelCase : Optional[int] = False _UpperCamelCase : List[str] = False def __A ( self ): _lowerCAmelCase : List[str] = FlaxPegasusModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self , config_class=UpperCAmelCase_ ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase : int = model_class(UpperCAmelCase_ ) @jax.jit def encode_jitted(a__ , a__=None , **a__ ): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase : Optional[int] = encode_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase : List[str] = encode_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase : List[str] = model_class(UpperCAmelCase_ ) _lowerCAmelCase : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _lowerCAmelCase : List[str] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(a__ , a__ , a__ ): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase : Dict = decode_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase : List[str] = decode_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __A ( self ): for model_class_name in self.all_model_classes: _lowerCAmelCase : List[str] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCAmelCase_ ) _lowerCAmelCase : List[Any] = np.ones((1, 1) ) _lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @slow def __A ( self ): _lowerCAmelCase : List[str] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) _lowerCAmelCase : Union[str, Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) _lowerCAmelCase : int = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] _lowerCAmelCase : List[str] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] _lowerCAmelCase : List[str] = tokenizer(UpperCAmelCase_ , return_tensors="""np""" , truncation=UpperCAmelCase_ , max_length=512 , padding=UpperCAmelCase_ ) _lowerCAmelCase : Union[str, Any] = model.generate(**UpperCAmelCase_ , num_beams=2 ).sequences _lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) assert tgt_text == decoded
702
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
0
"""simple docstring""" from typing import Any def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> list[Any]: if not input_list: return [] _lowerCAmelCase : Tuple = [input_list.count(_lowerCamelCase ) for value in input_list] _lowerCAmelCase : List[Any] = max(_lowerCamelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_lowerCamelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _a : List[str] = logging.get_logger(__name__) _a : Any = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = "dpt" def __init__( self , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=1e-12 , a__=384 , a__=16 , a__=3 , a__=False , a__=True , a__=[2, 5, 8, 11] , a__="project" , a__=[4, 2, 1, 0.5] , a__=[96, 192, 384, 768] , a__=256 , a__=-1 , a__=False , a__=True , a__=0.4 , a__=255 , a__=0.1 , a__=[1, 1024, 24, 24] , a__=[0, 1] , a__=None , **a__ , ): super().__init__(**UpperCamelCase_ ) _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Optional[int] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) _lowerCAmelCase : Optional[int] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } _lowerCAmelCase : List[str] = BitConfig(**UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) _lowerCAmelCase : List[Any] = BitConfig(**UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowerCAmelCase : Any = backbone_config else: raise ValueError( F"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) _lowerCAmelCase : Optional[int] = backbone_featmap_shape _lowerCAmelCase : str = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be \'project\' when using `DPT-hybrid` mode.""" ) else: _lowerCAmelCase : str = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : Any = [] _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : Union[str, Any] = qkv_bias _lowerCAmelCase : int = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of [\'ignore\', \'add\', \'project\']""" ) _lowerCAmelCase : Any = readout_type _lowerCAmelCase : str = reassemble_factors _lowerCAmelCase : Union[str, Any] = neck_hidden_sizes _lowerCAmelCase : Any = fusion_hidden_size _lowerCAmelCase : Optional[int] = head_in_index _lowerCAmelCase : str = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Optional[Any] = use_auxiliary_head _lowerCAmelCase : Any = auxiliary_loss_weight _lowerCAmelCase : Tuple = semantic_loss_ignore_index _lowerCAmelCase : Optional[int] = semantic_classifier_dropout def __A ( self ): _lowerCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowerCAmelCase : Optional[int] = self.backbone_config.to_dict() _lowerCAmelCase : Union[str, Any] = self.__class__.model_type return output
704
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
0
"""simple docstring""" import os def SCREAMING_SNAKE_CASE ( ) -> str: with open(os.path.dirname(_A ) + """/p022_names.txt""" ) as file: _lowerCAmelCase : List[Any] = str(file.readlines()[0] ) _lowerCAmelCase : List[Any] = names.replace("""\"""" ,"""""" ).split(""",""" ) names.sort() _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Dict = 0 for i, name in enumerate(_A ): for letter in name: name_score += ord(_A ) - 64 total_score += (i + 1) * name_score _lowerCAmelCase : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
705
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
0
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a : Any = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _a : Optional[int] = logging.get_logger(__name__) class __A ( __lowerCamelCase ): _UpperCamelCase : Optional[int] = "mask2former" _UpperCamelCase : Optional[Any] = ["swin"] _UpperCamelCase : Any = {"hidden_size": "hidden_dim"} def __init__( self , a__ = None , a__ = 256 , a__ = 256 , a__ = 256 , a__ = 1024 , a__ = "relu" , a__ = 6 , a__ = 10 , a__ = 8 , a__ = 0.0 , a__ = 2048 , a__ = False , a__ = False , a__ = 4 , a__ = 255 , a__ = 100 , a__ = 0.1 , a__ = 2.0 , a__ = 5.0 , a__ = 5.0 , a__ = 12544 , a__ = 3.0 , a__ = 0.7_5 , a__ = 0.0_2 , a__ = 1.0 , a__ = True , a__ = [4, 8, 16, 32] , a__ = None , **a__ , ): if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) _lowerCAmelCase : Tuple = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCAmelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCAmelCase : Optional[Any] = backbone_config.pop("""model_type""" ) _lowerCAmelCase : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Dict = config_class.from_dict(UpperCAmelCase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " F"Supported model types: {','.join(self.backbones_supported )}" ) _lowerCAmelCase : Optional[Any] = backbone_config _lowerCAmelCase : List[Any] = feature_size _lowerCAmelCase : Dict = mask_feature_size _lowerCAmelCase : Optional[Any] = hidden_dim _lowerCAmelCase : Any = encoder_feedforward_dim _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Tuple = encoder_layers _lowerCAmelCase : Optional[int] = decoder_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Optional[int] = dropout _lowerCAmelCase : Dict = dim_feedforward _lowerCAmelCase : List[str] = pre_norm _lowerCAmelCase : Dict = enforce_input_projection _lowerCAmelCase : Union[str, Any] = common_stride _lowerCAmelCase : Dict = ignore_value _lowerCAmelCase : List[Any] = num_queries _lowerCAmelCase : List[Any] = no_object_weight _lowerCAmelCase : Optional[int] = class_weight _lowerCAmelCase : Dict = mask_weight _lowerCAmelCase : Tuple = dice_weight _lowerCAmelCase : Any = train_num_points _lowerCAmelCase : str = oversample_ratio _lowerCAmelCase : Any = importance_sample_ratio _lowerCAmelCase : Union[str, Any] = init_std _lowerCAmelCase : str = init_xavier_std _lowerCAmelCase : List[Any] = use_auxiliary_loss _lowerCAmelCase : List[str] = feature_strides _lowerCAmelCase : str = output_auxiliary_logits _lowerCAmelCase : List[Any] = decoder_layers super().__init__(**UpperCAmelCase_ ) @classmethod def __A ( cls , a__ , **a__ ): return cls( backbone_config=UpperCAmelCase_ , **UpperCAmelCase_ , ) def __A ( self ): _lowerCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : Union[str, Any] = self.backbone_config.to_dict() _lowerCAmelCase : Any = self.__class__.model_type return output
706
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class __A ( UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = 'bert-generation' def __init__( self , a__=50358 , a__=1024 , a__=24 , a__=16 , a__=4096 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=0.0_2 , a__=1e-12 , a__=0 , a__=2 , a__=1 , a__="absolute" , a__=True , **a__ , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = max_position_embeddings _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : int = use_cache
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A ( __A ): _UpperCamelCase = "dandelin/vilt-b32-finetuned-vqa" _UpperCamelCase = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) _UpperCamelCase = "image_qa" _UpperCamelCase = AutoProcessor _UpperCamelCase = AutoModelForVisualQuestionAnswering _UpperCamelCase = ["image", "text"] _UpperCamelCase = ["text"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""vision"""] ) super().__init__(*a__ , **a__ ) def __A ( self , a__ , a__ ): return self.pre_processor(a__ , a__ , return_tensors="""pt""" ) def __A ( self , a__ ): with torch.no_grad(): return self.model(**a__ ).logits def __A ( self , a__ ): _lowerCAmelCase : str = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
708
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __A ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=18 , a__=30 , a__=400 , a__=True , a__=None , a__=True , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , ): _lowerCAmelCase : List[Any] = size if size is not None else {"""shortest_edge""": 18} _lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Union[str, Any] = batch_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Any = min_resolution _lowerCAmelCase : List[str] = max_resolution _lowerCAmelCase : List[Any] = do_resize _lowerCAmelCase : Tuple = size _lowerCAmelCase : Optional[Any] = do_center_crop _lowerCAmelCase : Dict = crop_size _lowerCAmelCase : Any = do_normalize _lowerCAmelCase : List[Any] = image_mean _lowerCAmelCase : Optional[int] = image_std def __A ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Tuple = LevitImageProcessor if is_vision_available() else None def __A ( self ): _lowerCAmelCase : int = LevitImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) def __A ( self ): _lowerCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __A ( self ): pass def __A ( self ): # Initialize image_processing _lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : str = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : Tuple = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
709
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
0
"""simple docstring""" from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
710
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
0
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__=0.0_1 , a__=1000 ): _lowerCAmelCase : Any = p_stop _lowerCAmelCase : Tuple = max_length def __iter__( self ): _lowerCAmelCase : int = 0 _lowerCAmelCase : str = False while not stop and count < self.max_length: yield count count += 1 _lowerCAmelCase : List[Any] = random.random() < self.p_stop class __A ( unittest.TestCase ): def __A ( self , a__ , a__ , a__=False , a__=True ): _lowerCAmelCase : Tuple = [ BatchSamplerShard(__A , 2 , __A , split_batches=__A , even_batches=__A ) for i in range(2 ) ] _lowerCAmelCase : Dict = [list(__A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__A ) for shard in batch_sampler_shards] , [len(__A ) for e in expected] ) self.assertListEqual(__A , __A ) def __A ( self ): # Check the shards when the dataset is a round multiple of total batch size. _lowerCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__A , __A ) _lowerCAmelCase : Any = BatchSampler(range(24 ) , batch_size=3 , drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A , __A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCAmelCase : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__A , __A ) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCAmelCase : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__A , __A ) _lowerCAmelCase : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCAmelCase : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__A , __A ) _lowerCAmelCase : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A ) # Check the shards when the dataset is very small. _lowerCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : List[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__A , __A ) _lowerCAmelCase : Tuple = BatchSampler(range(2 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(__A , __A ) def __A ( self ): # Check the shards when the dataset is a round multiple of batch size. _lowerCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) _lowerCAmelCase : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A , __A , split_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCAmelCase : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) _lowerCAmelCase : List[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) # Check the shards when the dataset is very small. _lowerCAmelCase : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : List[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) _lowerCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : int = [[], []] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) def __A ( self ): # Check the shards when the dataset is a round multiple of total batch size. _lowerCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) _lowerCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A , __A , even_batches=__A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCAmelCase : List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) _lowerCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) _lowerCAmelCase : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) _lowerCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) # Check the shards when the dataset is very small. _lowerCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) _lowerCAmelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__A ) _lowerCAmelCase : List[str] = [[], []] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) def __A ( self ): # Check the shards when the dataset is a round multiple of batch size. _lowerCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) _lowerCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCAmelCase : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) _lowerCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) # Check the shards when the dataset is very small. _lowerCAmelCase : int = BatchSampler(range(2 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) _lowerCAmelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : Union[str, Any] = [[], []] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) def __A ( self ): _lowerCAmelCase : str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _lowerCAmelCase : List[str] = [BatchSamplerShard(__A , 2 , __A , even_batches=__A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __A ( self , a__ , a__ , a__ , a__=False , a__=2 , a__=False ): random.seed(__A ) _lowerCAmelCase : str = list(__A ) _lowerCAmelCase : List[str] = [ IterableDatasetShard( __A , batch_size=__A , drop_last=__A , num_processes=__A , process_index=__A , split_batches=__A , ) for i in range(__A ) ] _lowerCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__A ) iterable_dataset_lists.append(list(__A ) ) _lowerCAmelCase : Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _lowerCAmelCase : Any = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__A ) , len(__A ) ) self.assertTrue(len(__A ) % shard_batch_size == 0 ) _lowerCAmelCase : Optional[int] = [] for idx in range(0 , len(__A ) , __A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__A ) < len(__A ): reference += reference self.assertListEqual(__A , reference[: len(__A )] ) def __A ( self ): _lowerCAmelCase : int = 42 _lowerCAmelCase : Optional[int] = RandomIterableDataset() self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) # Edge case with a very small dataset _lowerCAmelCase : Tuple = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) def __A ( self ): _lowerCAmelCase : List[Any] = BatchSampler(range(16 ) , batch_size=4 , drop_last=__A ) _lowerCAmelCase : Tuple = SkipBatchSampler(__A , 2 ) self.assertListEqual(list(__A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ): _lowerCAmelCase : str = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) _lowerCAmelCase : List[str] = skip_first_batches(__A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ): _lowerCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __A ( self ): Accelerator() _lowerCAmelCase : List[Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
711
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
0
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : List[Any] ) -> Union[str, Any]: _lowerCAmelCase : int = int(__lowerCAmelCase ) assert noofclusters < len(__lowerCAmelCase ) # Find out the dimensionality _lowerCAmelCase : int = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : List[Any] = list(range(len(__lowerCAmelCase ) ) ) shuffle(__lowerCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : Any = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : Optional[int] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__lowerCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Dict = [] for centroid in centroids: cent_assigns.append(tf.assign(__lowerCAmelCase ,__lowerCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Optional[Any] = [tf.Variable(0 ) for i in range(len(__lowerCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : Dict = tf.placeholder("""int32""" ) _lowerCAmelCase : List[str] = [] for assignment in assignments: cluster_assigns.append(tf.assign(__lowerCAmelCase ,__lowerCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : List[Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : List[Any] = tf.reduce_mean(__lowerCAmelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Tuple = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Optional[int] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__lowerCAmelCase ,__lowerCAmelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Optional[Any] = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : Any = tf.argmin(__lowerCAmelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Any = tf.initialize_all_variables() # Initialize all variables sess.run(__lowerCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : Union[str, Any] = 100 for _ in range(__lowerCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__lowerCAmelCase ) ): _lowerCAmelCase : Dict = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : int = [ sess.run(__lowerCAmelCase ,feed_dict={va: vect, va: sess.run(__lowerCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Optional[Any] = sess.run( __lowerCAmelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__lowerCAmelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : Any = [ vectors[i] for i in range(len(__lowerCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( __lowerCAmelCase ,feed_dict={mean_input: array(__lowerCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Dict = sess.run(__lowerCAmelCase ) _lowerCAmelCase : List[str] = sess.run(__lowerCAmelCase ) return centroids, assignments
712
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
0
"""simple docstring""" import numpy as np import datasets _a : Dict = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' _a : List[Any] = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' _a : Optional[Any] = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """X""": datasets.Sequence(datasets.Value("""float""" , id="""sequence""" ) , id="""X""" ), } ) , ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = np.array(a__ ) _lowerCAmelCase : List[Any] = np.array(a__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("""Expected `X` to be a 2D vector""" ) if len(reference_distribution.shape ) != 2: raise ValueError("""Expected `reference_distribution` to be a 2D vector""" ) if reference_distribution.shape[0] < 2: raise ValueError( """Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension""" ) # Get mahalanobis distance for each prediction _lowerCAmelCase : Tuple = X - np.mean(a__ ) _lowerCAmelCase : Tuple = np.cov(reference_distribution.T ) try: _lowerCAmelCase : int = np.linalg.inv(a__ ) except np.linalg.LinAlgError: _lowerCAmelCase : Any = np.linalg.pinv(a__ ) _lowerCAmelCase : List[str] = np.dot(a__ , a__ ) _lowerCAmelCase : Optional[Any] = np.dot(a__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
713
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Optional[int] = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
0
"""simple docstring""" from __future__ import annotations _a : Optional[int] = "Muhammad Umer Farooq" _a : Optional[Any] = "MIT" _a : Any = "1.0.0" _a : Tuple = "Muhammad Umer Farooq" _a : Union[str, Any] = "[email protected]" _a : Union[str, Any] = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class __A ( __lowerCAmelCase ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : list[str] = [] _lowerCAmelCase : Any = domain def __A ( self , a__ , a__ ): if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _lowerCAmelCase : List[Any] = parse.urljoin(self.domain , _UpperCamelCase ) self.urls.append(_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Optional[int]: return ".".join(get_sub_domain_name(__A ).split(""".""" )[-2:] ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Any: return parse.urlparse(__A ).netloc def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = "https://github.com" ) -> str: _lowerCAmelCase : int = get_domain_name(__A ) # Initialize the parser _lowerCAmelCase : Union[str, Any] = Parser(__A ) try: # Open URL _lowerCAmelCase : Optional[int] = requests.get(__A ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _lowerCAmelCase : Union[str, Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _lowerCAmelCase : Any = requests.get(__A ) # Get the valid email. _lowerCAmelCase : Optional[int] = re.findall("""[a-zA-Z0-9]+@""" + domain ,read.text ) # If not in list then append it. for email in emails: valid_emails.add(__A ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__A ) if __name__ == "__main__": _a : Dict = emails_from_url('https://github.com') print(F"""{len(emails)} emails found:""") print('\n'.join(sorted(emails)))
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _a : List[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) _a : int = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) _a : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) _a : Optional[Any] = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) _a : Dict = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) _a : Dict = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) _a : str = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: _lowerCAmelCase : Optional[Any] = randrange(len(_lowerCamelCase ) ), randrange(len(_lowerCamelCase ) ) _lowerCAmelCase : List[Any] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] _lowerCAmelCase : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] = 100 ) -> List[Any]: return (generate_random_hand() for _ in range(_lowerCamelCase )) @pytest.mark.parametrize("""hand, expected""" ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : List[Any] ) -> str: assert PokerHand(_lowerCamelCase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> Tuple: assert PokerHand(_lowerCamelCase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : int = PokerHand(_lowerCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> List[str]: assert PokerHand(_lowerCamelCase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Tuple ) -> Any: assert PokerHand(_lowerCamelCase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ) -> Any: assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" ,generate_random_hands() ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ,_lowerCamelCase : Optional[Any] ) -> Union[str, Any]: assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected def SCREAMING_SNAKE_CASE ( ) -> Dict: _lowerCAmelCase : Optional[Any] = [PokerHand(_lowerCamelCase ) for hand in SORTED_HANDS] _lowerCAmelCase : List[str] = poker_hands.copy() shuffle(_lowerCamelCase ) _lowerCAmelCase : int = chain(sorted(_lowerCamelCase ) ) for index, hand in enumerate(_lowerCamelCase ): assert hand == poker_hands[index] def SCREAMING_SNAKE_CASE ( ) -> Any: _lowerCAmelCase : Tuple = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=_lowerCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def SCREAMING_SNAKE_CASE ( ) -> int: _lowerCAmelCase : Union[str, Any] = PokerHand("""2C 4S AS 3D 5C""" ) _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Optional[int] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def SCREAMING_SNAKE_CASE ( ) -> Dict: _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Optional[Any] = os.path.abspath(os.path.dirname(_lowerCamelCase ) ) _lowerCAmelCase : Optional[Any] = os.path.join(_lowerCamelCase ,"""poker_hands.txt""" ) with open(_lowerCamelCase ) as file_hand: for line in file_hand: _lowerCAmelCase : Dict = line[:14].strip() _lowerCAmelCase : List[str] = line[15:].strip() _lowerCAmelCase : List[str] = PokerHand(_lowerCamelCase ), PokerHand(_lowerCamelCase ) _lowerCAmelCase : Dict = player.compare_with(_lowerCamelCase ) if output == "Win": answer += 1 assert answer == 376
716
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : str = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
0
"""simple docstring""" import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]=None ) -> Any: if subparsers is not None: _lowerCAmelCase : Optional[Any] = subparsers.add_parser("""test""" ) else: _lowerCAmelCase : List[Any] = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" ,default=a_ ,help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """ """such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """ """with \'huggingface\'.""" ) ,) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Optional[Any]: _lowerCAmelCase : List[str] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: _lowerCAmelCase : List[Any] = script_name else: _lowerCAmelCase : Dict = f"--config_file={args.config_file} {script_name}" _lowerCAmelCase : Optional[Any] = ['''accelerate-launch'''] + test_args.split() _lowerCAmelCase : List[Any] = execute_subprocess_async(a_ ,env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def SCREAMING_SNAKE_CASE ( ) -> Dict: _lowerCAmelCase : Optional[Any] = test_command_parser() _lowerCAmelCase : Dict = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
718
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a : Tuple = logging.get_logger(__name__) class __A ( _UpperCAmelCase ): _UpperCamelCase : Union[str, Any] = ['pixel_values'] def __init__( self , a__ = True , a__ = None , a__ = PILImageResampling.BICUBIC , a__ = True , a__ = True , a__ = 1 / 255 , a__ = None , a__ = True , a__ = None , a__ = None , **a__ , ): super().__init__(**__UpperCamelCase ) _lowerCAmelCase : Optional[Any] = size if size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase : str = get_size_dict(__UpperCamelCase ) _lowerCAmelCase : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase : List[str] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase , param_name="""crop_size""" ) _lowerCAmelCase : Optional[int] = do_resize _lowerCAmelCase : Optional[int] = do_rescale _lowerCAmelCase : int = do_normalize _lowerCAmelCase : Dict = do_center_crop _lowerCAmelCase : Optional[Any] = crop_size _lowerCAmelCase : Optional[int] = size _lowerCAmelCase : List[str] = resample _lowerCAmelCase : Any = rescale_factor _lowerCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __A ( self , a__ , a__ , a__ = PILImageResampling.BILINEAR , a__ = None , **a__ , ): _lowerCAmelCase : Union[str, Any] = get_size_dict(__UpperCamelCase ) if "shortest_edge" in size: _lowerCAmelCase : List[str] = get_resize_output_image_size(__UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=__UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _lowerCAmelCase : Dict = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def __A ( self , a__ , a__ , a__ = None , **a__ , ): _lowerCAmelCase : Dict = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def __A ( self , a__ , a__ , a__ = None , **a__ ): return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def __A ( self , a__ , a__ , a__ , a__ = None , **a__ , ): return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def __A ( self , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ): _lowerCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : str = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : Any = get_size_dict(__UpperCamelCase , param_name="""crop_size""" , default_to_square=__UpperCamelCase ) _lowerCAmelCase : Optional[Any] = resample if resample is not None else self.resample _lowerCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Union[str, Any] = size if size is not None else self.size _lowerCAmelCase : Union[str, Any] = get_size_dict(__UpperCamelCase ) if not is_batched(__UpperCamelCase ): _lowerCAmelCase : Optional[Any] = [images] if not valid_images(__UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. _lowerCAmelCase : int = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _lowerCAmelCase : Any = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _lowerCAmelCase : Optional[Any] = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _lowerCAmelCase : List[Any] = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _lowerCAmelCase : Union[str, Any] = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _lowerCAmelCase : str = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _lowerCAmelCase : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
719
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ) -> list: _lowerCAmelCase : Optional[Any] = len(_lowerCamelCase ) for i in range(1 ,_lowerCamelCase ): _lowerCAmelCase : List[str] = collection[i] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = i - 1 while low <= high: _lowerCAmelCase : Dict = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Union[str, Any] = mid - 1 else: _lowerCAmelCase : str = mid + 1 for j in range(_lowerCamelCase ,_lowerCamelCase ,-1 ): _lowerCAmelCase : str = collection[j - 1] _lowerCAmelCase : str = val return collection if __name__ == "__main__": _a : str = input('Enter numbers separated by a comma:\n').strip() _a : Dict = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
720
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def __A ( self ): debug_launcher(test_script.main ) def __A ( self ): debug_launcher(test_ops.main )
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
700
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Optional[int] = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : Union[str, Any] = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Optional[Any] = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _a : Optional[int] = logging.get_logger(__name__) class __A ( lowercase__ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
704
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
0
"""simple docstring""" from __future__ import annotations _a : int = '#' class __A : def __init__( self ): _lowerCAmelCase : dict = {} def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = self._trie for char in text: if char not in trie: _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = trie[char] _lowerCAmelCase : Optional[Any] = True def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = self._trie for char in prefix: if char in trie: _lowerCAmelCase : Optional[Any] = trie[char] else: return [] return self._elements(_a ) def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = [] for c, v in d.items(): _lowerCAmelCase : List[str] = [""" """] if c == END else [(c + s) for s in self._elements(_a )] result.extend(_a ) return tuple(_a ) _a : Optional[int] = Trie() _a : Union[str, Any] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> str: _lowerCAmelCase : str = trie.find_word(_lowerCamelCase ) return tuple(string + word for word in suffixes ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
705
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> Optional[int]: _lowerCAmelCase : Any = image.size _lowerCAmelCase : Tuple = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _lowerCAmelCase : int = image.resize((w, h) ,resample=PIL_INTERPOLATION["""lanczos"""] ) _lowerCAmelCase : Tuple = np.array(snake_case__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase : str = image[None].transpose(0 ,3 ,1 ,2 ) _lowerCAmelCase : str = torch.from_numpy(snake_case__ ) return 2.0 * image - 1.0 class __A ( __a ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules(vqvae=a_ , unet=a_ , scheduler=a_ ) @torch.no_grad() def __call__( self , a__ = None , a__ = 1 , a__ = 100 , a__ = 0.0 , a__ = None , a__ = "pil" , a__ = True , ): if isinstance(a_ , PIL.Image.Image ): _lowerCAmelCase : List[Any] = 1 elif isinstance(a_ , torch.Tensor ): _lowerCAmelCase : int = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(a_ )}" ) if isinstance(a_ , PIL.Image.Image ): _lowerCAmelCase : Optional[int] = preprocess(a_ ) _lowerCAmelCase : Any = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _lowerCAmelCase : str = (batch_size, self.unet.config.in_channels // 2, height, width) _lowerCAmelCase : Any = next(self.unet.parameters() ).dtype _lowerCAmelCase : int = randn_tensor(a_ , generator=a_ , device=self.device , dtype=a_ ) _lowerCAmelCase : List[str] = image.to(device=self.device , dtype=a_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(a_ , device=self.device ) _lowerCAmelCase : Optional[int] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase : Optional[int] = {} if accepts_eta: _lowerCAmelCase : Optional[Any] = eta for t in self.progress_bar(a_ ): # concat latents and low resolution image in the channel dimension. _lowerCAmelCase : List[str] = torch.cat([latents, image] , dim=1 ) _lowerCAmelCase : int = self.scheduler.scale_model_input(a_ , a_ ) # predict the noise residual _lowerCAmelCase : Any = self.unet(a_ , a_ ).sample # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : Dict = self.scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample # decode the image latents with the VQVAE _lowerCAmelCase : Tuple = self.vqvae.decode(a_ ).sample _lowerCAmelCase : Dict = torch.clamp(a_ , -1.0 , 1.0 ) _lowerCAmelCase : Optional[Any] = image / 2 + 0.5 _lowerCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
706
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github _a : Dict = [ 'good first issue', 'feature request', 'wip', ] def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Optional[int] = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase : str = g.get_repo("""huggingface/accelerate""" ) _lowerCAmelCase : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase : int = sorted([comment for comment in issue.get_comments()] ,key=lambda _lowerCamelCase : i.created_at ,reverse=__snake_case ) _lowerCAmelCase : Tuple = comments[0] if len(__snake_case ) > 0 else None _lowerCAmelCase : List[str] = dt.utcnow() _lowerCAmelCase : Any = (current_time - issue.updated_at).days _lowerCAmelCase : Tuple = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class __A ( _UpperCAmelCase ): _UpperCamelCase = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _UpperCamelCase = Features({"image": Image()} ) _UpperCamelCase = Features({"labels": ClassLabel} ) _UpperCamelCase = "image" _UpperCamelCase = "labels" def __A ( self , a__ ): if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) _lowerCAmelCase : List[str] = copy.deepcopy(self ) _lowerCAmelCase : List[str] = self.label_schema.copy() _lowerCAmelCase : List[Any] = features[self.label_column] _lowerCAmelCase : Optional[Any] = label_schema return task_template @property def __A ( self ): return { self.image_column: "image", self.label_column: "labels", }
708
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch _a : List[Any] = random.Random() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : int=1.0 ,_lowerCamelCase : Optional[int]=None ,_lowerCamelCase : Union[str, Any]=None ) -> Optional[Any]: if rng is None: _lowerCAmelCase : Tuple = global_rng _lowerCAmelCase : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __A ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=400 , a__=2000 , a__=1 , a__=0.0 , a__=16000 , a__=True , a__=80 , a__=16 , a__=64 , a__="hann_window" , a__=80 , a__=7600 , a__=1e-10 , a__=True , ): _lowerCAmelCase : int = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : Dict = min_seq_length _lowerCAmelCase : Any = max_seq_length _lowerCAmelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCAmelCase : Union[str, Any] = feature_size _lowerCAmelCase : Tuple = padding_value _lowerCAmelCase : str = sampling_rate _lowerCAmelCase : Dict = do_normalize _lowerCAmelCase : str = num_mel_bins _lowerCAmelCase : List[str] = hop_length _lowerCAmelCase : str = win_length _lowerCAmelCase : Optional[Any] = win_function _lowerCAmelCase : List[str] = fmin _lowerCAmelCase : Any = fmax _lowerCAmelCase : Optional[int] = mel_floor _lowerCAmelCase : Tuple = return_attention_mask def __A ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __A ( self , a__=False , a__=False ): def _flatten(a__ ): return list(itertools.chain(*lowerCAmelCase__ ) ) if equal_length: _lowerCAmelCase : Union[str, Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _lowerCAmelCase : str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase : Any = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs def __A ( self , a__=False , a__=False ): if equal_length: _lowerCAmelCase : str = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCAmelCase : Any = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase : Optional[int] = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch class __A ( a__ , unittest.TestCase ): _UpperCamelCase : Tuple = SpeechTaFeatureExtractor def __A ( self ): _lowerCAmelCase : Tuple = SpeechTaFeatureExtractionTester(self ) def __A ( self , a__ ): self.assertTrue(np.all(np.mean(lowerCAmelCase__ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase__ , axis=0 ) - 1 ) < 1e-3 ) ) def __A ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : Any = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input _lowerCAmelCase : Optional[int] = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values _lowerCAmelCase : Optional[Any] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) # Test batched _lowerCAmelCase : int = feat_extract(lowerCAmelCase__ , return_tensors="""np""" ).input_values _lowerCAmelCase : int = feat_extract(lowerCAmelCase__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def __A ( self ): _lowerCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : int = ["longest", "max_length", "do_not_pad"] _lowerCAmelCase : Tuple = [None, 1600, None] for max_length, padding in zip(lowerCAmelCase__ , lowerCAmelCase__ ): _lowerCAmelCase : Dict = feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors="""np""" ) _lowerCAmelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __A ( self ): _lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : List[str] = range(800 , 1400 , 200 ) _lowerCAmelCase : List[str] = [floats_list((1, x) )[0] for x in lengths] _lowerCAmelCase : Any = ["longest", "max_length", "do_not_pad"] _lowerCAmelCase : Any = [None, 1600, None] for max_length, padding in zip(lowerCAmelCase__ , lowerCAmelCase__ ): _lowerCAmelCase : List[Any] = feat_extract(lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding=lowerCAmelCase__ ) _lowerCAmelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __A ( self ): _lowerCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : Union[str, Any] = feat_extract( lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) _lowerCAmelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __A ( self ): _lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : List[Any] = feat_extract( lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) _lowerCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _lowerCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : int = feat_extract( lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) _lowerCAmelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __A ( self ): _lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Any = np.random.rand(100 ).astype(np.floataa ) _lowerCAmelCase : Optional[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCAmelCase : str = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _lowerCAmelCase : List[str] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __A ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : Tuple = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test feature size _lowerCAmelCase : Union[str, Any] = feature_extractor(audio_target=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""np""" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input _lowerCAmelCase : Dict = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_values _lowerCAmelCase : List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) # Test batched _lowerCAmelCase : Optional[int] = feature_extractor(lowerCAmelCase__ , return_tensors="""np""" ).input_values _lowerCAmelCase : Any = feature_extractor(lowerCAmelCase__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _lowerCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowerCAmelCase : List[Any] = np.asarray(lowerCAmelCase__ ) _lowerCAmelCase : str = feature_extractor(lowerCAmelCase__ , return_tensors="""np""" ).input_values _lowerCAmelCase : str = feature_extractor(lowerCAmelCase__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() _lowerCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase : Union[str, Any] = feat_extract.model_input_names[0] _lowerCAmelCase : List[str] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) for x, y in zip(lowerCAmelCase__ , processed_features[input_name] ) ) ) _lowerCAmelCase : Tuple = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCAmelCase__ ) _lowerCAmelCase : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) _lowerCAmelCase : Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase : Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __A ( self ): _lowerCAmelCase : Tuple = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCAmelCase__ ) _lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase : Optional[int] = feat_extract.model_input_names[0] _lowerCAmelCase : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) _lowerCAmelCase : Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __A ( self ): _lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() _lowerCAmelCase : Optional[Any] = feat_extract.model_input_names[0] _lowerCAmelCase : List[str] = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase : Tuple = feat_extract.num_mel_bins # hack! _lowerCAmelCase : List[Any] = feat_extract.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""np""" )[input_name] _lowerCAmelCase : Any = feat_extract.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __A ( self ): _lowerCAmelCase : Any = self.feat_extract_dict _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Union[str, Any] = self.feature_extraction_class(**lowerCAmelCase__ ) _lowerCAmelCase : Any = self.feat_extract_tester.prepare_inputs_for_target() _lowerCAmelCase : Dict = [len(lowerCAmelCase__ ) for x in speech_inputs] _lowerCAmelCase : int = feat_extract.model_input_names[0] _lowerCAmelCase : List[Any] = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase : Union[str, Any] = feat_extract.num_mel_bins # hack! _lowerCAmelCase : Dict = feat_extract.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , lowerCAmelCase__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCAmelCase__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.feat_extract_dict _lowerCAmelCase : str = True _lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**lowerCAmelCase__ ) _lowerCAmelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_target() _lowerCAmelCase : Dict = [len(lowerCAmelCase__ ) for x in speech_inputs] _lowerCAmelCase : Optional[Any] = feat_extract.model_input_names[0] _lowerCAmelCase : str = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase : Optional[Any] = min(lowerCAmelCase__ ) _lowerCAmelCase : List[Any] = feat_extract.num_mel_bins # hack! _lowerCAmelCase : Any = feat_extract.pad( lowerCAmelCase__ , padding="""max_length""" , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="""np""" ) self.assertIn("""attention_mask""" , lowerCAmelCase__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __A ( self , a__ ): from datasets import load_dataset _lowerCAmelCase : Tuple = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _lowerCAmelCase : Optional[Any] = ds.sort("""id""" ).select(range(lowerCAmelCase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __A ( self ): # fmt: off _lowerCAmelCase : List[Any] = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on _lowerCAmelCase : List[str] = self._load_datasamples(1 ) _lowerCAmelCase : Union[str, Any] = SpeechTaFeatureExtractor() _lowerCAmelCase : str = feature_extractor(lowerCAmelCase__ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCAmelCase__ , atol=1e-6 ) ) def __A ( self ): # fmt: off _lowerCAmelCase : Tuple = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on _lowerCAmelCase : Dict = self._load_datasamples(1 ) _lowerCAmelCase : Tuple = SpeechTaFeatureExtractor() _lowerCAmelCase : Optional[int] = feature_extractor(audio_target=lowerCAmelCase__ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCAmelCase__ , atol=1e-4 ) )
709
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __A ( UpperCAmelCase__ ): _UpperCamelCase : Optional[int] = 42 _UpperCamelCase : str = 42 class __A ( UpperCAmelCase__ , UpperCAmelCase__ ): _UpperCamelCase : str = 1 @register_to_config def __init__( self , a__ = 2000 , a__ = 0.1_5 , a__ = 0.0_1 , a__ = 1348.0 , a__ = 1e-5 , a__ = 1 , ): _lowerCAmelCase : List[Any] = sigma_max # setable values _lowerCAmelCase : List[Any] = None self.set_sigmas(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __A ( self , a__ , a__ = None ): return sample def __A ( self , a__ , a__ = None , a__ = None ): _lowerCAmelCase : List[str] = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Optional[int] = torch.linspace(1 , __lowerCAmelCase , __lowerCAmelCase , device=__lowerCAmelCase ) def __A ( self , a__ , a__ = None , a__ = None , a__ = None ): _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : List[str] = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : Union[str, Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase : List[str] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Tuple = torch.exp(torch.linspace(math.log(__lowerCAmelCase ) , math.log(__lowerCAmelCase ) , __lowerCAmelCase ) ) _lowerCAmelCase : Union[str, Any] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def __A ( self , a__ , a__ ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def __A ( self , a__ , a__ , a__ , a__ = None , a__ = True , ): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) _lowerCAmelCase : Optional[Any] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : List[str] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Optional[int] = timesteps.to(self.discrete_sigmas.device ) _lowerCAmelCase : Dict = self.discrete_sigmas[timesteps].to(sample.device ) _lowerCAmelCase : str = self.get_adjacent_sigma(__lowerCAmelCase , __lowerCAmelCase ).to(sample.device ) _lowerCAmelCase : Optional[int] = torch.zeros_like(__lowerCAmelCase ) _lowerCAmelCase : Any = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Any = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _lowerCAmelCase : Union[str, Any] = diffusion.unsqueeze(-1 ) _lowerCAmelCase : int = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[int] = randn_tensor( sample.shape , layout=sample.layout , generator=__lowerCAmelCase , device=sample.device , dtype=sample.dtype ) _lowerCAmelCase : Tuple = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : List[str] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__lowerCAmelCase , prev_sample_mean=__lowerCAmelCase ) def __A ( self , a__ , a__ , a__ = None , a__ = True , ): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Optional[int] = randn_tensor(sample.shape , layout=sample.layout , generator=__lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Dict = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _lowerCAmelCase : List[str] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _lowerCAmelCase : Any = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Optional[Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : Union[str, Any] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _lowerCAmelCase : Optional[Any] = step_size.unsqueeze(-1 ) _lowerCAmelCase : Any = sample + step_size * model_output _lowerCAmelCase : Dict = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCAmelCase ) def __A ( self , a__ , a__ , a__ , ): _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device ) _lowerCAmelCase : int = self.discrete_sigmas.to(original_samples.device )[timesteps] _lowerCAmelCase : List[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__lowerCAmelCase ) * sigmas[:, None, None, None] ) _lowerCAmelCase : str = noise + original_samples return noisy_samples def __len__( self ): return self.config.num_train_timesteps
710
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
0
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __A ( __UpperCAmelCase ): _UpperCamelCase : int = ["""vqvae"""] def __init__( self , a__ , a__ , a__ , a__ , ): super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , mel=UpperCAmelCase_ , vqvae=UpperCAmelCase_ ) def __A ( self ): return 50 if isinstance(self.scheduler , UpperCAmelCase_ ) else 1000 @torch.no_grad() def __call__( self , a__ = 1 , a__ = None , a__ = None , a__ = 0 , a__ = 0 , a__ = None , a__ = None , a__ = 0 , a__ = 0 , a__ = None , a__ = 0 , a__ = None , a__ = None , a__=True , ): _lowerCAmelCase : Tuple = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase_ ) _lowerCAmelCase : str = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : List[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase_ , device=self.device , ) _lowerCAmelCase : Optional[Any] = noise _lowerCAmelCase : List[str] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase : Optional[Any] = self.mel.audio_slice_to_image(UpperCAmelCase_ ) _lowerCAmelCase : Optional[int] = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : List[Any] = (input_image / 255) * 2 - 1 _lowerCAmelCase : Any = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : Union[str, Any] = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase_ , 0 ) ).latent_dist.sample( generator=UpperCAmelCase_ )[0] _lowerCAmelCase : Any = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : Tuple = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Dict = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Any = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : int = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : Union[str, Any] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , UpperCAmelCase_ ): _lowerCAmelCase : Optional[Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )["""sample"""] else: _lowerCAmelCase : List[Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_ )["""sample"""] if isinstance(self.scheduler , UpperCAmelCase_ ): _lowerCAmelCase : int = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , )["""prev_sample"""] else: _lowerCAmelCase : Tuple = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ , )["""prev_sample"""] if mask is not None: if mask_start > 0: _lowerCAmelCase : Optional[int] = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[int] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : List[str] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Optional[Any] = self.vqvae.decode(UpperCAmelCase_ )["""sample"""] _lowerCAmelCase : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase : Optional[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCAmelCase : List[Any] = (images * 255).round().astype("""uint8""" ) _lowerCAmelCase : Union[str, Any] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase_ , mode="""RGB""" ).convert("""L""" ) for _ in images) ) _lowerCAmelCase : List[str] = [self.mel.image_to_audio(UpperCAmelCase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(UpperCAmelCase_ ) ) @torch.no_grad() def __A ( self , a__ , a__ = 50 ): assert isinstance(self.scheduler , UpperCAmelCase_ ) self.scheduler.set_timesteps(UpperCAmelCase_ ) _lowerCAmelCase : Optional[int] = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Optional[int] = (sample / 255) * 2 - 1 _lowerCAmelCase : Tuple = torch.Tensor(UpperCAmelCase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCAmelCase : Any = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : List[Any] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : List[Any] = 1 - alpha_prod_t _lowerCAmelCase : Optional[Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_ )["""sample"""] _lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : str = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __A ( a__ , a__ , a__ ): _lowerCAmelCase : int = acos(torch.dot(torch.flatten(UpperCAmelCase_ ) , torch.flatten(UpperCAmelCase_ ) ) / torch.norm(UpperCAmelCase_ ) / torch.norm(UpperCAmelCase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(UpperCAmelCase_ ) + sin(alpha * theta ) * xa / sin(UpperCAmelCase_ )
711
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
0
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _a : Union[str, Any] = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": _a : List[Any] = 'hopper-medium-v2' _a : Optional[int] = gym.make(env_name) _a : int = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) _a : str = env.reset() _a : Optional[Any] = 0 _a : Optional[int] = 0 _a : Optional[Any] = 1_000 _a : Dict = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _a : Optional[int] = pipeline(obs, planning_horizon=32) # execute action in environment _a : Union[str, Any] = env.step(denorm_actions) _a : Dict = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) _a : Optional[Any] = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
712
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> int: if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 ,len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _lowerCAmelCase : Dict = grid[0] for row_n in range(1 ,len(__UpperCamelCase ) ): _lowerCAmelCase : Any = grid[row_n] _lowerCAmelCase : Any = fill_row(__UpperCamelCase ,__UpperCamelCase ) _lowerCAmelCase : Any = grid[row_n] return grid[-1][-1] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : Any ) -> list: current_row[0] += row_above[0] for cell_n in range(1 ,len(__UpperCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] ,row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
713
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _a : List[Any] = 16 _a : Union[str, Any] = 32 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : List[Any] = 16 ,_lowerCamelCase : Optional[Any] = "bert-base-cased" ) -> List[str]: _lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(_lowerCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : List[str] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=_lowerCamelCase ,max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCAmelCase : List[str] = datasets.map( _lowerCamelCase ,batched=_lowerCamelCase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=_lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Optional[Any] = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(_lowerCamelCase : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCamelCase ,padding="""max_length""" ,max_length=128 ,return_tensors="""pt""" ) return tokenizer.pad(_lowerCamelCase ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. _lowerCAmelCase : Any = DataLoader( tokenized_datasets["""train"""] ,shuffle=_lowerCamelCase ,collate_fn=_lowerCamelCase ,batch_size=_lowerCamelCase ) _lowerCAmelCase : int = DataLoader( tokenized_datasets["""validation"""] ,shuffle=_lowerCamelCase ,collate_fn=_lowerCamelCase ,batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ) -> List[Any]: # Initialize accelerator _lowerCAmelCase : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : Any = config["""lr"""] _lowerCAmelCase : Dict = int(config["""num_epochs"""] ) _lowerCAmelCase : List[Any] = int(config["""seed"""] ) _lowerCAmelCase : List[str] = int(config["""batch_size"""] ) _lowerCAmelCase : List[Any] = args.model_name_or_path set_seed(_lowerCamelCase ) _lowerCAmelCase : List[str] = get_dataloaders(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained(_lowerCamelCase ,return_dict=_lowerCamelCase ) # Instantiate optimizer _lowerCAmelCase : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowerCAmelCase : List[str] = optimizer_cls(params=model.parameters() ,lr=_lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: _lowerCAmelCase : Any = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _lowerCAmelCase : Any = 1 _lowerCAmelCase : str = (len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowerCAmelCase : List[Any] = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase ,num_warmup_steps=0 ,num_training_steps=_lowerCamelCase ,) else: _lowerCAmelCase : Dict = DummyScheduler(_lowerCamelCase ,total_num_steps=_lowerCamelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase : Dict = accelerator.prepare( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # We need to keep track of how many total steps we have iterated over _lowerCAmelCase : str = 0 # We also need to keep track of the stating epoch so files are named properly _lowerCAmelCase : Tuple = 0 # Now we train the model _lowerCAmelCase : str = evaluate.load("""glue""" ,"""mrpc""" ) _lowerCAmelCase : int = 0 _lowerCAmelCase : Tuple = {} for epoch in range(_lowerCamelCase ,_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): _lowerCAmelCase : List[str] = model(**_lowerCamelCase ) _lowerCAmelCase : int = outputs.loss _lowerCAmelCase : List[Any] = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _lowerCAmelCase : List[Any] = 0 for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(**_lowerCamelCase ) _lowerCAmelCase : Dict = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowerCAmelCase : str = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowerCamelCase ) - 1: _lowerCAmelCase : int = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCAmelCase : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowerCamelCase ,references=_lowerCamelCase ,) _lowerCAmelCase : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" ,_lowerCamelCase ) _lowerCAmelCase : str = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: _lowerCAmelCase : Dict = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,"""all_results.json""" ) ,"""w""" ) as f: json.dump(_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : int = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" ,type=_lowerCamelCase ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=_lowerCamelCase ,) parser.add_argument( """--output_dir""" ,type=_lowerCamelCase ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--performance_lower_bound""" ,type=_lowerCamelCase ,default=_lowerCamelCase ,help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" ,) parser.add_argument( """--num_epochs""" ,type=_lowerCamelCase ,default=3 ,help="""Number of train epochs.""" ,) _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Any = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_lowerCamelCase ,_lowerCamelCase ) if __name__ == "__main__": main()
714
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _a : Optional[Any] = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : def __init__( self , a__ , a__=16 , a__=13 , a__=7 , a__=14 , a__=10 , a__=19 , a__=5 , a__=4 , a__=True , a__=16 , a__=2 , a__=4 , a__=4 , a__="gelu" , a__=0.1 , a__=0.1 , a__=[1, 2, 3, 4, 5] , a__=25 , a__=5 , ): _lowerCAmelCase : List[Any] = d_model _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : Tuple = prediction_length _lowerCAmelCase : Tuple = context_length _lowerCAmelCase : List[Any] = cardinality _lowerCAmelCase : Dict = num_time_features _lowerCAmelCase : Optional[int] = lags_sequence _lowerCAmelCase : Union[str, Any] = embedding_dimension _lowerCAmelCase : int = is_training _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = context_length _lowerCAmelCase : List[Any] = prediction_length + label_length _lowerCAmelCase : Tuple = label_length _lowerCAmelCase : int = moving_average _lowerCAmelCase : Optional[int] = autocorrelation_factor def __A ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __A ( self , a__ ): _lowerCAmelCase : List[str] = config.context_length + max(config.lags_sequence ) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _lowerCAmelCase : str = floats_tensor([self.batch_size, _past_length] ) _lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, config.prediction_length] ) _lowerCAmelCase : Any = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def __A ( self ): _lowerCAmelCase : List[str] = self.get_config() _lowerCAmelCase : List[str] = self.prepare_autoformer_inputs_dict(__lowercase ) return config, inputs_dict def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = AutoformerModel(config=__lowercase ).to(__lowercase ).eval() _lowerCAmelCase : Any = model(**__lowercase ) _lowerCAmelCase : Union[str, Any] = outputs.encoder_last_hidden_state _lowerCAmelCase : Optional[int] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Dict = model.get_encoder() encoder.save_pretrained(__lowercase ) _lowerCAmelCase : int = AutoformerEncoder.from_pretrained(__lowercase ).to(__lowercase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model.create_network_inputs(**__lowercase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _lowerCAmelCase : Union[str, Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _lowerCAmelCase : List[Any] = encoder(inputs_embeds=__lowercase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _lowerCAmelCase : Union[str, Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _lowerCAmelCase : Union[str, Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _lowerCAmelCase : str = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _lowerCAmelCase : str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__lowercase ) _lowerCAmelCase : int = AutoformerDecoder.from_pretrained(__lowercase ).to(__lowercase ) _lowerCAmelCase : int = decoder( trend=__lowercase , inputs_embeds=__lowercase , encoder_hidden_states=__lowercase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __A ( lowercase__ , lowercase__ , unittest.TestCase ): _UpperCamelCase : Any = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _UpperCamelCase : Optional[int] = (AutoformerForPrediction,) if is_torch_available() else () _UpperCamelCase : Any = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Any = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[Any] = False def __A ( self ): _lowerCAmelCase : List[Any] = AutoformerModelTester(self ) _lowerCAmelCase : Any = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(__lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) _lowerCAmelCase , _lowerCAmelCase : Dict = model_class.from_pretrained(__lowercase , output_loading_info=__lowercase ) self.assertEqual(info["""missing_keys"""] , [] ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__lowercase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : Tuple = inspect.signature(getattr(__lowercase , """forward""" ) ) # The main input is the name of the argument after `self` _lowerCAmelCase : str = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __lowercase ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(__lowercase ) _lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : int = [*signature.parameters.keys()] _lowerCAmelCase : Dict = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__lowercase )] , __lowercase ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = True _lowerCAmelCase : Union[str, Any] = getattr(self.model_tester , """seq_length""" , __lowercase ) _lowerCAmelCase : Dict = getattr(self.model_tester , """decoder_seq_length""" , __lowercase ) _lowerCAmelCase : Dict = getattr(self.model_tester , """encoder_seq_length""" , __lowercase ) _lowerCAmelCase : Optional[int] = getattr(self.model_tester , """d_model""" , __lowercase ) _lowerCAmelCase : str = getattr(self.model_tester , """num_attention_heads""" , __lowercase ) _lowerCAmelCase : Union[str, Any] = d_model // num_attention_heads for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Dict = False _lowerCAmelCase : List[str] = True _lowerCAmelCase : Optional[Any] = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): _lowerCAmelCase : int = model(**self._prepare_for_class(__lowercase , __lowercase ) ) _lowerCAmelCase : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(__lowercase , __lowercase ) ) _lowerCAmelCase : List[str] = outputs.encoder_attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _lowerCAmelCase : Tuple = len(__lowercase ) _lowerCAmelCase : Optional[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__lowercase , __lowercase ) # decoder attentions _lowerCAmelCase : str = outputs.decoder_attentions self.assertIsInstance(__lowercase , (list, tuple) ) self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _lowerCAmelCase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__lowercase , (list, tuple) ) self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _lowerCAmelCase : Dict = True _lowerCAmelCase : Any = True _lowerCAmelCase : str = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): _lowerCAmelCase : List[str] = model(**self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(out_len + 2 , len(__lowercase ) ) _lowerCAmelCase : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __A ( self ): super().test_retain_grad_hidden_states_attentions() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str]="train-batch.pt" ) -> str: _lowerCAmelCase : List[Any] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" ,filename=SCREAMING_SNAKE_CASE_ ,repo_type="""dataset""" ) _lowerCAmelCase : List[str] = torch.load(SCREAMING_SNAKE_CASE_ ,map_location=SCREAMING_SNAKE_CASE_ ) return batch @require_torch @slow class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__lowercase ) _lowerCAmelCase : Optional[int] = prepare_batch() with torch.no_grad(): _lowerCAmelCase : Dict = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] _lowerCAmelCase : int = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __lowercase ) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=__lowercase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __lowercase , atol=__lowercase ) ) def __A ( self ): _lowerCAmelCase : str = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__lowercase ) _lowerCAmelCase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _lowerCAmelCase : Any = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state _lowerCAmelCase : Any = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __lowercase ) _lowerCAmelCase : Any = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=__lowercase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __lowercase , atol=__lowercase ) ) def __A ( self ): _lowerCAmelCase : Dict = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__lowercase ) _lowerCAmelCase : Any = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _lowerCAmelCase : Tuple = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) _lowerCAmelCase : List[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __lowercase ) _lowerCAmelCase : Dict = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=__lowercase ) _lowerCAmelCase : Union[str, Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __lowercase , rtol=1e-1 ) )
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : List[Any] = [[1, 2, 4], [1, 2, 3, 4]] _lowerCAmelCase : Dict = DisjunctiveConstraint(A_ ) self.assertTrue(isinstance(dc.token_ids , A_ ) ) with self.assertRaises(A_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(A_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(A_ ): DisjunctiveConstraint(A_ ) # fails here def __A ( self ): _lowerCAmelCase : Union[str, Any] = [[1, 2, 3], [1, 2, 4]] _lowerCAmelCase : str = DisjunctiveConstraint(A_ ) _lowerCAmelCase : List[Any] = dc.update(1 ) _lowerCAmelCase : Dict = stepped is True and completed is False and reset is False self.assertTrue(A_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _lowerCAmelCase : List[str] = dc.update(2 ) _lowerCAmelCase : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(A_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _lowerCAmelCase : Dict = dc.update(3 ) _lowerCAmelCase : Optional[int] = stepped is True and completed is True and reset is False self.assertTrue(A_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __A ( self ): _lowerCAmelCase : Tuple = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _lowerCAmelCase : Any = DisjunctiveConstraint(A_ ) _lowerCAmelCase : List[str] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _lowerCAmelCase : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _lowerCAmelCase : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _lowerCAmelCase : Union[str, Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _lowerCAmelCase : Union[str, Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _lowerCAmelCase : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _lowerCAmelCase : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
716
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
0
"""simple docstring""" import numpy as np def SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.array ) -> List[str]: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.array ) -> Tuple: return vector * sigmoid(1.7_02 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Optional[int] ) -> Dict: if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _lowerCAmelCase : Optional[int] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__lowerCAmelCase ) ) return round(__lowerCAmelCase ,ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
0
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str = 3 ) -> Optional[Any]: if isinstance(lowercase__ ,lowercase__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(lowercase__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) _lowerCAmelCase : Dict = QuantumRegister(lowercase__ ,"""qr""" ) _lowerCAmelCase : Any = ClassicalRegister(lowercase__ ,"""cr""" ) _lowerCAmelCase : Dict = QuantumCircuit(lowercase__ ,lowercase__ ) _lowerCAmelCase : Optional[Any] = number_of_qubits for i in range(lowercase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowercase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) ,lowercase__ ,lowercase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowercase__ ,number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowercase__ ,lowercase__ ) # simulate with 10000 shots _lowerCAmelCase : List[Any] = Aer.get_backend("""qasm_simulator""" ) _lowerCAmelCase : Tuple = execute(lowercase__ ,lowercase__ ,shots=10000 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
719
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __A ( __lowercase ): _UpperCamelCase : torch.FloatTensor _UpperCamelCase : torch.FloatTensor _UpperCamelCase : Optional[torch.FloatTensor] = None class __A ( __lowercase , __lowercase ): _UpperCamelCase : Any = 2 @register_to_config def __init__( self , a__ = 0.0_2 , a__ = 100 , a__ = 1.0_0_7 , a__ = 80 , a__ = 0.0_5 , a__ = 50 , ): # standard deviation of the initial noise distribution _lowerCAmelCase : Tuple = sigma_max # setable values _lowerCAmelCase : int = None _lowerCAmelCase : np.IntTensor = None _lowerCAmelCase : torch.FloatTensor = None # sigma(t_i) def __A ( self , a__ , a__ = None ): return sample def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Optional[Any] = num_inference_steps _lowerCAmelCase : Union[str, Any] = np.arange(0 , self.num_inference_steps )[::-1].copy() _lowerCAmelCase : Dict = torch.from_numpy(__a ).to(__a ) _lowerCAmelCase : int = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _lowerCAmelCase : List[Any] = torch.tensor(__a , dtype=torch.floataa , device=__a ) def __A ( self , a__ , a__ , a__ = None ): if self.config.s_min <= sigma <= self.config.s_max: _lowerCAmelCase : str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _lowerCAmelCase : Optional[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) _lowerCAmelCase : str = self.config.s_noise * randn_tensor(sample.shape , generator=__a ).to(sample.device ) _lowerCAmelCase : str = sigma + gamma * sigma _lowerCAmelCase : Dict = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __A ( self , a__ , a__ , a__ , a__ , a__ = True , ): _lowerCAmelCase : List[str] = sample_hat + sigma_hat * model_output _lowerCAmelCase : Tuple = (sample_hat - pred_original_sample) / sigma_hat _lowerCAmelCase : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__a , derivative=__a , pred_original_sample=__a ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ = True , ): _lowerCAmelCase : List[str] = sample_prev + sigma_prev * model_output _lowerCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev _lowerCAmelCase : Any = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__a , derivative=__a , pred_original_sample=__a ) def __A ( self , a__ , a__ , a__ ): raise NotImplementedError()
720
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
0
"""simple docstring""" import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _a : str = float('nan') class __A : def __init__( self , a__ ): _lowerCAmelCase : Union[str, Any] = sys.stdout _lowerCAmelCase : List[Any] = open(UpperCAmelCase__ , """a""" ) def __getattr__( self , a__ ): return getattr(self.stdout , UpperCAmelCase__ ) def __A ( self , a__ ): self.stdout.write(UpperCAmelCase__ ) # strip tqdm codes self.file.write(re.sub(r"""^.*\r""" , """""" , UpperCAmelCase__ , 0 , re.M ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str]=80 ,_lowerCamelCase : Dict=False ) -> Tuple: _lowerCAmelCase : Optional[int] = [] # deal with critical env vars _lowerCAmelCase : Optional[Any] = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: _lowerCAmelCase : Union[str, Any] = os.environ.get(_UpperCamelCase ,_UpperCamelCase ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) _lowerCAmelCase : List[Any] = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(_UpperCamelCase ) # now the normal args cmd += list(map(shlex.quote ,sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Optional[int] = """""" while len(_UpperCamelCase ) > 0: current_line += f"{cmd.pop(0 )} " if len(_UpperCamelCase ) == 0 or len(_UpperCamelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCamelCase ) _lowerCAmelCase : str = """""" return "\\\n".join(_UpperCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : int ) -> Tuple: _lowerCAmelCase : List[str] = re.sub(r"""[\\\n]+""" ,""" """ ,args.base_cmd ) # remove --output_dir if any and set our own _lowerCAmelCase : Optional[Any] = re.sub("""--output_dir\s+[^\s]+""" ,"""""" ,args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir _lowerCAmelCase : Dict = re.sub("""--overwrite_output_dir\s+""" ,"""""" ,args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : List[str] ,_lowerCamelCase : Tuple ,_lowerCamelCase : List[str] ,_lowerCamelCase : int ) -> Optional[Any]: if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 ,100 ) for k in metric_keys} ,**{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} ,) _lowerCAmelCase : Dict = subprocess.run(_UpperCamelCase ,capture_output=_UpperCamelCase ,text=_UpperCamelCase ) if verbose: print("""STDOUT""" ,result.stdout ) print("""STDERR""" ,result.stderr ) # save the streams _lowerCAmelCase : List[str] = variation.replace(""" """ ,"""-""" ) with open(Path(_UpperCamelCase ) / f"log.{prefix}.stdout.txt" ,"""w""" ) as f: f.write(result.stdout ) with open(Path(_UpperCamelCase ) / f"log.{prefix}.stderr.txt" ,"""w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" ,"""r""" ,encoding="""utf-8""" ) as f: _lowerCAmelCase : List[Any] = json.load(_UpperCamelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ,_lowerCamelCase : Dict ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : List[str] ,_lowerCamelCase : Dict ,) -> str: _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Tuple = f"{id}: {variation:<{longest_variation_len}}" _lowerCAmelCase : Optional[int] = f"{preamble}: " _lowerCAmelCase : Dict = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCamelCase ) ,desc=_UpperCamelCase ,leave=_UpperCamelCase ): _lowerCAmelCase : List[str] = process_run_single( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) _lowerCAmelCase : Tuple = single_run_metrics[target_metric_key] if not math.isnan(_UpperCamelCase ): metrics.append(_UpperCamelCase ) results.append(_UpperCamelCase ) outcome += "✓" else: outcome += "✘" _lowerCAmelCase : Union[str, Any] = f"\33[2K\r{outcome}" if len(_UpperCamelCase ) > 0: _lowerCAmelCase : List[Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _lowerCAmelCase : List[str] = round(mean_metrics[target_metric_key] ,2 ) _lowerCAmelCase : Optional[int] = f"{outcome} {mean_target}" if len(_UpperCamelCase ) > 1: results_str += f" {tuple(round(_UpperCamelCase ,2 ) for x in results )}" print(_UpperCamelCase ) _lowerCAmelCase : Union[str, Any] = variation return mean_metrics else: print(_UpperCamelCase ) return {variation_key: variation, target_metric_key: nan} def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Any = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Tuple ,_lowerCamelCase : Dict ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ) -> Optional[Any]: _lowerCAmelCase : Dict = pd.DataFrame(_UpperCamelCase ) _lowerCAmelCase : List[Any] = """variation""" _lowerCAmelCase : str = """diff_%""" _lowerCAmelCase : Any = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _lowerCAmelCase : List[Any] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCamelCase ): # as a fallback, use the minimal value as the sentinel _lowerCAmelCase : Union[str, Any] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCamelCase ): _lowerCAmelCase : Dict = df.apply( lambda _lowerCamelCase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 ,axis="""columns""" ,) # re-order columns _lowerCAmelCase : List[Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _lowerCAmelCase : int = df.reindex(_UpperCamelCase ,axis="""columns""" ) # reorder cols # capitalize _lowerCAmelCase : Any = df.rename(str.capitalize ,axis="""columns""" ) # make the cols as narrow as possible _lowerCAmelCase : List[str] = df.rename(lambda _lowerCamelCase : c.replace("""_""" ,"""<br>""" ) ,axis="""columns""" ) _lowerCAmelCase : Tuple = df.rename(lambda _lowerCamelCase : c.replace("""_""" ,"""\n""" ) ,axis="""columns""" ) _lowerCAmelCase : Optional[int] = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCamelCase ,floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCamelCase ,floatfmt=""".2f""" )] print("""\n\n""".join(_UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" ,default=_UpperCamelCase ,type=_UpperCamelCase ,required=_UpperCamelCase ,help="""Base cmd""" ,) parser.add_argument( """--variations""" ,default=_UpperCamelCase ,type=_UpperCamelCase ,nargs="""+""" ,required=_UpperCamelCase ,help="""Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'""" ,) parser.add_argument( """--base-variation""" ,default=_UpperCamelCase ,type=_UpperCamelCase ,help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" ,) parser.add_argument( """--target-metric-key""" ,default=_UpperCamelCase ,type=_UpperCamelCase ,required=_UpperCamelCase ,help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" ,) parser.add_argument( """--report-metric-keys""" ,default="""""" ,type=_UpperCamelCase ,help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples""" ,) parser.add_argument( """--repeat-times""" ,default=1 ,type=_UpperCamelCase ,help="""How many times to re-run each variation - an average will be reported""" ,) parser.add_argument( """--output_dir""" ,default="""output_benchmark""" ,type=_UpperCamelCase ,help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" ,) parser.add_argument( """--verbose""" ,default=_UpperCamelCase ,action="""store_true""" ,help="""Whether to show the outputs of each run or just the benchmark progress""" ,) _lowerCAmelCase : int = parser.parse_args() _lowerCAmelCase : int = args.output_dir Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) _lowerCAmelCase : Union[str, Any] = get_base_command(_UpperCamelCase ,_UpperCamelCase ) # split each dimension into its --foo variations _lowerCAmelCase : Union[str, Any] = [list(map(str.strip ,re.split(r"""\|""" ,_UpperCamelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _lowerCAmelCase : Optional[Any] = list(map(str.strip ,map(""" """.join ,itertools.product(*_UpperCamelCase ) ) ) ) _lowerCAmelCase : str = max(len(_UpperCamelCase ) for x in variations ) # split wanted keys _lowerCAmelCase : Optional[int] = args.report_metric_keys.split() # capture prints into a log file for convenience _lowerCAmelCase : Any = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script's output is also piped into {report_fn}" ) _lowerCAmelCase : int = Tee(_UpperCamelCase ) print(f"\n*** Running {len(_UpperCamelCase )} benchmarks:" ) print(f"Base command: {' '.join(_UpperCamelCase )}" ) _lowerCAmelCase : List[Any] = """variation""" _lowerCAmelCase : List[Any] = [] for id, variation in enumerate(tqdm(_UpperCamelCase ,desc="""Total completion: """ ,leave=_UpperCamelCase ) ): _lowerCAmelCase : Tuple = base_cmd + variation.split() results.append( process_run( id + 1 ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,args.target_metric_key ,_UpperCamelCase ,args.repeat_times ,_UpperCamelCase ,args.verbose ,) ) process_results(_UpperCamelCase ,args.target_metric_key ,_UpperCamelCase ,args.base_variation ,_UpperCamelCase ) if __name__ == "__main__": main()
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _a : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : Optional[Any]=False ) -> Tuple: _lowerCAmelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : Dict ,_lowerCamelCase : Optional[Any]=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : Tuple = """""" else: _lowerCAmelCase : Tuple = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Optional[int] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Optional[int] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : Any = in_proj_bias[: config.hidden_size] _lowerCAmelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : str = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> Optional[int]: _lowerCAmelCase : Dict = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Dict ) -> List[Any]: _lowerCAmelCase : Optional[Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : List[str] = val def SCREAMING_SNAKE_CASE ( ) -> int: _lowerCAmelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase : Optional[int] = Image.open(requests.get(_lowerCamelCase ,stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : int ,_lowerCamelCase : List[str]=True ) -> str: _lowerCAmelCase : str = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCAmelCase : int = 8 # set labels if required if not base_model: _lowerCAmelCase : int = 1000 _lowerCAmelCase : List[str] = """huggingface/label-files""" _lowerCAmelCase : List[str] = """imagenet-1k-id2label.json""" _lowerCAmelCase : Any = json.load(open(hf_hub_download(_lowerCamelCase ,_lowerCamelCase ,repo_type="""dataset""" ) ,"""r""" ) ) _lowerCAmelCase : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : List[Any] = idalabel _lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCAmelCase : Optional[int] = 384 _lowerCAmelCase : List[Any] = 1536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 # load original model from torch hub _lowerCAmelCase : List[Any] = torch.hub.load("""facebookresearch/dino:main""" ,_lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : Dict = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : str = create_rename_keys(_lowerCamelCase ,base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) read_in_q_k_v(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # load HuggingFace model if base_model: _lowerCAmelCase : Dict = ViTModel(_lowerCamelCase ,add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCAmelCase : Any = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCAmelCase : Dict = ViTImageProcessor() _lowerCAmelCase : List[Any] = image_processor(images=prepare_img() ,return_tensors="""pt""" ) _lowerCAmelCase : List[str] = encoding["""pixel_values"""] _lowerCAmelCase : Any = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : Union[str, Any] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase ,outputs.last_hidden_state[:, 0, :] ,atol=1e-1 ) else: _lowerCAmelCase : Optional[Any] = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase ,outputs.logits ,atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _a : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
700
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = '' _UpperCamelCase : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCamelCase : str = None # compression type in fsspec. ex: "gzip" _UpperCamelCase : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , a__ = "" , a__ = None , a__ = None , **a__ ): super().__init__(self , **a__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _lowerCAmelCase : Any = fsspec.open( a__ , mode="""rb""" , protocol=a__ , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _lowerCAmelCase : Tuple = os.path.basename(self.file.path.split("""::""" )[0] ) _lowerCAmelCase : int = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) _lowerCAmelCase : int = None @classmethod def __A ( cls , a__ ): return super()._strip_protocol(a__ ).lstrip("""/""" ) def __A ( self ): if self.dir_cache is None: _lowerCAmelCase : Optional[Any] = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} _lowerCAmelCase : int = {f["""name"""]: f} def __A ( self , a__ ): return self.file.open().read() def __A ( self , a__ , a__ = "rb" , a__=None , a__=True , a__=None , **a__ , ): _lowerCAmelCase : List[Any] = self._strip_protocol(a__ ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = 'bz2' _UpperCamelCase : Union[str, Any] = 'bz2' _UpperCamelCase : Union[str, Any] = '.bz2' class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = 'gzip' _UpperCamelCase : Dict = 'gzip' _UpperCamelCase : int = '.gz' class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = 'lz4' _UpperCamelCase : Optional[int] = 'lz4' _UpperCamelCase : List[str] = '.lz4' class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = 'xz' _UpperCamelCase : List[Any] = 'xz' _UpperCamelCase : Tuple = '.xz' class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = 'zstd' _UpperCamelCase : List[str] = 'zstd' _UpperCamelCase : Union[str, Any] = '.zst' def __init__( self , a__ , a__ = "rb" , a__ = None , a__ = None , a__ = DEFAULT_BLOCK_SIZE , **a__ , ): super().__init__( fo=a__ , mode=a__ , target_protocol=a__ , target_options=a__ , block_size=a__ , **a__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _lowerCAmelCase : Tuple = self.file.__enter__ class __A : def __init__( self , a__ ): _lowerCAmelCase : int = file_ def __enter__( self ): self._file.__enter__() return self def __exit__( self , *a__ , **a__ ): self._file.__exit__(*a__ , **a__ ) def __iter__( self ): return iter(self._file ) def __A ( self ): return next(self._file ) def __getattr__( self , a__ ): return getattr(self._file , a__ ) def fixed_enter(*a__ , **a__ ): return WrappedFile(_enter(*a__ , **a__ ) ) _lowerCAmelCase : List[str] = fixed_enter
701
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
0
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a : Tuple = logging.get_logger(__name__) class __A ( __snake_case ): _UpperCamelCase : str = ["pixel_values"] def __init__( self , a__ = True , a__ = None , a__ = PILImageResampling.BICUBIC , a__ = True , a__ = None , a__ = True , a__ = 1 / 255 , a__ = True , a__ = IMAGENET_DEFAULT_MEAN , a__ = IMAGENET_DEFAULT_STD , **a__ , ): super().__init__(**__UpperCamelCase ) _lowerCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224} _lowerCAmelCase : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _lowerCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase : int = get_size_dict(__UpperCamelCase , param_name="""crop_size""" ) _lowerCAmelCase : str = do_resize _lowerCAmelCase : Dict = size _lowerCAmelCase : Optional[int] = resample _lowerCAmelCase : Any = do_center_crop _lowerCAmelCase : List[str] = crop_size _lowerCAmelCase : List[str] = do_rescale _lowerCAmelCase : Optional[Any] = rescale_factor _lowerCAmelCase : List[Any] = do_normalize _lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase : int = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __A ( self , a__ , a__ , a__ = PILImageResampling.BICUBIC , a__ = None , **a__ , ): _lowerCAmelCase : List[Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase : str = int((256 / 224) * size["""shortest_edge"""] ) _lowerCAmelCase : Tuple = get_resize_output_image_size(__UpperCamelCase , size=__UpperCamelCase , default_to_square=__UpperCamelCase ) _lowerCAmelCase : Dict = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( __UpperCamelCase , size=(size_dict["""height"""], size_dict["""width"""]) , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def __A ( self , a__ , a__ , a__ = None , **a__ , ): _lowerCAmelCase : Dict = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size dict must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(__UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def __A ( self , a__ , a__ , a__ = None , **a__ , ): return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def __A ( self , a__ , a__ , a__ , a__ = None , **a__ , ): return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def __A ( self , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ): _lowerCAmelCase : List[Any] = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : int = resample if resample is not None else self.resample _lowerCAmelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Dict = image_std if image_std is not None else self.image_std _lowerCAmelCase : Dict = size if size is not None else self.size _lowerCAmelCase : List[Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : Dict = get_size_dict(__UpperCamelCase , param_name="""crop_size""" ) _lowerCAmelCase : Union[str, Any] = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowerCAmelCase : List[Any] = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _lowerCAmelCase : Optional[int] = [self.resize(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for image in images] if do_center_crop: _lowerCAmelCase : str = [self.center_crop(__UpperCamelCase , __UpperCamelCase ) for image in images] if do_rescale: _lowerCAmelCase : List[str] = [self.rescale(__UpperCamelCase , __UpperCamelCase ) for image in images] if do_normalize: _lowerCAmelCase : Any = [self.normalize(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for image in images] _lowerCAmelCase : List[Any] = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _lowerCAmelCase : Tuple = {"""pixel_values""": images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
702
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _a : List[str] = logging.get_logger(__name__) class __A ( a__ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
703
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Any = ArgumentParser("""Transformers CLI tool""" ,usage="""transformers-cli <command> [<args>]""" ) _lowerCAmelCase : str = parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) DownloadCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) RunCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) ServeCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) UserCommands.register_subcommand(SCREAMING_SNAKE_CASE__ ) AddNewModelCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) AddNewModelLikeCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) LfsCommands.register_subcommand(SCREAMING_SNAKE_CASE__ ) PTtoTFCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) # Let's go _lowerCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE__ ,"""func""" ): parser.print_help() exit(1 ) # Run _lowerCAmelCase : Tuple = args.func(SCREAMING_SNAKE_CASE__ ) service.run() if __name__ == "__main__": main()
704
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : List[str] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class __A ( __SCREAMING_SNAKE_CASE ): _UpperCamelCase : str = "camembert" def __init__( self , a__=30522 , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=1 , a__=0 , a__=2 , a__="absolute" , a__=True , a__=None , **a__ , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = max_position_embeddings _lowerCAmelCase : Optional[int] = type_vocab_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Tuple = position_embedding_type _lowerCAmelCase : Tuple = use_cache _lowerCAmelCase : Dict = classifier_dropout class __A ( __SCREAMING_SNAKE_CASE ): @property def __A ( self ): if self.task == "multiple-choice": _lowerCAmelCase : List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _lowerCAmelCase : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
705
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["torch", "transformers", "onnx"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["torch", "transformers", "onnx"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["torch", "transformers", "onnx"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["torch", "transformers", "onnx"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["torch", "transformers", "onnx"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
706
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
0
"""simple docstring""" from __future__ import annotations import requests def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> dict: _lowerCAmelCase : List[Any] = f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(lowercase_ ).json() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] = 10 ) -> list[dict]: _lowerCAmelCase : Optional[int] = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" _lowerCAmelCase : List[Any] = requests.get(lowercase_ ).json()[:max_stories] return [get_hackernews_story(lowercase_ ) for story_id in story_ids] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str = 10 ) -> str: _lowerCAmelCase : List[Any] = hackernews_top_stories(lowercase_ ) return "\n".join("""* [{title}]({url})""".format(**lowercase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ) -> np.ndarray: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> np.ndarray: return (gray > 127) & (gray <= 255) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Union[str, Any] ) -> np.ndarray: _lowerCAmelCase : Optional[Any] = np.zeros_like(__UpperCamelCase ) _lowerCAmelCase : Union[str, Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image _lowerCAmelCase : str = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): _lowerCAmelCase : int = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() _lowerCAmelCase : Union[str, Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image _a : List[Any] = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' _a : Optional[Any] = np.array(Image.open(lena_path)) # kernel to be applied _a : Union[str, Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _a : Optional[int] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _a : List[Any] = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
708
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a : Optional[Any] = 16 _a : Tuple = 32 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Optional[Any] = 16 ) -> str: _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _lowerCAmelCase : Union[str, Any] = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(_lowerCamelCase : List[str] ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : Any = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=_lowerCamelCase ,max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase : List[Any] = datasets.map( _lowerCamelCase ,batched=_lowerCamelCase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : int = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(_lowerCamelCase : int ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase : Dict = 16 elif accelerator.mixed_precision != "no": _lowerCAmelCase : List[str] = 8 else: _lowerCAmelCase : Union[str, Any] = None return tokenizer.pad( _lowerCamelCase ,padding="""longest""" ,max_length=_lowerCamelCase ,pad_to_multiple_of=_lowerCamelCase ,return_tensors="""pt""" ,) # Instantiate dataloaders. _lowerCAmelCase : Tuple = DataLoader( tokenized_datasets["""train"""] ,shuffle=_lowerCamelCase ,collate_fn=_lowerCamelCase ,batch_size=_lowerCamelCase ) _lowerCAmelCase : int = DataLoader( tokenized_datasets["""validation"""] ,shuffle=_lowerCamelCase ,collate_fn=_lowerCamelCase ,batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _a : Optional[int] = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : List[str] ) -> Dict: if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,_lowerCamelCase ) == "1": _lowerCAmelCase : List[Any] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _lowerCAmelCase : List[str] = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,log_with="""all""" ,project_dir=args.project_dir ) else: _lowerCAmelCase : List[Any] = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : Any = config["""lr"""] _lowerCAmelCase : Dict = int(config["""num_epochs"""] ) _lowerCAmelCase : List[Any] = int(config["""seed"""] ) _lowerCAmelCase : Dict = int(config["""batch_size"""] ) set_seed(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = get_dataloaders(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : List[str] = evaluate.load("""glue""" ,"""mrpc""" ) # If the batch size is too big we use gradient accumulation _lowerCAmelCase : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowerCAmelCase : Tuple = batch_size // MAX_GPU_BATCH_SIZE _lowerCAmelCase : Tuple = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : List[str] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase : Any = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase : Tuple = AdamW(params=model.parameters() ,lr=_lowerCamelCase ) # Instantiate scheduler _lowerCAmelCase : int = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase ,num_warmup_steps=100 ,num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = accelerator.prepare( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _lowerCAmelCase : str = os.path.split(_lowerCamelCase )[-1].split(""".""" )[0] accelerator.init_trackers(_lowerCamelCase ,_lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _lowerCAmelCase : Any = 0 for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCAmelCase : Dict = model(**_lowerCamelCase ) _lowerCAmelCase : int = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _lowerCAmelCase : Tuple = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : Tuple = model(**_lowerCamelCase ) _lowerCAmelCase : Tuple = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowerCamelCase ,references=_lowerCamelCase ,) _lowerCAmelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" ,_lowerCamelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(_lowerCamelCase ), """epoch""": epoch, } ,step=_lowerCamelCase ,) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def SCREAMING_SNAKE_CASE ( ) -> List[Any]: _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=_lowerCamelCase ,default=_lowerCamelCase ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" ,action="""store_true""" ,help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" ,) parser.add_argument( """--project_dir""" ,type=_lowerCamelCase ,default="""logs""" ,help="""Location on where to store experiment tracking logs` and relevent project information""" ,) _lowerCAmelCase : Optional[Any] = parser.parse_args() _lowerCAmelCase : Optional[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowerCamelCase ,_lowerCamelCase ) if __name__ == "__main__": main()
709
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
0
"""simple docstring""" _a : Optional[int] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[Any] ) -> int: # Return True if there is node that has not iterated. _lowerCAmelCase : str = [False] * len(snake_case_ ) _lowerCAmelCase : Optional[int] = [s] _lowerCAmelCase : str = True while queue: _lowerCAmelCase : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case_ ) _lowerCAmelCase : Tuple = True _lowerCAmelCase : Tuple = u return visited[t] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : int ,_lowerCamelCase : Tuple ) -> Union[str, Any]: _lowerCAmelCase : List[str] = [-1] * (len(snake_case_ )) _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : Dict = [] _lowerCAmelCase : Any = [i[:] for i in graph] # Record original cut, copy. while bfs(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ): _lowerCAmelCase : Optional[int] = float("""Inf""" ) _lowerCAmelCase : Dict = sink while s != source: # Find the minimum value in select path _lowerCAmelCase : Any = min(snake_case_ ,graph[parent[s]][s] ) _lowerCAmelCase : Tuple = parent[s] max_flow += path_flow _lowerCAmelCase : Tuple = sink while v != source: _lowerCAmelCase : Optional[int] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCAmelCase : Union[str, Any] = parent[v] for i in range(len(snake_case_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
710
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __A : def __init__( self , a__ , a__=13 , a__=2 , a__=24 , a__=16 , a__=True , a__=True , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.0_2 , a__=None , a__=2 , a__=2 , ): _lowerCAmelCase : Dict = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : int = max_length _lowerCAmelCase : Tuple = num_mel_bins _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Dict = type_sequence_label_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : List[str] = scope _lowerCAmelCase : List[Any] = frequency_stride _lowerCAmelCase : str = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase : str = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _lowerCAmelCase : int = (self.max_length - self.patch_size) // self.time_stride + 1 _lowerCAmelCase : Any = frequency_out_dimension * time_out_dimension _lowerCAmelCase : Dict = num_patches + 2 def __A ( self ): _lowerCAmelCase : str = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : List[Any] = self.get_config() return config, input_values, labels def __A ( self ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = ASTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _lowerCAmelCase : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self ): _lowerCAmelCase : Any = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : str = config_and_inputs _lowerCAmelCase : Optional[int] = {'''input_values''': input_values} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[str] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _UpperCamelCase : List[str] = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) _UpperCamelCase : Any = False _UpperCamelCase : Tuple = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Union[str, Any] = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def __A ( self ): _lowerCAmelCase : Union[str, Any] = ASTModelTester(self ) _lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(UpperCamelCase__ ) _lowerCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Dict = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ['''input_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __A ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def __A ( self ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : int = ASTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: _lowerCAmelCase : Tuple = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" ,filename="""sample_audio.flac""" ,repo_type="""dataset""" ) _lowerCAmelCase : List[Any] = torchaudio.load(__UpperCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class __A ( unittest.TestCase ): @cached_property def __A ( self ): return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.default_feature_extractor _lowerCAmelCase : Optional[Any] = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(UpperCamelCase__ ) _lowerCAmelCase : str = self.default_feature_extractor _lowerCAmelCase : Optional[int] = prepare_audio() _lowerCAmelCase : Optional[Any] = audio.squeeze().numpy() _lowerCAmelCase : Any = feature_extractor(UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(**UpperCamelCase__ ) # verify the logits _lowerCAmelCase : Optional[int] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) _lowerCAmelCase : str = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
711
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
0
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } _a : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Dict ) -> List[str]: for attribute in key.split(""".""" ): _lowerCAmelCase : Tuple = getattr(lowerCamelCase_ ,lowerCamelCase_ ) if weight_type is not None: _lowerCAmelCase : Union[str, Any] = getattr(lowerCamelCase_ ,lowerCamelCase_ ).shape else: _lowerCAmelCase : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Dict = value elif weight_type == "weight_g": _lowerCAmelCase : List[str] = value elif weight_type == "weight_v": _lowerCAmelCase : Tuple = value elif weight_type == "bias": _lowerCAmelCase : List[Any] = value else: _lowerCAmelCase : List[Any] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : Dict ) -> Dict: _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Optional[Any] = fairseq_model.state_dict() _lowerCAmelCase : List[str] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,hf_model.config.feat_extract_norm == """group""" ,) _lowerCAmelCase : List[str] = True else: for key, mapped_key in MAPPING.items(): _lowerCAmelCase : str = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue _lowerCAmelCase : int = True if "*" in mapped_key: _lowerCAmelCase : Tuple = name.split(lowerCamelCase_ )[0].split(""".""" )[-2] _lowerCAmelCase : int = mapped_key.replace("""*""" ,lowerCamelCase_ ) if "weight_g" in name: _lowerCAmelCase : str = """weight_g""" elif "weight_v" in name: _lowerCAmelCase : Optional[Any] = """weight_v""" elif "bias" in name: _lowerCAmelCase : List[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : Dict = """weight""" else: _lowerCAmelCase : Tuple = None set_recursively(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(f"Unused weights: {unused_weights}" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : List[str] ,_lowerCamelCase : Optional[int] ) -> Dict: _lowerCAmelCase : Optional[Any] = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase : List[str] = name.split(""".""" ) _lowerCAmelCase : Tuple = int(items[0] ) _lowerCAmelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Union[str, Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) _lowerCAmelCase : Optional[int] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : List[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCamelCase_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : str=None ,_lowerCamelCase : Optional[Any]=None ,_lowerCamelCase : str=True ) -> List[Any]: if config_path is not None: _lowerCAmelCase : Union[str, Any] = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) else: _lowerCAmelCase : Optional[Any] = UniSpeechSatConfig() _lowerCAmelCase : Dict = """""" if is_finetuned: _lowerCAmelCase : str = UniSpeechSatForCTC(lowerCamelCase_ ) else: _lowerCAmelCase : Optional[Any] = UniSpeechSatForPreTraining(lowerCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) _lowerCAmelCase : int = model[0].eval() recursively_load_weights(lowerCamelCase_ ,lowerCamelCase_ ) hf_wavavec.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _a : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) _a : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
712
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
0
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _a : Union[str, Any] = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] _a : Dict = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : List[str] = calculate_rouge(__snake_case ,__snake_case ,bootstrap_aggregation=__snake_case ,rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(__snake_case ,__snake_case ) _lowerCAmelCase : Optional[int] = calculate_rouge(__snake_case ,__snake_case ,bootstrap_aggregation=__snake_case ,rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def SCREAMING_SNAKE_CASE ( ) -> Any: _lowerCAmelCase : List[Any] = "rougeLsum" _lowerCAmelCase : Optional[Any] = calculate_rouge(__snake_case ,__snake_case ,newline_sep=__snake_case ,rouge_keys=[k] )[k] _lowerCAmelCase : Optional[Any] = calculate_rouge(__snake_case ,__snake_case ,newline_sep=__snake_case ,rouge_keys=[k] )[k] assert score > score_no_sep def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : str = ["rouge1", "rouge2", "rougeL"] _lowerCAmelCase : Optional[Any] = calculate_rouge(__snake_case ,__snake_case ,newline_sep=__snake_case ,rouge_keys=__snake_case ) _lowerCAmelCase : Union[str, Any] = calculate_rouge(__snake_case ,__snake_case ,newline_sep=__snake_case ,rouge_keys=__snake_case ) assert score_sep == score_no_sep def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: _lowerCAmelCase : List[str] = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] _lowerCAmelCase : Optional[Any] = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(__snake_case ,__snake_case ,newline_sep=__snake_case ) == calculate_rouge(__snake_case ,__snake_case ,newline_sep=__snake_case ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: _lowerCAmelCase : Optional[Any] = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] _lowerCAmelCase : Optional[int] = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] _lowerCAmelCase : Any = calculate_rouge(__snake_case ,__snake_case ,rouge_keys=["""rougeLsum"""] ,newline_sep=__snake_case )["rougeLsum"] _lowerCAmelCase : Union[str, Any] = calculate_rouge(__snake_case ,__snake_case ,rouge_keys=["""rougeLsum"""] )["rougeLsum"] assert new_score > prev_score def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: _lowerCAmelCase : int = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) _lowerCAmelCase : Any = calculate_rouge_path(data_dir.joinpath("""test.source""" ) ,data_dir.joinpath("""test.target""" ) ) assert isinstance(__snake_case ,__snake_case ) _lowerCAmelCase : List[str] = calculate_rouge_path( data_dir.joinpath("""test.source""" ) ,data_dir.joinpath("""test.target""" ) ,bootstrap_aggregation=__snake_case ) assert isinstance(__snake_case ,__snake_case )
713
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=16 , a__=36 , a__=6 , a__=6 , a__=6 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ): _lowerCAmelCase : int = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : Optional[Any] = seq_length _lowerCAmelCase : Optional[Any] = is_training _lowerCAmelCase : str = use_input_mask _lowerCAmelCase : List[str] = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : Optional[int] = embedding_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Tuple = num_hidden_groups _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[Any] = num_labels _lowerCAmelCase : Optional[int] = num_choices _lowerCAmelCase : Any = scope def __A ( self ): _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Dict = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : str = None if self.use_token_type_ids: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Dict = None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Any = None if self.use_labels: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = AlbertModel(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase : Tuple = model(__A , attention_mask=__A , token_type_ids=__A ) _lowerCAmelCase : Optional[Any] = model(__A , token_type_ids=__A ) _lowerCAmelCase : List[Any] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = AlbertForPreTraining(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase : Optional[Any] = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , sentence_order_label=__A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = AlbertForMaskedLM(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase : List[Any] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Dict = AlbertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase : Optional[int] = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Any = AlbertForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCAmelCase : str = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = self.num_labels _lowerCAmelCase : str = AlbertForTokenClassification(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase : Dict = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = self.num_choices _lowerCAmelCase : Optional[Any] = AlbertForMultipleChoice(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : List[Any] = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Dict = config_and_inputs _lowerCAmelCase : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( __lowercase , __lowercase , unittest.TestCase ): _UpperCamelCase : Dict = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : int = True def __A ( self , a__ , a__ , a__=False ): _lowerCAmelCase : int = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): _lowerCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A ) _lowerCAmelCase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def __A ( self ): _lowerCAmelCase : Union[str, Any] = AlbertModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self , config_class=__A , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : int = type self.model_tester.create_and_check_model(*__A ) @slow def __A ( self ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Tuple = AlbertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class __A ( unittest.TestCase ): @slow def __A ( self ): _lowerCAmelCase : int = AlbertModel.from_pretrained("""albert-base-v2""" ) _lowerCAmelCase : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCAmelCase : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase : Tuple = model(__A , attention_mask=__A )[0] _lowerCAmelCase : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) _lowerCAmelCase : List[str] = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) )
714
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __A ( UpperCamelCase__ ): def __A ( self , a__ ): with open(__A , encoding="""utf-8""" ) as input_file: _lowerCAmelCase : Optional[int] = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) _lowerCAmelCase : List[Any] = input_file.read() _lowerCAmelCase : Tuple = regexp.search(__A ) return match def __A ( self , a__ ): with open(__A , encoding="""utf-8""" ) as input_file: _lowerCAmelCase : Union[str, Any] = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) _lowerCAmelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _lowerCAmelCase : Optional[Any] = regexp.finditer(__A ) _lowerCAmelCase : Any = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __A ( self ): _lowerCAmelCase : Optional[int] = Path("""./datasets""" ) _lowerCAmelCase : int = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__A ) ): raise AssertionError(F"open(...) must use utf-8 encoding in {dataset}" ) def __A ( self ): _lowerCAmelCase : Optional[Any] = Path("""./datasets""" ) _lowerCAmelCase : Any = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(__A ) ): raise AssertionError(F"print statement found in {dataset}. Use datasets.logger/logging instead." )
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any] = logging.get_logger(__name__) class __A ( __UpperCAmelCase ): _UpperCamelCase : str = '''encoder-decoder''' _UpperCamelCase : List[Any] = True def __init__( self , **a__ ): super().__init__(**__SCREAMING_SNAKE_CASE ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase : int = kwargs.pop("""encoder""" ) _lowerCAmelCase : Union[str, Any] = encoder_config.pop("""model_type""" ) _lowerCAmelCase : int = kwargs.pop("""decoder""" ) _lowerCAmelCase : str = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : Tuple = AutoConfig.for_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) _lowerCAmelCase : List[str] = AutoConfig.for_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) _lowerCAmelCase : Dict = True @classmethod def __A ( cls , a__ , a__ , **a__ ): logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Union[str, Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__SCREAMING_SNAKE_CASE ) def __A ( self ): _lowerCAmelCase : str = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : Optional[Any] = self.encoder.to_dict() _lowerCAmelCase : List[str] = self.decoder.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
716
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : Any = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = "gptj" _UpperCamelCase : Union[str, Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , a__=50400 , a__=2048 , a__=4096 , a__=28 , a__=16 , a__=64 , a__=None , a__="gelu_new" , a__=0.0 , a__=0.0 , a__=0.0 , a__=1e-5 , a__=0.0_2 , a__=True , a__=50256 , a__=50256 , a__=False , **a__ , ): _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : int = n_positions _lowerCAmelCase : List[Any] = n_embd _lowerCAmelCase : int = n_layer _lowerCAmelCase : Union[str, Any] = n_head _lowerCAmelCase : List[Any] = n_inner _lowerCAmelCase : Optional[Any] = rotary_dim _lowerCAmelCase : Optional[int] = activation_function _lowerCAmelCase : Union[str, Any] = resid_pdrop _lowerCAmelCase : List[str] = embd_pdrop _lowerCAmelCase : Optional[Any] = attn_pdrop _lowerCAmelCase : str = layer_norm_epsilon _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[int] = use_cache _lowerCAmelCase : int = bos_token_id _lowerCAmelCase : Dict = eos_token_id super().__init__( bos_token_id=__A , eos_token_id=__A , tie_word_embeddings=__A , **__A ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ = "default" , a__ = None , a__ = False , ): super().__init__(__A , task=__A , patching_specs=__A , use_past=__A ) if not getattr(self._config , """pad_token_id""" , __A ): # TODO: how to do that better? _lowerCAmelCase : Dict = 0 @property def __A ( self ): _lowerCAmelCase : int = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__A , direction="""inputs""" ) _lowerCAmelCase : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: _lowerCAmelCase : Any = {0: """batch""", 1: """sequence"""} return common_inputs @property def __A ( self ): return self._config.n_layer @property def __A ( self ): return self._config.n_head def __A ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , ): _lowerCAmelCase : Tuple = super(__A , self ).generate_dummy_inputs( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) # We need to order the input in the way they appears in the forward() _lowerCAmelCase : List[str] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase : Optional[int] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowerCAmelCase : Any = seqlen + 2 _lowerCAmelCase : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase : List[str] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] _lowerCAmelCase : str = common_inputs["""attention_mask"""] if self.use_past: _lowerCAmelCase : int = ordered_inputs["""attention_mask"""].dtype _lowerCAmelCase : Union[str, Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__A , __A , dtype=__A )] , dim=1 ) return ordered_inputs @property def __A ( self ): return 13
718
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ) -> Dict: if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) _lowerCAmelCase : Any = sum(_lowerCamelCase ) / len(_lowerCamelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
0
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _a : int = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
720
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
0
"""simple docstring""" from __future__ import annotations _a : Union[str, Any] = 1.60_21e-19 # units = C def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ,) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : torch.FloatTensor _UpperCamelCase : Optional[torch.FloatTensor] = None def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict=0.9_99 ,_lowerCamelCase : List[str]="cosine" ,) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _lowerCAmelCase : Optional[Any] = [] for i in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = i / num_diffusion_timesteps _lowerCAmelCase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) ,_lowerCamelCase ) ) return torch.tensor(_lowerCamelCase ,dtype=torch.floataa ) class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = 1 @register_to_config def __init__( self , a__ = 1000 , a__ = 0.0_0_0_1 , a__ = 0.0_2 , a__ = "linear" , a__ = None , a__ = True , a__ = True , a__ = 0 , a__ = "epsilon" , a__ = 1.0 , **a__ , ): if kwargs.get("""set_alpha_to_one""" , UpperCamelCase__ ) is not None: _lowerCAmelCase : Any = ( """The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.""" ) deprecate("""set_alpha_to_one""" , """1.0.0""" , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) _lowerCAmelCase : str = kwargs["""set_alpha_to_one"""] if trained_betas is not None: _lowerCAmelCase : Union[str, Any] = torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase : List[Any] = torch.linspace(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase : Dict = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase : List[str] = betas_for_alpha_bar(UpperCamelCase__ ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) _lowerCAmelCase : Dict = 1.0 - self.betas _lowerCAmelCase : List[Any] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase : int = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase : Union[str, Any] = 1.0 # setable values _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = torch.from_numpy(np.arange(0 , UpperCamelCase__ ).copy().astype(np.intaa ) ) def __A ( self , a__ , a__ = None ): return sample def __A ( self , a__ , a__ = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" F" maximal {self.config.num_train_timesteps} timesteps." ) _lowerCAmelCase : List[Any] = num_inference_steps _lowerCAmelCase : List[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase : Optional[int] = (np.arange(0 , UpperCamelCase__ ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase : int = torch.from_numpy(UpperCamelCase__ ).to(UpperCamelCase__ ) self.timesteps += self.config.steps_offset def __A ( self , a__ , a__ , a__ , a__ = 0.0 , a__ = False , a__ = None , a__ = True , ): _lowerCAmelCase : Optional[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase : int = self.alphas_cumprod[timestep] _lowerCAmelCase : Any = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase : List[str] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase : Optional[int] = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase : List[Any] = model_output _lowerCAmelCase : Union[str, Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" """ `v_prediction`""" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase : Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase : Dict = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=UpperCamelCase__ , pred_original_sample=UpperCamelCase__ ) def __len__( self ): return self.config.num_train_timesteps
700
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Dict: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowerCamelCase ,_lowerCamelCase ): raise TypeError("""Input value must be a 'int' type""" ) return bin(_lowerCamelCase ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ) -> bool: return len(set(SCREAMING_SNAKE_CASE_ ) ) == len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : List[str] ) -> int: return abs(SCREAMING_SNAKE_CASE_ ) if a == 0 else greatest_common_divisor(b % a ,SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Union[str, Any] ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. _lowerCAmelCase : Union[str, Any] = y, x % y return abs(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( ) -> Any: try: _lowerCAmelCase : Optional[int] = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) _lowerCAmelCase : Dict = int(nums[0] ) _lowerCAmelCase : str = int(nums[1] ) print( f"greatest_common_divisor({num_a}, {num_a}) = " f"{greatest_common_divisor(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )}" ) print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )}" ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
703
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
0
"""simple docstring""" from manim import * class __A ( __A ): def __A ( self ): _lowerCAmelCase : Optional[int] = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase : List[Any] = Rectangle(height=0.2_5 , width=0.2_5 ) _lowerCAmelCase : Optional[int] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _lowerCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] _lowerCAmelCase : List[str] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Tuple = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : int = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Optional[int] = Text("""CPU""" , font_size=24 ) _lowerCAmelCase : Any = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) _lowerCAmelCase : Any = [mem.copy() for i in range(4 )] _lowerCAmelCase : List[str] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : int = Text("""GPU""" , font_size=24 ) _lowerCAmelCase : Optional[int] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) _lowerCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Optional[int] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : int = Text("""Model""" , font_size=24 ) _lowerCAmelCase : Any = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) _lowerCAmelCase : Tuple = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) model_cpu_arr.append(a__ ) self.add(*a__ , *a__ , *a__ ) _lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Tuple = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : int = Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase : Union[str, Any] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a__ ) _lowerCAmelCase : Tuple = [] _lowerCAmelCase : List[Any] = [] for i, rect in enumerate(a__ ): _lowerCAmelCase : Tuple = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) ckpt_arr.append(a__ ) _lowerCAmelCase : Tuple = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a__ ) self.add(*a__ , *a__ ) _lowerCAmelCase : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase : Tuple = MarkupText( F"<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) _lowerCAmelCase : Any = MarkupText( F"<span fgcolor=\'{BLUE}\'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a__ ) _lowerCAmelCase : Any = MarkupText( F"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) _lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] _lowerCAmelCase : List[Any] = [meta_mem.copy() for i in range(6 )] _lowerCAmelCase : Union[str, Any] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : str = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Any = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : int = Text("""Disk""" , font_size=24 ) _lowerCAmelCase : Dict = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(a__ , run_time=3 ) , Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) _lowerCAmelCase : Optional[int] = [] for i, rect in enumerate(a__ ): _lowerCAmelCase : str = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(FadeOut(a__ ) ) _lowerCAmelCase : Any = MarkupText(F"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ , run_time=3 ) ) self.play( FadeOut(a__ , a__ , *a__ , *a__ ) , ) self.wait()
704
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
0
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : str ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Any ) -> Dict: # Load configuration defined in the metadata file with open(__snake_case ) as metadata_file: _lowerCAmelCase : Union[str, Any] = json.load(__snake_case ) _lowerCAmelCase : str = LukeConfig(use_entity_aware_attention=__snake_case ,**metadata["""model_config"""] ) # Load in the weights from the checkpoint_path _lowerCAmelCase : List[str] = torch.load(__snake_case ,map_location="""cpu""" ) # Load the entity vocab file _lowerCAmelCase : Tuple = load_entity_vocab(__snake_case ) _lowerCAmelCase : int = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks _lowerCAmelCase : str = AddedToken("""<ent>""" ,lstrip=__snake_case ,rstrip=__snake_case ) _lowerCAmelCase : Tuple = AddedToken("""<ent2>""" ,lstrip=__snake_case ,rstrip=__snake_case ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(__snake_case ) with open(os.path.join(__snake_case ,LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) ,"""w""" ) as f: json.dump(__snake_case ,__snake_case ) _lowerCAmelCase : Dict = LukeTokenizer.from_pretrained(__snake_case ) # Initialize the embeddings of the special tokens _lowerCAmelCase : int = state_dict["""embeddings.word_embeddings.weight"""] _lowerCAmelCase : Tuple = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) _lowerCAmelCase : List[Any] = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) _lowerCAmelCase : Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _lowerCAmelCase : Tuple = f"encoder.layer.{layer_index}.attention.self." _lowerCAmelCase : int = state_dict[prefix + matrix_name] _lowerCAmelCase : int = state_dict[prefix + matrix_name] _lowerCAmelCase : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _lowerCAmelCase : Any = state_dict["""entity_embeddings.entity_embeddings.weight"""] _lowerCAmelCase : Union[str, Any] = entity_emb[entity_vocab["""[MASK]"""]] _lowerCAmelCase : Union[str, Any] = LukeModel(config=__snake_case ).eval() _lowerCAmelCase , _lowerCAmelCase : str = model.load_state_dict(__snake_case ,strict=__snake_case ) if not (len(__snake_case ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"Missing keys {', '.join(__snake_case )}. Expected only missing embeddings.position_ids" ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" f" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}" ) # Check outputs _lowerCAmelCase : List[str] = LukeTokenizer.from_pretrained(__snake_case ,task="""entity_classification""" ) _lowerCAmelCase : Tuple = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) _lowerCAmelCase : Optional[Any] = (39, 42) _lowerCAmelCase : List[str] = tokenizer(__snake_case ,entity_spans=[span] ,add_prefix_space=__snake_case ,return_tensors="""pt""" ) _lowerCAmelCase : Tuple = model(**__snake_case ) # Verify word hidden states if model_size == "large": _lowerCAmelCase : str = torch.Size((1, 42, 1024) ) _lowerCAmelCase : List[str] = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base _lowerCAmelCase : Union[str, Any] = torch.Size((1, 42, 768) ) _lowerCAmelCase : List[Any] = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__snake_case ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _lowerCAmelCase : Optional[int] = torch.Size((1, 1, 1024) ) _lowerCAmelCase : List[Any] = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base _lowerCAmelCase : Union[str, Any] = torch.Size((1, 1, 768) ) _lowerCAmelCase : Optional[int] = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__snake_case ,atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(__snake_case ) ) model.save_pretrained(__snake_case ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> Union[str, Any]: _lowerCAmelCase : int = {} with open(__snake_case ,"""r""" ,encoding="""utf-8""" ) as f: for index, line in enumerate(__snake_case ): _lowerCAmelCase , _lowerCAmelCase : int = line.rstrip().split("""\t""" ) _lowerCAmelCase : Any = index return entity_vocab if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) _a : Any = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
705
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
0