code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : def __init__( self , a__ , a__=13 , a__=7 , a__=6 , a__=17 , a__=23 , a__=11 , a__=True , ): _lowerCAmelCase : int = parent _lowerCAmelCase : Union[str, Any] = batch_size _lowerCAmelCase : Optional[int] = seq_length _lowerCAmelCase : Optional[int] = act_dim _lowerCAmelCase : Any = state_dim _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Dict = max_length _lowerCAmelCase : int = is_training def __A ( self ): _lowerCAmelCase : List[str] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _lowerCAmelCase : Any = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _lowerCAmelCase : Dict = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCAmelCase : Any = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCAmelCase : Any = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) _lowerCAmelCase : List[str] = random_attention_mask((self.batch_size, self.seq_length) ) _lowerCAmelCase : str = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __A ( self ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Any = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : List[Any] = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __A ( self ): _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs _lowerCAmelCase : Dict = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class __A ( __a , __a , __a , unittest.TestCase ): _UpperCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () _UpperCamelCase : List[str] = () _UpperCamelCase : Optional[int] = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _UpperCamelCase : Optional[int] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : str = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : str = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Dict = False _UpperCamelCase : List[str] = False def __A ( self ): _lowerCAmelCase : Any = DecisionTransformerModelTester(self ) _lowerCAmelCase : Tuple = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __A ( self ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case__ ) _lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : str = [*signature.parameters.keys()] _lowerCAmelCase : Dict = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class __A ( unittest.TestCase ): @slow def __A ( self ): _lowerCAmelCase : int = 2 # number of steps of autoregressive prediction we will perform _lowerCAmelCase : str = 10 # defined by the RL environment, may be normalized _lowerCAmelCase : str = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) _lowerCAmelCase : Dict = model.to(snake_case__ ) _lowerCAmelCase : str = model.config torch.manual_seed(0 ) _lowerCAmelCase : Any = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() _lowerCAmelCase : List[Any] = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=snake_case__ ) _lowerCAmelCase : List[Any] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _lowerCAmelCase : int = state _lowerCAmelCase : List[str] = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) _lowerCAmelCase : Dict = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) _lowerCAmelCase : Union[str, Any] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): _lowerCAmelCase : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) _lowerCAmelCase : Union[str, Any] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) _lowerCAmelCase : Union[str, Any] = action_pred[0, -1] _lowerCAmelCase : List[Any] = torch.cat([states, state] , dim=1 ) _lowerCAmelCase : List[str] = returns_to_go[0, -1] - reward _lowerCAmelCase : Tuple = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _lowerCAmelCase : Any = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
706
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Any: # noqa: E741 _lowerCAmelCase : Optional[int] = len(_snake_case ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Tuple = [0] * n _lowerCAmelCase : List[str] = [False] * n _lowerCAmelCase : Optional[Any] = [False] * n def dfs(_lowerCamelCase : str ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Tuple ,_lowerCamelCase : Tuple ): if parent == root: out_edge_count += 1 _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : List[Any] = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase : int = dfs(_snake_case ,_snake_case ,_snake_case ,_snake_case ) _lowerCAmelCase : List[Any] = min(low[at] ,low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase : Dict = True # AP found via cycle if at == low[to]: _lowerCAmelCase : List[Any] = True else: _lowerCAmelCase : int = min(low[at] ,_snake_case ) return out_edge_count for i in range(_snake_case ): if not visited[i]: _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = dfs(_snake_case ,_snake_case ,-1 ,_snake_case ) _lowerCAmelCase : Optional[Any] = out_edge_count > 1 for x in range(len(_snake_case ) ): if is_art[x] is True: print(_snake_case ) # Adjacency list of graph _a : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
708
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
0
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _a : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class __A ( lowerCAmelCase__ ): def __init__( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: _lowerCAmelCase : Tuple = ( F"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" F" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase : List[str] = dict(scheduler.config ) _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Optional[int] = FrozenDict(_SCREAMING_SNAKE_CASE ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: _lowerCAmelCase : int = ( F"The configuration file of this scheduler: {scheduler} has not set the configuration" """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase : Tuple = dict(scheduler.config ) _lowerCAmelCase : str = True _lowerCAmelCase : str = FrozenDict(_SCREAMING_SNAKE_CASE ) if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=_SCREAMING_SNAKE_CASE , segmentation_processor=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , ) def __A ( self , a__ = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def __A ( self ): self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) def __A ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : Dict = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 50 , a__ = 7.5 , a__ = None , a__ = 1 , a__ = 0.0 , a__ = None , a__ = None , a__ = "pil" , a__ = True , a__ = None , a__ = 1 , **a__ , ): _lowerCAmelCase : Any = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) _lowerCAmelCase : str = self.segmentation_model(**_SCREAMING_SNAKE_CASE ) _lowerCAmelCase : int = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _lowerCAmelCase : Any = self.numpy_to_pil(_SCREAMING_SNAKE_CASE )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _lowerCAmelCase : Optional[int] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , )
709
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
0
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _a : Optional[Any] = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 1_000, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } _a : Optional[int] = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 1_000, 'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } _a : List[str] = { 'sample_size': 256, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } _a : Union[str, Any] = { 'num_train_timesteps': 40, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } _a : Optional[int] = { 'num_train_timesteps': 201, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } _a : Any = { 'num_train_timesteps': 151, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ) -> str: if isinstance(A_ ,A_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : List[str] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Any ,_lowerCamelCase : Union[str, Any]=False ) -> Union[str, Any]: _lowerCAmelCase : Optional[int] = checkpoint[f"{old_prefix}.in_layers.0.weight"] _lowerCAmelCase : Dict = checkpoint[f"{old_prefix}.in_layers.0.bias"] _lowerCAmelCase : Optional[int] = checkpoint[f"{old_prefix}.in_layers.2.weight"] _lowerCAmelCase : List[Any] = checkpoint[f"{old_prefix}.in_layers.2.bias"] _lowerCAmelCase : Union[str, Any] = checkpoint[f"{old_prefix}.emb_layers.1.weight"] _lowerCAmelCase : Dict = checkpoint[f"{old_prefix}.emb_layers.1.bias"] _lowerCAmelCase : Any = checkpoint[f"{old_prefix}.out_layers.0.weight"] _lowerCAmelCase : List[str] = checkpoint[f"{old_prefix}.out_layers.0.bias"] _lowerCAmelCase : Optional[int] = checkpoint[f"{old_prefix}.out_layers.3.weight"] _lowerCAmelCase : Optional[int] = checkpoint[f"{old_prefix}.out_layers.3.bias"] if has_skip: _lowerCAmelCase : Union[str, Any] = checkpoint[f"{old_prefix}.skip_connection.weight"] _lowerCAmelCase : List[str] = checkpoint[f"{old_prefix}.skip_connection.bias"] return new_checkpoint def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : int ,_lowerCamelCase : List[Any] ,_lowerCamelCase : str ,_lowerCamelCase : Tuple=None ) -> Any: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3 ,dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3 ,dim=0 ) _lowerCAmelCase : Union[str, Any] = checkpoint[f"{old_prefix}.norm.weight"] _lowerCAmelCase : List[str] = checkpoint[f"{old_prefix}.norm.bias"] _lowerCAmelCase : Any = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase : List[str] = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase : List[str] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase : Any = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase : str = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase : str = ( checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase : Tuple = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : List[str] ) -> str: _lowerCAmelCase : int = torch.load(A_ ,map_location="""cpu""" ) _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Tuple = checkpoint["""time_embed.0.weight"""] _lowerCAmelCase : List[Any] = checkpoint["""time_embed.0.bias"""] _lowerCAmelCase : Optional[int] = checkpoint["""time_embed.2.weight"""] _lowerCAmelCase : List[Any] = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase : Union[str, Any] = checkpoint["""label_emb.weight"""] _lowerCAmelCase : Optional[Any] = checkpoint["""input_blocks.0.0.weight"""] _lowerCAmelCase : Dict = checkpoint["""input_blocks.0.0.bias"""] _lowerCAmelCase : List[Any] = unet_config["""down_block_types"""] _lowerCAmelCase : Any = unet_config["""layers_per_block"""] _lowerCAmelCase : Union[str, Any] = unet_config["""attention_head_dim"""] _lowerCAmelCase : Optional[Any] = unet_config["""block_out_channels"""] _lowerCAmelCase : Tuple = 1 _lowerCAmelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(A_ ): _lowerCAmelCase : List[Any] = channels_list[i] _lowerCAmelCase : Union[str, Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(A_ ): _lowerCAmelCase : Any = f"down_blocks.{i}.resnets.{j}" _lowerCAmelCase : Optional[Any] = f"input_blocks.{current_layer}.0" _lowerCAmelCase : List[Any] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase : Union[str, Any] = convert_resnet(A_ ,A_ ,A_ ,A_ ,has_skip=A_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(A_ ): _lowerCAmelCase : Union[str, Any] = f"down_blocks.{i}.resnets.{j}" _lowerCAmelCase : str = f"input_blocks.{current_layer}.0" _lowerCAmelCase : Optional[Any] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase : Any = convert_resnet(A_ ,A_ ,A_ ,A_ ,has_skip=A_ ) _lowerCAmelCase : List[str] = f"down_blocks.{i}.attentions.{j}" _lowerCAmelCase : List[str] = f"input_blocks.{current_layer}.1" _lowerCAmelCase : int = convert_attention( A_ ,A_ ,A_ ,A_ ,A_ ) current_layer += 1 if i != len(A_ ) - 1: _lowerCAmelCase : List[str] = f"down_blocks.{i}.downsamplers.0" _lowerCAmelCase : List[str] = f"input_blocks.{current_layer}.0" _lowerCAmelCase : List[Any] = convert_resnet(A_ ,A_ ,A_ ,A_ ) current_layer += 1 _lowerCAmelCase : Tuple = current_channels # hardcoded the mid-block for now _lowerCAmelCase : Tuple = """mid_block.resnets.0""" _lowerCAmelCase : Optional[int] = """middle_block.0""" _lowerCAmelCase : List[str] = convert_resnet(A_ ,A_ ,A_ ,A_ ) _lowerCAmelCase : int = """mid_block.attentions.0""" _lowerCAmelCase : List[Any] = """middle_block.1""" _lowerCAmelCase : int = convert_attention(A_ ,A_ ,A_ ,A_ ,A_ ) _lowerCAmelCase : Dict = """mid_block.resnets.1""" _lowerCAmelCase : str = """middle_block.2""" _lowerCAmelCase : Optional[int] = convert_resnet(A_ ,A_ ,A_ ,A_ ) _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Dict = unet_config["""up_block_types"""] for i, layer_type in enumerate(A_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase : Optional[Any] = f"up_blocks.{i}.resnets.{j}" _lowerCAmelCase : Union[str, Any] = f"output_blocks.{current_layer}.0" _lowerCAmelCase : str = convert_resnet(A_ ,A_ ,A_ ,A_ ,has_skip=A_ ) current_layer += 1 if i != len(A_ ) - 1: _lowerCAmelCase : Optional[int] = f"up_blocks.{i}.upsamplers.0" _lowerCAmelCase : str = f"output_blocks.{current_layer-1}.1" _lowerCAmelCase : Any = convert_resnet(A_ ,A_ ,A_ ,A_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase : int = f"up_blocks.{i}.resnets.{j}" _lowerCAmelCase : str = f"output_blocks.{current_layer}.0" _lowerCAmelCase : Tuple = convert_resnet(A_ ,A_ ,A_ ,A_ ,has_skip=A_ ) _lowerCAmelCase : Optional[int] = f"up_blocks.{i}.attentions.{j}" _lowerCAmelCase : Optional[Any] = f"output_blocks.{current_layer}.1" _lowerCAmelCase : List[str] = convert_attention( A_ ,A_ ,A_ ,A_ ,A_ ) current_layer += 1 if i != len(A_ ) - 1: _lowerCAmelCase : List[str] = f"up_blocks.{i}.upsamplers.0" _lowerCAmelCase : str = f"output_blocks.{current_layer-1}.2" _lowerCAmelCase : Any = convert_resnet(A_ ,A_ ,A_ ,A_ ) _lowerCAmelCase : List[str] = checkpoint["""out.0.weight"""] _lowerCAmelCase : str = checkpoint["""out.0.bias"""] _lowerCAmelCase : Union[str, Any] = checkpoint["""out.2.weight"""] _lowerCAmelCase : int = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') _a : int = parser.parse_args() _a : int = strabool(args.class_cond) _a : Tuple = os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: _a : int = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _a : Any = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _a : int = TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: _a : str = None _a : Union[str, Any] = con_pt_to_diffuser(args.unet_path, unet_config) _a : Optional[Any] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _a : str = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _a : List[str] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _a : Optional[int] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") _a : Union[str, Any] = CMStochasticIterativeScheduler(**scheduler_config) _a : Dict = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
710
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _a : Optional[Any] = logging.get_logger(__name__) _a : Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _a : Union[str, Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : str ,_lowerCamelCase : Tuple ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : str ) -> Tuple: for attribute in key.split(""".""" ): _lowerCAmelCase : Dict = getattr(_lowerCamelCase ,_lowerCamelCase ) if weight_type is not None: _lowerCAmelCase : Any = getattr(_lowerCamelCase ,_lowerCamelCase ).shape else: _lowerCAmelCase : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": _lowerCAmelCase : Dict = value elif weight_type == "weight_v": _lowerCAmelCase : Optional[int] = value elif weight_type == "bias": _lowerCAmelCase : int = value elif weight_type == "running_mean": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "running_var": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "num_batches_tracked": _lowerCAmelCase : Any = value elif weight_type == "inv_freq": _lowerCAmelCase : Optional[Any] = value else: _lowerCAmelCase : int = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Any ,_lowerCamelCase : int ) -> Union[str, Any]: _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = fairseq_model.state_dict() _lowerCAmelCase : Union[str, Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : int = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,hf_model.config.feat_extract_norm == """group""" ,) _lowerCAmelCase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): _lowerCAmelCase : Any = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase : Optional[Any] = True if "*" in mapped_key: _lowerCAmelCase : str = name.split(_lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase : int = mapped_key.replace("""*""" ,_lowerCamelCase ) if "pos_bias_u" in name: _lowerCAmelCase : Optional[int] = None elif "pos_bias_v" in name: _lowerCAmelCase : Dict = None elif "weight_g" in name: _lowerCAmelCase : Optional[Any] = 'weight_g' elif "weight_v" in name: _lowerCAmelCase : Dict = 'weight_v' elif "bias" in name: _lowerCAmelCase : Tuple = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : int = 'weight' elif "running_mean" in name: _lowerCAmelCase : str = 'running_mean' elif "inv_freq" in name: _lowerCAmelCase : List[Any] = 'inv_freq' elif "running_var" in name: _lowerCAmelCase : Union[str, Any] = 'running_var' elif "num_batches_tracked" in name: _lowerCAmelCase : Optional[Any] = 'num_batches_tracked' else: _lowerCAmelCase : List[str] = None set_recursively(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Tuple ,_lowerCamelCase : Any ,_lowerCamelCase : str ) -> Any: _lowerCAmelCase : str = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase : str = name.split(""".""" ) _lowerCAmelCase : Dict = int(items[0] ) _lowerCAmelCase : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Tuple ,_lowerCamelCase : List[Any]=None ,_lowerCamelCase : Union[str, Any]=None ,_lowerCamelCase : Any=True ) -> Any: if config_path is not None: _lowerCAmelCase : Tuple = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase ,hidden_act="""swish""" ) else: _lowerCAmelCase : Optional[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCAmelCase : Dict = 'rotary' if is_finetuned: if dict_path: _lowerCAmelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase : int = target_dict.pad_index _lowerCAmelCase : List[Any] = target_dict.bos_index _lowerCAmelCase : Any = target_dict.eos_index _lowerCAmelCase : Dict = len(target_dict.symbols ) _lowerCAmelCase : Optional[Any] = os.path.join(_lowerCamelCase ,"""vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) _lowerCAmelCase : List[str] = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = 1 with open(_lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaCTCTokenizer( _lowerCamelCase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=_lowerCamelCase ,) _lowerCAmelCase : Tuple = True if config.feat_extract_norm == 'layer' else False _lowerCAmelCase : Any = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=_lowerCamelCase ,return_attention_mask=_lowerCamelCase ,) _lowerCAmelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase ,tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCAmelCase : List[Any] = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCAmelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase : Optional[Any] = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase : str = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCAmelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=_lowerCamelCase ) _lowerCAmelCase : Tuple = model[0].eval() recursively_load_weights(_lowerCamelCase ,_lowerCamelCase ,not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) _a : List[str] = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
711
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Any: _lowerCAmelCase : str = len(__snake_case ) for i in range(length - 1 ): _lowerCAmelCase : Dict = i for k in range(i + 1 ,__snake_case ): if collection[k] < collection[least]: _lowerCAmelCase : Optional[Any] = k if least != i: _lowerCAmelCase , _lowerCAmelCase : int = (collection[i], collection[least]) return collection if __name__ == "__main__": _a : int = input('Enter numbers separated by a comma:\n').strip() _a : Optional[Any] = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
712
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
0
"""simple docstring""" import json import sys def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : List[str] ) -> Union[str, Any]: with open(lowerCamelCase_ ,encoding="""utf-8""" ) as f: _lowerCAmelCase : Union[str, Any] = json.load(lowerCamelCase_ ) _lowerCAmelCase : Optional[int] = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(lowerCamelCase_ ): _lowerCAmelCase : str = results[benchmark_name] _lowerCAmelCase : Union[str, Any] = benchmark_name.split("""/""" )[-1] output_md.append(f"### Benchmark: {benchmark_file_name}" ) _lowerCAmelCase : Optional[Any] = """| metric |""" _lowerCAmelCase : Dict = """|--------|""" _lowerCAmelCase : int = """| new / old (diff) |""" for metric_name in sorted(lowerCamelCase_ ): _lowerCAmelCase : Optional[Any] = benchmark_res[metric_name] _lowerCAmelCase : Tuple = metric_vals["""new"""] _lowerCAmelCase : Optional[int] = metric_vals.get("""old""" ,lowerCamelCase_ ) _lowerCAmelCase : Tuple = metric_vals.get("""diff""" ,lowerCamelCase_ ) _lowerCAmelCase : Optional[Any] = f" {new_val:f}" if isinstance(lowerCamelCase_ ,(int, float) ) else """None""" if old_val is not None: val_str += f" / {old_val:f}" if isinstance(lowerCamelCase_ ,(int, float) ) else "None" if dif_val is not None: val_str += f" ({dif_val:f})" if isinstance(lowerCamelCase_ ,(int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as f: f.writelines("""\n""".join(lowerCamelCase_ ) ) if __name__ == "__main__": _a : Tuple = sys.argv[1] _a : Dict = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
713
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
0
"""simple docstring""" class __A : def __init__( self , a__ , a__ ): _lowerCAmelCase : Optional[int] = name _lowerCAmelCase : Tuple = val def __str__( self ): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self , a__ ): return self.val < other.val class __A : def __init__( self , a__ ): _lowerCAmelCase : str = {} _lowerCAmelCase : int = {} _lowerCAmelCase : Union[str, Any] = self.build_heap(UpperCamelCase_ ) def __getitem__( self , a__ ): return self.get_value(UpperCamelCase_ ) def __A ( self , a__ ): return (idx - 1) // 2 def __A ( self , a__ ): return idx * 2 + 1 def __A ( self , a__ ): return idx * 2 + 2 def __A ( self , a__ ): return self.heap_dict[key] def __A ( self , a__ ): _lowerCAmelCase : Tuple = len(UpperCamelCase_ ) - 1 _lowerCAmelCase : Tuple = self.get_parent_idx(UpperCamelCase_ ) for idx, i in enumerate(UpperCamelCase_ ): _lowerCAmelCase : str = idx _lowerCAmelCase : Any = i.val for i in range(UpperCamelCase_ , -1 , -1 ): self.sift_down(UpperCamelCase_ , UpperCamelCase_ ) return array def __A ( self , a__ , a__ ): while True: _lowerCAmelCase : str = self.get_left_child_idx(UpperCamelCase_ ) # noqa: E741 _lowerCAmelCase : Any = self.get_right_child_idx(UpperCamelCase_ ) _lowerCAmelCase : List[str] = idx if l < len(UpperCamelCase_ ) and array[l] < array[idx]: _lowerCAmelCase : Optional[Any] = l if r < len(UpperCamelCase_ ) and array[r] < array[smallest]: _lowerCAmelCase : List[str] = r if smallest != idx: _lowerCAmelCase , _lowerCAmelCase : Dict = array[smallest], array[idx] ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : str = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) _lowerCAmelCase : Dict = smallest else: break def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = self.get_parent_idx(UpperCamelCase_ ) while p >= 0 and self.heap[p] > self.heap[idx]: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.heap[idx], self.heap[p] _lowerCAmelCase , _lowerCAmelCase : int = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) _lowerCAmelCase : List[str] = p _lowerCAmelCase : Any = self.get_parent_idx(UpperCamelCase_ ) def __A ( self ): return self.heap[0] def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.heap[-1], self.heap[0] _lowerCAmelCase , _lowerCAmelCase : str = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) _lowerCAmelCase : Optional[Any] = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def __A ( self , a__ ): self.heap.append(UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = len(self.heap ) - 1 _lowerCAmelCase : Union[str, Any] = node.val self.sift_up(len(self.heap ) - 1 ) def __A ( self ): return len(self.heap ) == 0 def __A ( self , a__ , a__ ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" _lowerCAmelCase : Optional[Any] = new_value _lowerCAmelCase : Optional[Any] = new_value self.sift_up(self.idx_of_element[node] ) _a : int = Node('R', -1) _a : str = Node('B', 6) _a : Union[str, Any] = Node('A', 3) _a : List[str] = Node('X', 1) _a : List[Any] = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _a : Any = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Dict = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _a : Optional[Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } _a : Dict = {'facebook/blenderbot_small-90M': 512} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[Any]: _lowerCAmelCase : Any = set() _lowerCAmelCase : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : int = char _lowerCAmelCase : List[Any] = set(lowerCamelCase__ ) return pairs class __A ( _UpperCamelCase ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Any = ["input_ids", "attention_mask"] def __init__( self , a__ , a__ , a__="__start__" , a__="__end__" , a__="__unk__" , a__="__null__" , **a__ , ): super().__init__(unk_token=a__ , bos_token=a__ , eos_token=a__ , pad_token=a__ , **a__ ) with open(a__ , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase : str = json.load(a__ ) _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} with open(a__ , encoding="""utf-8""" ) as merges_handle: _lowerCAmelCase : Optional[int] = merges_handle.read().split("""\n""" )[1:-1] _lowerCAmelCase : str = [tuple(merge.split() ) for merge in merges] _lowerCAmelCase : List[str] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : Optional[Any] = {} @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , a__ ): if token in self.cache: return self.cache[token] _lowerCAmelCase : Optional[int] = re.sub("""([.,!?()])""" , r""" \1""" , a__ ) _lowerCAmelCase : List[Any] = re.sub("""(')""" , r""" \1 """ , a__ ) _lowerCAmelCase : Optional[int] = re.sub(r"""\s{2,}""" , """ """ , a__ ) if "\n" in token: _lowerCAmelCase : Union[str, Any] = token.replace("""\n""" , """ __newln__""" ) _lowerCAmelCase : str = token.split(""" """ ) _lowerCAmelCase : int = [] for token in tokens: if not len(a__ ): continue _lowerCAmelCase : List[Any] = token.lower() _lowerCAmelCase : Optional[Any] = tuple(a__ ) _lowerCAmelCase : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) _lowerCAmelCase : str = get_pairs(a__ ) if not pairs: words.append(a__ ) continue while True: _lowerCAmelCase : List[Any] = min(a__ , key=lambda a__ : self.bpe_ranks.get(a__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase : Optional[Any] = bigram _lowerCAmelCase : str = [] _lowerCAmelCase : List[Any] = 0 while i < len(a__ ): try: _lowerCAmelCase : Dict = word.index(a__ , a__ ) new_word.extend(word[i:j] ) _lowerCAmelCase : int = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Union[str, Any] = tuple(a__ ) _lowerCAmelCase : Optional[Any] = new_word if len(a__ ) == 1: break else: _lowerCAmelCase : List[Any] = get_pairs(a__ ) _lowerCAmelCase : Optional[Any] = "@@ ".join(a__ ) _lowerCAmelCase : Any = word[:-4] _lowerCAmelCase : Dict = word words.append(a__ ) return " ".join(a__ ) def __A ( self , a__ ): _lowerCAmelCase : Any = [] _lowerCAmelCase : List[Any] = re.findall(r"""\S+\n?""" , a__ ) for token in words: split_tokens.extend(list(self.bpe(a__ ).split(""" """ ) ) ) return split_tokens def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = token.lower() return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def __A ( self , a__ ): return self.decoder.get(a__ , self.unk_token ) def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = " ".join(a__ ).replace("""@@ """ , """""" ).strip() return out_string def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : int = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : str = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + """\n""" ) _lowerCAmelCase : Optional[Any] = 0 with open(a__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) _lowerCAmelCase : Dict = token_index writer.write(""" """.join(a__ ) + """\n""" ) index += 1 return vocab_file, merge_file
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : List[str] = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = "xlm-prophetnet" _UpperCamelCase : List[str] = ["past_key_values"] _UpperCamelCase : List[Any] = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self , a__ = 0.1 , a__ = "gelu" , a__ = 30522 , a__ = 1024 , a__ = 4096 , a__ = 12 , a__ = 16 , a__ = 4096 , a__ = 12 , a__ = 16 , a__ = 0.1 , a__ = 0.1 , a__ = 512 , a__ = 0.0_2 , a__ = True , a__ = True , a__ = 0 , a__ = 2 , a__ = 32 , a__ = 128 , a__ = False , a__ = 0.0 , a__ = True , a__ = 0 , a__ = 1 , a__ = 2 , **a__ , ): _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : str = encoder_ffn_dim _lowerCAmelCase : Union[str, Any] = num_encoder_layers _lowerCAmelCase : Dict = num_encoder_attention_heads _lowerCAmelCase : Optional[Any] = decoder_ffn_dim _lowerCAmelCase : List[str] = num_decoder_layers _lowerCAmelCase : Any = num_decoder_attention_heads _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Dict = init_std # Normal(0, this parameter) _lowerCAmelCase : List[Any] = activation_function # parameters for xlmprophetnet _lowerCAmelCase : Union[str, Any] = ngram _lowerCAmelCase : Union[str, Any] = num_buckets _lowerCAmelCase : int = relative_max_distance _lowerCAmelCase : List[str] = disable_ngram_loss _lowerCAmelCase : Optional[int] = eps # 3 Types of Dropout _lowerCAmelCase : Optional[int] = attention_dropout _lowerCAmelCase : Tuple = activation_dropout _lowerCAmelCase : Tuple = dropout _lowerCAmelCase : Tuple = use_cache super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , ) @property def __A ( self ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __A ( self , a__ ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
716
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
0
"""simple docstring""" from typing import Any import numpy as np def SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray ) -> bool: return np.array_equal(snake_case__ ,matrix.conjugate().T ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray ,_lowerCamelCase : np.ndarray ) -> Any: _lowerCAmelCase : Optional[Any] = v.conjugate().T _lowerCAmelCase : Dict = v_star.dot(snake_case__ ) assert isinstance(snake_case__ ,np.ndarray ) return (v_star_dot.dot(snake_case__ )) / (v_star.dot(snake_case__ )) def SCREAMING_SNAKE_CASE ( ) -> None: _lowerCAmelCase : List[Any] = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) _lowerCAmelCase : List[Any] = np.array([[1], [2], [3]] ) assert is_hermitian(snake_case__ ), f"{a} is not hermitian." print(rayleigh_quotient(snake_case__ ,snake_case__ ) ) _lowerCAmelCase : Tuple = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(snake_case__ ), f"{a} is not hermitian." assert rayleigh_quotient(snake_case__ ,snake_case__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
0
"""simple docstring""" import re def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> bool: _lowerCAmelCase : List[str] = re.compile( r"""^(?:0|94|\+94|0{2}94)""" r"""7(0|1|2|4|5|6|7|8)""" r"""(-| |)""" r"""\d{7}$""" ) return bool(re.search(_lowerCamelCase ,_lowerCamelCase ) ) if __name__ == "__main__": _a : Any = '0094702343221' print(is_sri_lankan_phone_number(phone))
718
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
0
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : List[Any] ,_lowerCamelCase : int ) -> str: if openai_config_file == "": _lowerCAmelCase : Any = OpenAIGPTConfig() else: _lowerCAmelCase : List[Any] = OpenAIGPTConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = OpenAIGPTModel(_lowerCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Save pytorch-model _lowerCAmelCase : Union[str, Any] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _lowerCAmelCase : Any = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() ,_lowerCamelCase ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) _a : Union[str, Any] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
719
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
0
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : Any = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : str = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : List[str] = Accelerator() _lowerCAmelCase : str = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) try: pickle.loads(pickle.dumps(SCREAMING_SNAKE_CASE_ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
720
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[float]] ) -> Optional[int]: _lowerCAmelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(_lowerCamelCase ): if len(_lowerCamelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_lowerCamelCase ) ) return data_lists def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[float]] ,_lowerCamelCase : list[int] ) -> Dict: _lowerCAmelCase : list[list[float]] = [] for dlist, weight in zip(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = min(_lowerCamelCase ) _lowerCAmelCase : Tuple = max(_lowerCamelCase ) _lowerCAmelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _lowerCAmelCase : Optional[int] = f"Invalid weight of {weight:f} provided" raise ValueError(_lowerCamelCase ) score_lists.append(_lowerCamelCase ) return score_lists def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[float]] ) -> str: _lowerCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = final_scores[j] + ele return final_scores def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[float]] ,_lowerCamelCase : list[int] ) -> List[Any]: _lowerCAmelCase : List[str] = get_data(_lowerCamelCase ) _lowerCAmelCase : List[Any] = calculate_each_score(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = generate_final_scores(_lowerCamelCase ) # append scores to source data for i, ele in enumerate(_lowerCamelCase ): source_data[i].append(_lowerCamelCase ) return source_data
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _a : List[Any] = NewType('DataClass', Any) _a : Tuple = NewType('DataClassType', Any) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> str: if isinstance(_lowerCamelCase ,_lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ) -> Callable[[str], Any]: _lowerCAmelCase : Optional[Any] = {str(_lowerCamelCase ): choice for choice in choices} return lambda _lowerCamelCase : str_to_choice.get(_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( *, _lowerCamelCase : Union[str, List[str]] = None ,_lowerCamelCase : str = None ,_lowerCamelCase : Any = dataclasses.MISSING ,_lowerCamelCase : Callable[[], Any] = dataclasses.MISSING ,_lowerCamelCase : dict = None ,**_lowerCamelCase : Optional[Any] ,) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _lowerCAmelCase : Tuple = {} if aliases is not None: _lowerCAmelCase : Dict = aliases if help is not None: _lowerCAmelCase : Optional[Any] = help return dataclasses.field(metadata=_lowerCamelCase ,default=_lowerCamelCase ,default_factory=_lowerCamelCase ,**_lowerCamelCase ) class __A ( lowercase__ ): _UpperCamelCase : int = 42 def __init__( self , a__ , **a__ ): # To make the default appear when using --help if "formatter_class" not in kwargs: _lowerCAmelCase : Dict = ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase__ ) if dataclasses.is_dataclass(UpperCAmelCase__ ): _lowerCAmelCase : List[str] = [dataclass_types] _lowerCAmelCase : Any = list(UpperCAmelCase__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase__ ) @staticmethod def __A ( a__ , a__ ): _lowerCAmelCase : Optional[int] = F"--{field.name}" _lowerCAmelCase : Optional[int] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase__ ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) _lowerCAmelCase : Dict = kwargs.pop("""aliases""" , [] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _lowerCAmelCase : Dict = [aliases] _lowerCAmelCase : Union[str, Any] = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(UpperCAmelCase__ , """UnionType""" ) and isinstance(UpperCAmelCase__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCAmelCase__ ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" F" Problem encountered in field \'{field.name}\'." ) if type(UpperCAmelCase__ ) not in field.type.__args__: # filter `str` in Union _lowerCAmelCase : Optional[int] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _lowerCAmelCase : Union[str, Any] = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _lowerCAmelCase : Dict = ( field.type.__args__[0] if isinstance(UpperCAmelCase__ , field.type.__args__[1] ) else field.type.__args__[1] ) _lowerCAmelCase : Optional[int] = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _lowerCAmelCase : Union[str, Any] = {} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase__ ) and issubclass(field.type , UpperCAmelCase__ )): if origin_type is Literal: _lowerCAmelCase : Tuple = field.type.__args__ else: _lowerCAmelCase : Optional[Any] = [x.value for x in field.type] _lowerCAmelCase : str = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: _lowerCAmelCase : List[Any] = field.default else: _lowerCAmelCase : List[str] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _lowerCAmelCase : Optional[Any] = copy(UpperCAmelCase__ ) # Hack because type=bool in argparse does not behave as we want. _lowerCAmelCase : str = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _lowerCAmelCase : List[str] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _lowerCAmelCase : int = default # This tells argparse we accept 0 or 1 value after --field_name _lowerCAmelCase : List[str] = '''?''' # This is the value that will get picked if we do --field_name (without value) _lowerCAmelCase : str = True elif isclass(UpperCAmelCase__ ) and issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): _lowerCAmelCase : int = field.type.__args__[0] _lowerCAmelCase : Optional[int] = '''+''' if field.default_factory is not dataclasses.MISSING: _lowerCAmelCase : List[str] = field.default_factory() elif field.default is dataclasses.MISSING: _lowerCAmelCase : Union[str, Any] = True else: _lowerCAmelCase : List[Any] = field.type if field.default is not dataclasses.MISSING: _lowerCAmelCase : Any = field.default elif field.default_factory is not dataclasses.MISSING: _lowerCAmelCase : Dict = field.default_factory() else: _lowerCAmelCase : List[str] = True parser.add_argument(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _lowerCAmelCase : List[Any] = False parser.add_argument(F"--no_{field.name}" , action="""store_false""" , dest=field.name , **UpperCAmelCase__ ) def __A ( self , a__ ): if hasattr(UpperCAmelCase__ , """_argument_group_name""" ): _lowerCAmelCase : List[Any] = self.add_argument_group(dtype._argument_group_name ) else: _lowerCAmelCase : str = self try: _lowerCAmelCase : Dict[str, type] = get_type_hints(UpperCAmelCase__ ) except NameError: raise RuntimeError( F"Type resolution failed for {dtype}. Try declaring the class in global scope or " """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase__ ): _lowerCAmelCase : Dict = '''.'''.join(map(UpperCAmelCase__ , sys.version_info[:3] ) ) raise RuntimeError( F"Type resolution failed for {dtype} on Python {python_version}. Try removing " """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(UpperCAmelCase__ ): if not field.init: continue _lowerCAmelCase : int = type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self , a__=None , a__=False , a__=True , a__=None , a__=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _lowerCAmelCase : Optional[Any] = [] if args_filename: args_files.append(Path(UpperCAmelCase__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _lowerCAmelCase : int = ArgumentParser() args_file_parser.add_argument(UpperCAmelCase__ , type=UpperCAmelCase__ , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) _lowerCAmelCase : Any = args_file_parser.parse_known_args(args=UpperCAmelCase__ ) _lowerCAmelCase : str = vars(UpperCAmelCase__ ).get(args_file_flag.lstrip("""-""" ) , UpperCAmelCase__ ) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase__ ) for p in cmd_args_file_paths] ) _lowerCAmelCase : List[Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _lowerCAmelCase : Optional[Any] = file_args + args if args is not None else file_args + sys.argv[1:] _lowerCAmelCase : Union[str, Any] = self.parse_known_args(args=UpperCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = [] for dtype in self.dataclass_types: _lowerCAmelCase : int = {f.name for f in dataclasses.fields(UpperCAmelCase__ ) if f.init} _lowerCAmelCase : int = {k: v for k, v in vars(UpperCAmelCase__ ).items() if k in keys} for k in keys: delattr(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = dtype(**UpperCAmelCase__ ) outputs.append(UpperCAmelCase__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCAmelCase__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def __A ( self , a__ , a__ = False ): _lowerCAmelCase : List[str] = set(args.keys() ) _lowerCAmelCase : Dict = [] for dtype in self.dataclass_types: _lowerCAmelCase : int = {f.name for f in dataclasses.fields(UpperCAmelCase__ ) if f.init} _lowerCAmelCase : Dict = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _lowerCAmelCase : str = dtype(**UpperCAmelCase__ ) outputs.append(UpperCAmelCase__ ) if not allow_extra_keys and unused_keys: raise ValueError(F"Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase__ )}" ) return tuple(UpperCAmelCase__ ) def __A ( self , a__ , a__ = False ): with open(Path(UpperCAmelCase__ ) , encoding="""utf-8""" ) as open_json_file: _lowerCAmelCase : str = json.loads(open_json_file.read() ) _lowerCAmelCase : Tuple = self.parse_dict(UpperCAmelCase__ , allow_extra_keys=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def __A ( self , a__ , a__ = False ): _lowerCAmelCase : Union[str, Any] = self.parse_dict(yaml.safe_load(Path(UpperCAmelCase__ ).read_text() ) , allow_extra_keys=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
700
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
0
"""simple docstring""" class __A : def __init__( self , a__ ): _lowerCAmelCase : Union[str, Any] = n _lowerCAmelCase : List[str] = [None] * self.n _lowerCAmelCase : Optional[int] = 0 # index of the first element _lowerCAmelCase : str = 0 _lowerCAmelCase : Any = 0 def __len__( self ): return self.size def __A ( self ): return self.size == 0 def __A ( self ): return False if self.is_empty() else self.array[self.front] def __A ( self , a__ ): if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) _lowerCAmelCase : Tuple = data _lowerCAmelCase : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def __A ( self ): if self.size == 0: raise Exception("""UNDERFLOW""" ) _lowerCAmelCase : List[str] = self.array[self.front] _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Optional[int] = (self.front + 1) % self.n self.size -= 1 return temp
701
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=lowerCamelCase__ ): _UpperCamelCase : int = ["transformers", "torch", "note_seq"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def __A ( cls , *a__ , **a__ ): requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
702
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( UpperCAmelCase_ , unittest.TestCase ): _UpperCamelCase : str = RobertaTokenizer _UpperCamelCase : Optional[Any] = RobertaTokenizerFast _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[Any] = {"cls_token": "<s>"} def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowerCAmelCase : List[str] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) _lowerCAmelCase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Optional[int] = {"""unk_token""": """<unk>"""} _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowercase ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def __A ( self , a__ ): _lowerCAmelCase : List[str] = """lower newer""" _lowerCAmelCase : int = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Dict = tokenizer.tokenize(_lowercase ) # , add_prefix_space=True) self.assertListEqual(_lowercase , _lowercase ) _lowerCAmelCase : List[str] = tokens + [tokenizer.unk_token] _lowerCAmelCase : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def __A ( self ): _lowerCAmelCase : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=_lowercase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=_lowercase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def __A ( self ): _lowerCAmelCase : str = self.tokenizer_class.from_pretrained("""roberta-base""" ) _lowerCAmelCase : str = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowercase ) _lowerCAmelCase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowercase ) _lowerCAmelCase : str = tokenizer.encode( """sequence builders""" , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) _lowerCAmelCase : Optional[Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) _lowerCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(_lowercase ) _lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __A ( self ): _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = """Encode this sequence.""" _lowerCAmelCase : Dict = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments _lowerCAmelCase : int = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_lowercase , _lowercase ) _lowerCAmelCase : List[str] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) _lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_lowercase , _lowercase ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) _lowerCAmelCase : List[str] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_lowercase , _lowercase ) # Testing spaces after special tokens _lowerCAmelCase : Tuple = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase )} ) # mask token has a left space _lowerCAmelCase : int = tokenizer.convert_tokens_to_ids(_lowercase ) _lowerCAmelCase : Union[str, Any] = """Encode <mask> sequence""" _lowerCAmelCase : List[str] = """Encode <mask>sequence""" _lowerCAmelCase : int = tokenizer.encode(_lowercase ) _lowerCAmelCase : int = encoded.index(_lowercase ) _lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_lowercase , _lowercase ) _lowerCAmelCase : Any = tokenizer.encode(_lowercase ) _lowerCAmelCase : Optional[int] = encoded.index(_lowercase ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_lowercase , _lowercase ) def __A ( self ): pass def __A ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) _lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) _lowerCAmelCase : str = """A, <mask> AllenNLP sentence.""" _lowerCAmelCase : Optional[Any] = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) _lowerCAmelCase : Optional[int] = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) _lowerCAmelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowerCAmelCase : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def __A ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowerCAmelCase : List[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , _lowercase ) self.assertEqual(post_processor_state["""add_prefix_space"""] , _lowercase ) self.assertEqual(post_processor_state["""trim_offsets"""] , _lowercase ) def __A ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : int = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _lowerCAmelCase : Dict = F"{text_of_1_token} {text_of_1_token}" _lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : str = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : Tuple = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : Dict = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : Optional[Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCAmelCase : List[Any] = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : Dict = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ) + 1, 1 + len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : Any = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : List[str] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
703
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Dict = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A ( snake_case__ ): _UpperCamelCase : Dict = "speech_to_text_2" _UpperCamelCase : int = ["past_key_values"] _UpperCamelCase : Any = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , a__=10000 , a__=6 , a__=2048 , a__=4 , a__=0.0 , a__=True , a__="relu" , a__=256 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=2 , a__=True , a__=1 , a__=0 , a__=2 , a__=1024 , **a__ , ): _lowerCAmelCase : Union[str, Any] = vocab_size _lowerCAmelCase : Dict = d_model _lowerCAmelCase : int = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = decoder_layers _lowerCAmelCase : Optional[Any] = decoder_attention_heads _lowerCAmelCase : int = dropout _lowerCAmelCase : str = attention_dropout _lowerCAmelCase : Dict = activation_dropout _lowerCAmelCase : Optional[int] = activation_function _lowerCAmelCase : Any = init_std _lowerCAmelCase : Union[str, Any] = decoder_layerdrop _lowerCAmelCase : Any = use_cache _lowerCAmelCase : Dict = decoder_layers _lowerCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Dict = max_target_positions super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , )
704
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Any ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ,_lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: # Load configuration defined in the metadata file with open(_lowerCamelCase ) as metadata_file: _lowerCAmelCase : List[str] = json.load(_lowerCamelCase ) _lowerCAmelCase : int = LukeConfig(use_entity_aware_attention=_lowerCamelCase ,**metadata["""model_config"""] ) # Load in the weights from the checkpoint_path _lowerCAmelCase : List[Any] = torch.load(_lowerCamelCase ,map_location="""cpu""" )["""module"""] # Load the entity vocab file _lowerCAmelCase : Any = load_original_entity_vocab(_lowerCamelCase ) # add an entry for [MASK2] _lowerCAmelCase : Optional[Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _lowerCAmelCase : Dict = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks _lowerCAmelCase : Optional[int] = AddedToken("""<ent>""" ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) _lowerCAmelCase : Dict = AddedToken("""<ent2>""" ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,"""tokenizer_config.json""" ) ,"""r""" ) as f: _lowerCAmelCase : int = json.load(_lowerCamelCase ) _lowerCAmelCase : Dict = """MLukeTokenizer""" with open(os.path.join(_lowerCamelCase ,"""tokenizer_config.json""" ) ,"""w""" ) as f: json.dump(_lowerCamelCase ,_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) ,"""w""" ) as f: json.dump(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Dict = MLukeTokenizer.from_pretrained(_lowerCamelCase ) # Initialize the embeddings of the special tokens _lowerCAmelCase : int = tokenizer.convert_tokens_to_ids(["""@"""] )[0] _lowerCAmelCase : int = tokenizer.convert_tokens_to_ids(["""#"""] )[0] _lowerCAmelCase : Any = state_dict["""embeddings.word_embeddings.weight"""] _lowerCAmelCase : str = word_emb[ent_init_index].unsqueeze(0 ) _lowerCAmelCase : Optional[Any] = word_emb[enta_init_index].unsqueeze(0 ) _lowerCAmelCase : Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _lowerCAmelCase : Tuple = state_dict[bias_name] _lowerCAmelCase : Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) _lowerCAmelCase : int = decoder_bias[enta_init_index].unsqueeze(0 ) _lowerCAmelCase : Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _lowerCAmelCase : Any = f"encoder.layer.{layer_index}.attention.self." _lowerCAmelCase : Dict = state_dict[prefix + matrix_name] _lowerCAmelCase : int = state_dict[prefix + matrix_name] _lowerCAmelCase : int = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _lowerCAmelCase : str = state_dict["""entity_embeddings.entity_embeddings.weight"""] _lowerCAmelCase : Optional[int] = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) _lowerCAmelCase : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _lowerCAmelCase : List[str] = state_dict["""entity_predictions.bias"""] _lowerCAmelCase : List[str] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) _lowerCAmelCase : Dict = torch.cat([entity_prediction_bias, entity_mask_bias] ) _lowerCAmelCase : Optional[int] = LukeForMaskedLM(config=_lowerCamelCase ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) _lowerCAmelCase : List[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): _lowerCAmelCase : Optional[Any] = state_dict[key] else: _lowerCAmelCase : Dict = state_dict[key] _lowerCAmelCase , _lowerCAmelCase : List[Any] = model.load_state_dict(_lowerCamelCase ,strict=_lowerCamelCase ) if set(_lowerCamelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(_lowerCamelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _lowerCAmelCase : Union[str, Any] = MLukeTokenizer.from_pretrained(_lowerCamelCase ,task="""entity_classification""" ) _lowerCAmelCase : Union[str, Any] = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" _lowerCAmelCase : int = (0, 9) _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase ,entity_spans=[span] ,return_tensors="""pt""" ) _lowerCAmelCase : List[str] = model(**_lowerCamelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _lowerCAmelCase : Tuple = torch.Size((1, 33, 768) ) _lowerCAmelCase : List[str] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,_lowerCamelCase ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _lowerCAmelCase : List[Any] = torch.Size((1, 1, 768) ) _lowerCAmelCase : str = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,_lowerCamelCase ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _lowerCAmelCase : int = MLukeTokenizer.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[Any] = """Tokyo is the capital of <mask>.""" _lowerCAmelCase : Tuple = (24, 30) _lowerCAmelCase : Any = tokenizer(_lowerCamelCase ,entity_spans=[span] ,return_tensors="""pt""" ) _lowerCAmelCase : List[str] = model(**_lowerCamelCase ) _lowerCAmelCase : Tuple = encoding["""input_ids"""][0].tolist() _lowerCAmelCase : Any = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) _lowerCAmelCase : str = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_lowerCamelCase ) _lowerCAmelCase : str = outputs.entity_logits[0][0].argmax().item() _lowerCAmelCase : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(_lowerCamelCase ) ) model.save_pretrained(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Tuple: _lowerCAmelCase : Optional[Any] = ["""[MASK]""", """[PAD]""", """[UNK]"""] _lowerCAmelCase : Any = [json.loads(_lowerCamelCase ) for line in open(_lowerCamelCase )] _lowerCAmelCase : List[Any] = {} for entry in data: _lowerCAmelCase : Dict = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _lowerCAmelCase : Optional[int] = entity_id break _lowerCAmelCase : Optional[Any] = f"{language}:{entity_name}" _lowerCAmelCase : Optional[Any] = entity_id return new_mapping if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) _a : Union[str, Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
705
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Optional[int] = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a : Optional[int] = logging.get_logger(__name__) _a : Dict = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = "resnet" _UpperCamelCase : Optional[int] = ["basic", "bottleneck"] def __init__( self , a__=3 , a__=64 , a__=[256, 512, 1024, 2048] , a__=[3, 4, 6, 3] , a__="bottleneck" , a__="relu" , a__=False , a__=None , a__=None , **a__ , ): super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) _lowerCAmelCase : int = num_channels _lowerCAmelCase : int = embedding_size _lowerCAmelCase : Dict = hidden_sizes _lowerCAmelCase : List[str] = depths _lowerCAmelCase : List[str] = layer_type _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Optional[int] = downsample_in_first_stage _lowerCAmelCase : List[Any] = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(__UpperCamelCase ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : Optional[int] = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = version.parse("1.11" ) @property def __A ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __A ( self ): return 1e-3
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str = "cpu" ,_lowerCamelCase : Union[str, None] = None ) -> None: _lowerCAmelCase : int = torch.load(_lowerCamelCase ,map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase ,torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) _lowerCAmelCase : List[Any] = v.half() if save_path is None: # overwrite src_path _lowerCAmelCase : Optional[Any] = src_path torch.save(_lowerCamelCase ,_lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
708
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _lowerCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) _lowerCAmelCase : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _lowerCAmelCase : int = {'unk_token': '<unk>'} _lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase__ ) ) _lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self , **a__ ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __A ( self , **a__ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __A ( self , **a__ ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __A ( self ): shutil.rmtree(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ): _lowerCAmelCase : str = self.get_tokenizer() _lowerCAmelCase : str = self.get_rust_tokenizer() _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) _lowerCAmelCase : List[str] = CLIPSegProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCAmelCase : List[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def __A ( self ): _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : List[Any] = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) _lowerCAmelCase : int = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : int = CLIPSegProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) _lowerCAmelCase : str = self.prepare_image_inputs() _lowerCAmelCase : Optional[int] = image_processor(UpperCamelCase__ , return_tensors="""np""" ) _lowerCAmelCase : Union[str, Any] = processor(images=UpperCamelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.get_image_processor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[str] = CLIPSegProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) _lowerCAmelCase : Tuple = 'lower newer' _lowerCAmelCase : Dict = processor(text=UpperCamelCase__ ) _lowerCAmelCase : List[str] = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ): _lowerCAmelCase : List[str] = self.get_image_processor() _lowerCAmelCase : Union[str, Any] = self.get_tokenizer() _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) _lowerCAmelCase : Optional[Any] = 'lower newer' _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = processor(images=UpperCamelCase__ , visual_prompt=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """conditional_pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def __A ( self ): _lowerCAmelCase : List[str] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = CLIPSegProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) _lowerCAmelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : Union[str, Any] = processor.batch_decode(UpperCamelCase__ ) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
709
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
0
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _a : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __A ( datasets.BuilderConfig ): _UpperCamelCase : Optional[datasets.Features] = None _UpperCamelCase : str = "utf-8" _UpperCamelCase : Optional[str] = None _UpperCamelCase : Optional[str] = None _UpperCamelCase : bool = True # deprecated _UpperCamelCase : Optional[int] = None # deprecated _UpperCamelCase : int = 10 << 20 # 10MB _UpperCamelCase : Optional[bool] = None class __A ( datasets.ArrowBasedBuilder ): _UpperCamelCase : Union[str, Any] = JsonConfig def __A ( self ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) _lowerCAmelCase : Optional[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self , a__ ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) _lowerCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase_ , (str, list, tuple) ): _lowerCAmelCase : Tuple = data_files if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _lowerCAmelCase : Optional[Any] = [files] _lowerCAmelCase : Optional[Any] = [dl_manager.iter_files(lowerCamelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _lowerCAmelCase : Tuple = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _lowerCAmelCase : Dict = [files] _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(lowerCamelCase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase_ , gen_kwargs={"""files""": files} ) ) return splits def __A ( self , a__ ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _lowerCAmelCase : List[str] = self.config.features.arrow_schema.field(lowerCamelCase_ ).type _lowerCAmelCase : Dict = pa_table.append_column(lowerCamelCase_ , pa.array([None] * len(lowerCamelCase_ ) , type=lowerCamelCase_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : List[str] = table_cast(lowerCamelCase_ , self.config.features.arrow_schema ) return pa_table def __A ( self , a__ ): for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowerCamelCase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _lowerCAmelCase : str = json.load(lowerCamelCase_ ) # We keep only the field we are interested in _lowerCAmelCase : Dict = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowerCamelCase_ , (list, tuple) ): _lowerCAmelCase : Optional[Any] = set().union(*[row.keys() for row in dataset] ) _lowerCAmelCase : str = {col: [row.get(lowerCamelCase_ ) for row in dataset] for col in keys} else: _lowerCAmelCase : int = dataset _lowerCAmelCase : Any = pa.Table.from_pydict(lowerCamelCase_ ) yield file_idx, self._cast_table(lowerCamelCase_ ) # If the file has one json object per line else: with open(lowerCamelCase_ , """rb""" ) as f: _lowerCAmelCase : Union[str, Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _lowerCAmelCase : Union[str, Any] = max(self.config.chunksize // 32 , 16 << 10 ) _lowerCAmelCase : Tuple = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: _lowerCAmelCase : Optional[Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowerCamelCase_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _lowerCAmelCase : Any = batch.decode(self.config.encoding , errors=lowerCamelCase_ ).encode("""utf-8""" ) try: while True: try: _lowerCAmelCase : Union[str, Any] = paj.read_json( io.BytesIO(lowerCamelCase_ ) , read_options=paj.ReadOptions(block_size=lowerCamelCase_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowerCamelCase_ , pa.ArrowInvalid ) and "straddling" not in str(lowerCamelCase_ ) or block_size > len(lowerCamelCase_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"Batch of {len(lowerCamelCase_ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}." ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowerCamelCase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _lowerCAmelCase : str = json.load(lowerCamelCase_ ) except json.JSONDecodeError: logger.error(F"Failed to read file '{file}' with error {type(lowerCamelCase_ )}: {e}" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowerCamelCase_ , lowerCamelCase_ ): # list is the only sequence type supported in JSON try: _lowerCAmelCase : List[Any] = set().union(*[row.keys() for row in dataset] ) _lowerCAmelCase : List[Any] = {col: [row.get(lowerCamelCase_ ) for row in dataset] for col in keys} _lowerCAmelCase : Optional[int] = pa.Table.from_pydict(lowerCamelCase_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"Failed to read file '{file}' with error {type(lowerCamelCase_ )}: {e}" ) raise ValueError(F"Not able to read records in the JSON file at {file}." ) from None yield file_idx, self._cast_table(lowerCamelCase_ ) break else: logger.error(F"Failed to read file '{file}' with error {type(lowerCamelCase_ )}: {e}" ) raise ValueError( F"Not able to read records in the JSON file at {file}. " F"You should probably indicate the field of the JSON file containing your records. " F"This JSON file contain the following fields: {str(list(dataset.keys() ) )}. " F"Select the correct one and provide it as `field='XXX'` to the dataset loading method. " ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase_ ) batch_idx += 1
710
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Dict: _lowerCAmelCase : str = len(_lowerCamelCase ) while cur > 1: # Find the maximum number in arr _lowerCAmelCase : Any = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _lowerCAmelCase : Optional[Any] = arr[mi::-1] + arr[mi + 1 : len(_lowerCamelCase )] # Reverse whole list _lowerCAmelCase : List[str] = arr[cur - 1 :: -1] + arr[cur : len(_lowerCamelCase )] cur -= 1 return arr if __name__ == "__main__": _a : int = input('Enter numbers separated by a comma:\n').strip() _a : Any = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
711
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _a : Union[str, Any] = logging.get_logger(__name__) _a : Tuple = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class __A ( __UpperCAmelCase ): _UpperCamelCase : Optional[int] = "instructblip_vision_model" def __init__( self , a__=1408 , a__=6144 , a__=39 , a__=16 , a__=224 , a__=14 , a__="gelu" , a__=1e-6 , a__=0.0 , a__=1e-10 , a__=True , **a__ , ): super().__init__(**lowerCAmelCase_ ) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : str = patch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : int = initializer_range _lowerCAmelCase : List[str] = attention_dropout _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Any = qkv_bias @classmethod def __A ( cls , a__ , **a__ ): cls._set_token_in_kwargs(lowerCAmelCase_ ) _lowerCAmelCase , _lowerCAmelCase : Dict = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowerCAmelCase : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class __A ( __UpperCAmelCase ): _UpperCamelCase : Optional[int] = "instructblip_qformer" def __init__( self , a__=30522 , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=0.0_2 , a__=1e-12 , a__=0 , a__="absolute" , a__=2 , a__=1408 , **a__ , ): super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Dict = layer_norm_eps _lowerCAmelCase : Optional[int] = position_embedding_type _lowerCAmelCase : List[str] = cross_attention_frequency _lowerCAmelCase : Union[str, Any] = encoder_hidden_size @classmethod def __A ( cls , a__ , **a__ ): cls._set_token_in_kwargs(lowerCAmelCase_ ) _lowerCAmelCase , _lowerCAmelCase : Any = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowerCAmelCase : Optional[int] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class __A ( __UpperCAmelCase ): _UpperCamelCase : List[Any] = "instructblip" _UpperCamelCase : Optional[Any] = True def __init__( self , a__=None , a__=None , a__=None , a__=32 , **a__ ): super().__init__(**lowerCAmelCase_ ) if vision_config is None: _lowerCAmelCase : Optional[Any] = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowerCAmelCase : Dict = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowerCAmelCase : List[str] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowerCAmelCase : Union[str, Any] = InstructBlipVisionConfig(**lowerCAmelCase_ ) _lowerCAmelCase : List[str] = InstructBlipQFormerConfig(**lowerCAmelCase_ ) _lowerCAmelCase : Tuple = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowerCAmelCase : Optional[int] = CONFIG_MAPPING[text_model_type](**lowerCAmelCase_ ) _lowerCAmelCase : str = self.text_config.tie_word_embeddings _lowerCAmelCase : Dict = self.text_config.is_encoder_decoder _lowerCAmelCase : Dict = num_query_tokens _lowerCAmelCase : Any = self.vision_config.hidden_size _lowerCAmelCase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase : Optional[int] = 1.0 _lowerCAmelCase : Dict = 0.0_2 @classmethod def __A ( cls , a__ , a__ , a__ , **a__ , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase_ , ) def __A ( self ): _lowerCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : List[Any] = self.vision_config.to_dict() _lowerCAmelCase : int = self.qformer_config.to_dict() _lowerCAmelCase : List[str] = self.text_config.to_dict() _lowerCAmelCase : Optional[int] = self.__class__.model_type return output
712
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> List[Any]: _lowerCAmelCase : Any = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] _lowerCAmelCase : int = True if '''large''' in model_name or '''huge''' in model_name else False _lowerCAmelCase : Dict = True if '''large''' in model_name or '''huge''' in model_name else False _lowerCAmelCase : List[str] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _lowerCAmelCase : int = [3, 3, 3, 3] _lowerCAmelCase : str = [5, 5, 5, 5] elif "fl4" in model_name: _lowerCAmelCase : List[str] = [4, 4, 4, 4] _lowerCAmelCase : Union[str, Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _lowerCAmelCase : Any = [3, 3, 3, 3] if "lrf" in model_name: _lowerCAmelCase : Optional[Any] = [3, 3, 3, 3] else: _lowerCAmelCase : Any = [2, 2, 2, 2] if "tiny" in model_name: _lowerCAmelCase : Dict = 96 elif "small" in model_name: _lowerCAmelCase : Any = 96 elif "base" in model_name: _lowerCAmelCase : Union[str, Any] = 128 elif "large" in model_name: _lowerCAmelCase : List[Any] = 192 elif "xlarge" in model_name: _lowerCAmelCase : List[Any] = 256 elif "huge" in model_name: _lowerCAmelCase : Optional[Any] = 352 # set label information _lowerCAmelCase : Dict = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: _lowerCAmelCase : Optional[Any] = '''imagenet-22k-id2label.json''' else: _lowerCAmelCase : Union[str, Any] = '''imagenet-1k-id2label.json''' _lowerCAmelCase : Tuple = json.load(open(hf_hub_download(a_ ,a_ ,repo_type="""dataset""" ) ,"""r""" ) ) _lowerCAmelCase : Dict = {int(a_ ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} _lowerCAmelCase : Any = FocalNetConfig( embed_dim=a_ ,depths=a_ ,focal_levels=a_ ,focal_windows=a_ ,use_conv_embed=a_ ,idalabel=a_ ,labelaid=a_ ,use_post_layernorm=a_ ,use_layerscale=a_ ,) return config def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ) -> int: if "patch_embed.proj" in name: _lowerCAmelCase : Dict = name.replace("""patch_embed.proj""" ,"""embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _lowerCAmelCase : Dict = name.replace("""patch_embed.norm""" ,"""embeddings.norm""" ) if "layers" in name: _lowerCAmelCase : Any = '''encoder.''' + name if "encoder.layers" in name: _lowerCAmelCase : Any = name.replace("""encoder.layers""" ,"""encoder.stages""" ) if "downsample.proj" in name: _lowerCAmelCase : Optional[int] = name.replace("""downsample.proj""" ,"""downsample.projection""" ) if "blocks" in name: _lowerCAmelCase : int = name.replace("""blocks""" ,"""layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _lowerCAmelCase : int = name.replace("""modulation.f""" ,"""modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _lowerCAmelCase : Union[str, Any] = name.replace("""modulation.h""" ,"""modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _lowerCAmelCase : Tuple = name.replace("""modulation.proj""" ,"""modulation.projection_out""" ) if name == "norm.weight": _lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "norm.bias": _lowerCAmelCase : List[Any] = '''layernorm.bias''' if "head" in name: _lowerCAmelCase : List[Any] = name.replace("""head""" ,"""classifier""" ) else: _lowerCAmelCase : Tuple = '''focalnet.''' + name return name def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Union[str, Any]=False ) -> Union[str, Any]: # fmt: off _lowerCAmelCase : Optional[Any] = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on _lowerCAmelCase : Optional[int] = model_name_to_url[model_name] print("""Checkpoint URL: """ ,a_ ) _lowerCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(a_ ,map_location="""cpu""" )['''model'''] # rename keys for key in state_dict.copy().keys(): _lowerCAmelCase : Union[str, Any] = state_dict.pop(a_ ) _lowerCAmelCase : Union[str, Any] = val _lowerCAmelCase : Optional[int] = get_focalnet_config(a_ ) _lowerCAmelCase : Union[str, Any] = FocalNetForImageClassification(a_ ) model.eval() # load state dict model.load_state_dict(a_ ) # verify conversion _lowerCAmelCase : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCAmelCase : Tuple = BitImageProcessor( do_resize=a_ ,size={"""shortest_edge""": 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=a_ ,crop_size=224 ,do_normalize=a_ ,image_mean=a_ ,image_std=a_ ,) _lowerCAmelCase : Dict = Image.open(requests.get(a_ ,stream=a_ ).raw ) _lowerCAmelCase : Union[str, Any] = processor(images=a_ ,return_tensors="""pt""" ) _lowerCAmelCase : Dict = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] ,std=[0.2_29, 0.2_24, 0.2_25] ), ] ) _lowerCAmelCase : List[str] = image_transforms(a_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,a_ ,atol=1e-4 ) _lowerCAmelCase : Optional[Any] = model(**a_ ) _lowerCAmelCase : int = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" ,model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _lowerCAmelCase : Optional[Any] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": _lowerCAmelCase : Dict = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": _lowerCAmelCase : Any = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": _lowerCAmelCase : List[str] = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": _lowerCAmelCase : Any = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": _lowerCAmelCase : Dict = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] ,a_ ,atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": _a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) _a : List[str] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
713
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ,_lowerCamelCase : List[Any] ,_lowerCamelCase : List[str] ,_lowerCamelCase : Tuple = None ,) -> Any: _lowerCAmelCase : str = {} if train_file is not None: _lowerCAmelCase : str = [train_file] if eval_file is not None: _lowerCAmelCase : List[str] = [eval_file] if test_file is not None: _lowerCAmelCase : Optional[Any] = [test_file] _lowerCAmelCase : List[Any] = datasets.load_dataset("""csv""" ,data_files=UpperCAmelCase__ ) _lowerCAmelCase : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) _lowerCAmelCase : str = features_name.pop(UpperCAmelCase__ ) _lowerCAmelCase : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) _lowerCAmelCase : List[str] = {label: i for i, label in enumerate(UpperCAmelCase__ )} _lowerCAmelCase : Dict = tokenizer.model_input_names _lowerCAmelCase : List[Any] = {} if len(UpperCAmelCase__ ) == 1: for k in files.keys(): _lowerCAmelCase : List[str] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] ,truncation=UpperCAmelCase__ ,max_length=UpperCAmelCase__ ,padding="""max_length""" ) ,batched=UpperCAmelCase__ ,) elif len(UpperCAmelCase__ ) == 2: for k in files.keys(): _lowerCAmelCase : Optional[int] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) ,truncation=UpperCAmelCase__ ,max_length=UpperCAmelCase__ ,padding="""max_length""" ,) ,batched=UpperCAmelCase__ ,) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _lowerCAmelCase : Dict = {k: v for k, v in ex.items() if k in input_names} _lowerCAmelCase : Tuple = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _lowerCAmelCase : Optional[int] = {k: v for k, v in ex.items() if k in input_names} _lowerCAmelCase : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _lowerCAmelCase : Optional[int] = {k: v for k, v in ex.items() if k in input_names} _lowerCAmelCase : Optional[Any] = labelaid[ex[label_name]] yield (d, label) _lowerCAmelCase : Tuple = ( tf.data.Dataset.from_generator( UpperCAmelCase__ ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _lowerCAmelCase : int = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _lowerCAmelCase : List[str] = ( tf.data.Dataset.from_generator( UpperCAmelCase__ ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _lowerCAmelCase : Tuple = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _lowerCAmelCase : Union[str, Any] = ( tf.data.Dataset.from_generator( UpperCAmelCase__ ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _lowerCAmelCase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _a : int = logging.getLogger(__name__) @dataclass class __A : _UpperCamelCase : Tuple = field(metadata={"help": "Which column contains the label"} ) _UpperCamelCase : Optional[Any] = field(default=_a , metadata={"help": "The path of the training file"} ) _UpperCamelCase : str = field(default=_a , metadata={"help": "The path of the development file"} ) _UpperCamelCase : List[str] = field(default=_a , metadata={"help": "The path of the test file"} ) _UpperCamelCase : str = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase : str = field( default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class __A : _UpperCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCamelCase : Any = field( default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase : str = field( default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase : List[str] = field(default=_a , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCamelCase : List[Any] = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO ,) logger.info( f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " f"16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase : int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = get_tfds( train_file=data_args.train_file ,eval_file=data_args.dev_file ,test_file=data_args.test_file ,tokenizer=UpperCAmelCase__ ,label_column_id=data_args.label_column_id ,max_seq_length=data_args.max_seq_length ,) _lowerCAmelCase : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=len(UpperCAmelCase__ ) ,labelaid=UpperCAmelCase__ ,idalabel={id: label for label, id in labelaid.items()} ,finetuning_task="""text-classification""" ,cache_dir=model_args.cache_dir ,) with training_args.strategy.scope(): _lowerCAmelCase : Dict = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_pt=bool(""".bin""" in model_args.model_name_or_path ) ,config=UpperCAmelCase__ ,cache_dir=model_args.cache_dir ,) def compute_metrics(_lowerCamelCase : List[Any] ) -> Dict: _lowerCAmelCase : Optional[int] = np.argmax(p.predictions ,axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _lowerCAmelCase : List[str] = TFTrainer( model=UpperCAmelCase__ ,args=UpperCAmelCase__ ,train_dataset=UpperCAmelCase__ ,eval_dataset=UpperCAmelCase__ ,compute_metrics=UpperCAmelCase__ ,) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCAmelCase : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase : List[str] = trainer.evaluate() _lowerCAmelCase : str = os.path.join(training_args.output_dir ,"""eval_results.txt""" ) with open(UpperCAmelCase__ ,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) results.update(UpperCAmelCase__ ) return results if __name__ == "__main__": main()
714
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
0
"""simple docstring""" from __future__ import annotations import time _a : List[Any] = list[tuple[int, int]] _a : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __A : def __init__( self , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = pos_x _lowerCAmelCase : int = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : Union[str, Any] = goal_x _lowerCAmelCase : Optional[Any] = goal_y _lowerCAmelCase : List[str] = parent class __A : def __init__( self , a__ , a__ ): _lowerCAmelCase : int = Node(start[1] , start[0] , goal[1] , goal[0] , __UpperCamelCase ) _lowerCAmelCase : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , __UpperCamelCase ) _lowerCAmelCase : Dict = [self.start] _lowerCAmelCase : Optional[Any] = False def __A ( self ): while self.node_queue: _lowerCAmelCase : int = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _lowerCAmelCase : Optional[Any] = True return self.retrace_path(__UpperCamelCase ) _lowerCAmelCase : Tuple = self.get_successors(__UpperCamelCase ) for node in successors: self.node_queue.append(__UpperCamelCase ) if not self.reached: return [self.start.pos] return None def __A ( self , a__ ): _lowerCAmelCase : List[Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Any = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__UpperCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__UpperCamelCase , __UpperCamelCase , self.target.pos_y , self.target.pos_x , __UpperCamelCase ) ) return successors def __A ( self , a__ ): _lowerCAmelCase : List[str] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Any = current_node.parent path.reverse() return path class __A : def __init__( self , a__ , a__ ): _lowerCAmelCase : Any = BreadthFirstSearch(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase : Optional[int] = BreadthFirstSearch(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase : Any = False def __A ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _lowerCAmelCase : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _lowerCAmelCase : str = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _lowerCAmelCase : List[Any] = True return self.retrace_bidirectional_path( __UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase : Optional[Any] = current_bwd_node _lowerCAmelCase : List[Any] = current_fwd_node _lowerCAmelCase : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(__UpperCamelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(__UpperCamelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__UpperCamelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __A ( self , a__ , a__ ): _lowerCAmelCase : List[Any] = self.fwd_bfs.retrace_path(__UpperCamelCase ) _lowerCAmelCase : List[str] = self.bwd_bfs.retrace_path(__UpperCamelCase ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _a : Tuple = (0, 0) _a : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a : int = time.time() _a : List[str] = BreadthFirstSearch(init, goal) _a : Dict = bfs.search() _a : List[Any] = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _a : Tuple = time.time() _a : Union[str, Any] = BidirectionalBreadthFirstSearch(init, goal) _a : int = bd_bfs.search() _a : int = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : int = WavaVecaPhonemeCTCTokenizer _UpperCamelCase : Tuple = False def __A ( self ): super().setUp() _lowerCAmelCase : Tuple = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) _lowerCAmelCase : Optional[Any] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : Tuple = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} _lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) def __A ( self , a__ , a__=False , a__=20 , a__=5 ): _lowerCAmelCase : List[Any] = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=a__ )) for i in range(len(a__ ) )] _lowerCAmelCase : Union[str, Any] = list(filter(lambda a__ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=a__ ) , a__ ) ) if max_length is not None and len(a__ ) > max_length: _lowerCAmelCase : Tuple = toks[:max_length] if min_length is not None and len(a__ ) < min_length and len(a__ ) > 0: while len(a__ ) < min_length: _lowerCAmelCase : List[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowerCAmelCase : List[str] = [t[0] for t in toks] # Ensure consistency _lowerCAmelCase : Tuple = tokenizer.decode(a__ , clean_up_tokenization_spaces=a__ ) if " " not in output_txt and len(a__ ) > 1: _lowerCAmelCase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a__ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a__ ) ) if with_prefix_space: _lowerCAmelCase : Union[str, Any] = """ """ + output_txt _lowerCAmelCase : str = tokenizer.encode(a__ , add_special_tokens=a__ ) return output_txt, output_ids def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) _lowerCAmelCase : Union[str, Any] = tokenizer("""m xxx ɪ""" , do_phonemize=a__ ).input_ids self.assertEqual(a__ , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) _lowerCAmelCase : str = tokenizer("""m aaa ɪ ccc""" , do_phonemize=a__ ).input_ids self.assertEqual(a__ , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa _lowerCAmelCase : int = tokenizer("""maɪ c""" , do_phonemize=a__ ).input_ids self.assertEqual(a__ , [3, 200] ) # mai should be <unk> (=3) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _lowerCAmelCase : Union[str, Any] = """Hello how are you""" _lowerCAmelCase : int = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) self.assertEqual(a__ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) def __A ( self ): _lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _lowerCAmelCase : Dict = """Hello how are you""" _lowerCAmelCase : int = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(a__ ).input_ids , tokenizer(a__ , do_phonemize=a__ ).input_ids ) def __A ( self ): _lowerCAmelCase : int = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _lowerCAmelCase : Dict = """Hello how are you""" _lowerCAmelCase : Union[str, Any] = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) _lowerCAmelCase : Dict = tokenizer.decode(tokenizer(a__ ).input_ids ) self.assertEqual(a__ , a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _lowerCAmelCase : Any = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] _lowerCAmelCase : Tuple = tokenizer.decode(sample_ids[0] ) _lowerCAmelCase : Tuple = tokenizer.batch_decode(a__ ) self.assertEqual(a__ , batch_tokens[0] ) self.assertEqual(a__ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def __A ( self ): _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _lowerCAmelCase : Union[str, Any] = """Hello how are you""" _lowerCAmelCase : Optional[Any] = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) self.assertEqual(a__ , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def __A ( self ): _lowerCAmelCase : int = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _lowerCAmelCase : int = """Hello how are you""" _lowerCAmelCase : List[Any] = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(a__ ).input_ids , tokenizer(a__ , do_phonemize=a__ ).input_ids ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off _lowerCAmelCase : Tuple = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter _lowerCAmelCase : Optional[Any] = tokenizer.decode(sample_ids[0] ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(a__ ) self.assertEqual(a__ , batch_tokens[0] ) self.assertEqual(a__ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter _lowerCAmelCase : Union[str, Any] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(a__ , filter_word_delimiter_token=a__ ) self.assertEqual(a__ , batch_tokens[0] ) self.assertEqual(a__ , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def __A ( self ): _lowerCAmelCase : int = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _lowerCAmelCase : Union[str, Any] = """Hello how are you""" _lowerCAmelCase : Optional[int] = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) _lowerCAmelCase : Dict = tokenizer.decode(tokenizer(a__ ).input_ids , filter_word_delimiter_token=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _lowerCAmelCase : int = """Hello how are you""" _lowerCAmelCase : Dict = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) _lowerCAmelCase : List[Any] = tokenizer.decode(tokenizer(a__ ).input_ids , filter_word_delimiter_token=a__ ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=a__ ) _lowerCAmelCase : List[Any] = """Hello how are you""" _lowerCAmelCase : Optional[int] = tokenizer(a__ , phonemizer_lang="""en-us""" ).input_ids _lowerCAmelCase : int = tokenizer(a__ , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(a__ , a__ ) _lowerCAmelCase : Optional[int] = tokenizer.decode(a__ ) _lowerCAmelCase : str = tokenizer.decode(a__ ) self.assertEqual(a__ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(a__ , """ɛ l o h aʊ a ʁ j u""" ) def __A ( self ): _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _lowerCAmelCase : Dict = """Hello how Are you""" _lowerCAmelCase : Any = """hello how are you""" _lowerCAmelCase : Any = tokenizer(a__ ).input_ids _lowerCAmelCase : Tuple = tokenizer(a__ ).input_ids self.assertEqual(a__ , a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off _lowerCAmelCase : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on _lowerCAmelCase : Tuple = tokenizer.batch_decode(a__ ) self.assertEqual(a__ , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def __A ( a__ , a__ ): _lowerCAmelCase : int = [d[key] for d in offsets] return retrieved_list def __A ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" _lowerCAmelCase : List[Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on _lowerCAmelCase : Tuple = tokenizer.decode(a__ , output_char_offsets=a__ , filter_word_delimiter_token=a__ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(a__ , a__ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def __A ( self ): _lowerCAmelCase : Any = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(a__ , a__ ): self.assertTrue(isinstance(a__ , a__ ) ) self.assertTrue(isinstance(outputs_list[0] , a__ ) ) # transform list to ModelOutput _lowerCAmelCase : str = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(a__ , a__ ): if isinstance(a__ , a__ ): [recursive_check(a__ , a__ ) for la, la in zip(a__ , a__ )] self.assertEqual(a__ , a__ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off _lowerCAmelCase : int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char _lowerCAmelCase : str = tokenizer.batch_decode(a__ , output_char_offsets=a__ ) _lowerCAmelCase : Union[str, Any] = [tokenizer.decode(a__ , output_char_offsets=a__ ) for ids in sample_ids] check_list_tuples_equal(a__ , a__ ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def __A ( self ): pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def __A ( self ): pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def __A ( self ): pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _lowerCAmelCase : Union[str, Any] = tokenizer.vocab_size _lowerCAmelCase : Optional[int] = len(a__ ) self.assertNotEqual(a__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCAmelCase : List[Any] = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] _lowerCAmelCase : Any = tokenizer.add_tokens(a__ ) _lowerCAmelCase : int = tokenizer.vocab_size _lowerCAmelCase : Optional[int] = len(a__ ) self.assertNotEqual(a__ , 0 ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , len(a__ ) ) self.assertEqual(a__ , all_size + len(a__ ) ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=a__ ) self.assertGreaterEqual(len(a__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _lowerCAmelCase : List[str] = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} _lowerCAmelCase : str = tokenizer.add_special_tokens(a__ ) _lowerCAmelCase : Optional[Any] = tokenizer.vocab_size _lowerCAmelCase : List[str] = len(a__ ) self.assertNotEqual(a__ , 0 ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , len(a__ ) ) self.assertEqual(a__ , all_size_a + len(a__ ) ) _lowerCAmelCase : Optional[Any] = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=a__ ) self.assertGreaterEqual(len(a__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.""" ) def __A ( self ): pass @unittest.skip("""The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : Any = self.get_tokenizers(fast=a__ , do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _lowerCAmelCase : Any = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] _lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_string(a__ ) self.assertIsInstance(output["""text"""] , a__ )
716
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ) -> Optional[Any]: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : Optional[int] = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
0
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ) -> Union[str, Any]: return 1 / (1 + np.exp(-z )) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Dict ) -> List[str]: return (-y * np.log(_lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Union[str, Any] ) -> List[str]: _lowerCAmelCase : List[str] = np.dot(_lowerCamelCase ,_lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase ) ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : List[str] ,_lowerCamelCase : Union[str, Any]=70000 ) -> List[str]: _lowerCAmelCase : Union[str, Any] = np.zeros(x.shape[1] ) for iterations in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = np.dot(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : str = sigmoid_function(_lowerCamelCase ) _lowerCAmelCase : str = np.dot(x.T ,h - y ) / y.size _lowerCAmelCase : Any = theta - alpha * gradient # updating the weights _lowerCAmelCase : List[str] = np.dot(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Dict = sigmoid_function(_lowerCamelCase ) _lowerCAmelCase : str = cost_function(_lowerCamelCase ,_lowerCamelCase ) if iterations % 100 == 0: print(f"loss: {j} \t" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _a : Union[str, Any] = datasets.load_iris() _a : Tuple = iris.data[:, :2] _a : Tuple = (iris.target != 0) * 1 _a : Any = 0.1 _a : List[Any] = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> int: return sigmoid_function( np.dot(_lowerCamelCase ,_lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') (_a) : int = (x[:, 0].min(), x[:, 0].max()) (_a) : Any = (x[:, 1].min(), x[:, 1].max()) (_a) : Dict = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _a : Optional[Any] = np.c_[xxa.ravel(), xxa.ravel()] _a : List[str] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
718
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
0
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : List[Any] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(a__ ) ) def __A ( self ): _lowerCAmelCase : List[str] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(a__ ) ) def __A ( self ): _lowerCAmelCase : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(a__ ) ) def __A ( self ): _lowerCAmelCase : str = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(a__ ) ) def __A ( self ): _lowerCAmelCase : List[str] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(a__ ) ) def __A ( self ): _lowerCAmelCase : Optional[int] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _lowerCAmelCase : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def __A ( self ): _lowerCAmelCase : List[str] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _lowerCAmelCase : Dict = '''fp16''' self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def __A ( self ): # pass variant but use the non-variant filenames _lowerCAmelCase : List[str] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] _lowerCAmelCase : Union[str, Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def __A ( self ): _lowerCAmelCase : Dict = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _lowerCAmelCase : List[Any] = '''fp16''' self.assertFalse(is_safetensors_compatible(a__ , variant=a__ ) ) def __A ( self ): _lowerCAmelCase : int = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] _lowerCAmelCase : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def __A ( self ): # pass variant but use the non-variant filenames _lowerCAmelCase : Optional[int] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] _lowerCAmelCase : str = '''fp16''' self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def __A ( self ): _lowerCAmelCase : Tuple = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _lowerCAmelCase : str = '''fp16''' self.assertFalse(is_safetensors_compatible(a__ , variant=a__ ) )
719
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
0
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore _a : Optional[Any] = namedtuple('covid_data', 'cases deaths recovered') def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] = "https://www.worldometers.info/coronavirus/" ) -> List[str]: _lowerCAmelCase : Optional[Any] = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(UpperCamelCase__ ).content ).xpath(UpperCamelCase__ ) ) _a : List[str] = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
720
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> list[int]: if num <= 0: raise ValueError("""Input must be a positive integer""" ) _lowerCAmelCase : Optional[int] = [True] * (num + 1) _lowerCAmelCase : Union[str, Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p ,num + 1 ,lowerCamelCase__ ): _lowerCAmelCase : int = False p += 1 return [prime for prime in range(2 ,num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _a : Dict = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a : Optional[Any] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _a : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _a : Optional[Any] = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __A ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=18 , a__=30 , a__=400 , a__=True , a__=None , a__=True , ): _lowerCAmelCase : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase : Tuple = parent _lowerCAmelCase : Union[str, Any] = batch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : Union[str, Any] = min_resolution _lowerCAmelCase : int = max_resolution _lowerCAmelCase : str = do_resize _lowerCAmelCase : Optional[Any] = size _lowerCAmelCase : Union[str, Any] = apply_ocr def __A ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __A ( self ): _lowerCAmelCase : Union[str, Any] = LayoutLMvaImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , """do_resize""" ) ) self.assertTrue(hasattr(a__ , """size""" ) ) self.assertTrue(hasattr(a__ , """apply_ocr""" ) ) def __A ( self ): _lowerCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __A ( self ): pass def __A ( self ): # Initialize image_processing _lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , a__ ) self.assertIsInstance(encoding.boxes , a__ ) # Test batched _lowerCAmelCase : Optional[int] = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input _lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCAmelCase : Tuple = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input _lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCAmelCase : int = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __A ( self ): # with apply_OCR = True _lowerCAmelCase : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset _lowerCAmelCase : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) _lowerCAmelCase : Tuple = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) _lowerCAmelCase : List[str] = image_processing(a__ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _lowerCAmelCase : Optional[int] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 _lowerCAmelCase : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , a__ ) self.assertListEqual(encoding.boxes , a__ ) # with apply_OCR = False _lowerCAmelCase : Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=a__ ) _lowerCAmelCase : List[str] = image_processing(a__ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
702
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
0
"""simple docstring""" from __future__ import annotations from typing import Any class __A : def __init__( self , a__ = 6 ): _lowerCAmelCase : Node | None = None _lowerCAmelCase : Node | None = None self.create_linked_list(a__ ) def __A ( self , a__ ): _lowerCAmelCase : List[Any] = Node() _lowerCAmelCase : Any = current_node _lowerCAmelCase : Optional[Any] = current_node _lowerCAmelCase : Any = current_node for _ in range(1 , a__ ): _lowerCAmelCase : Dict = Node() _lowerCAmelCase : Union[str, Any] = current_node _lowerCAmelCase : Optional[Any] = previous_node _lowerCAmelCase : Optional[Any] = current_node _lowerCAmelCase : List[str] = self.front _lowerCAmelCase : Dict = previous_node def __A ( self ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __A ( self ): self.check_can_perform_operation() return self.front.data if self.front else None def __A ( self , a__ ): if self.rear is None: return self.check_is_full() if not self.is_empty(): _lowerCAmelCase : Dict = self.rear.next if self.rear: _lowerCAmelCase : int = data def __A ( self ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: _lowerCAmelCase : Tuple = self.front.data _lowerCAmelCase : Tuple = None return data _lowerCAmelCase : Optional[int] = self.front _lowerCAmelCase : List[Any] = old_front.next _lowerCAmelCase : int = old_front.data _lowerCAmelCase : Dict = None return data def __A ( self ): if self.is_empty(): raise Exception("""Empty Queue""" ) def __A ( self ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __A : def __init__( self ): _lowerCAmelCase : Any | None = None _lowerCAmelCase : Node | None = None _lowerCAmelCase : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
704
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
0
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
705
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
0
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : List[Any] ,_lowerCamelCase : List[str]=1024 ,_lowerCamelCase : Union[str, Any]=1024 ,_lowerCamelCase : str=False ,**_lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[Any] = SeqaSeqDataset(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,type_path="""train""" ,**_lowerCamelCase ) _lowerCAmelCase : List[Any] = tok.pad_token_id def get_lens(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Any = tqdm( DataLoader(_lowerCamelCase ,batch_size=512 ,num_workers=8 ,shuffle=_lowerCamelCase ,collate_fn=ds.collate_fn ) ,desc=str(ds.len_file ) ,) _lowerCAmelCase : Dict = [] for batch in dl: _lowerCAmelCase : List[str] = batch["""input_ids"""].ne(_lowerCamelCase ).sum(1 ).tolist() _lowerCAmelCase : Optional[Any] = batch["""labels"""].ne(_lowerCamelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_lowerCamelCase ,_lowerCamelCase ): max_lens.append(max(_lowerCamelCase ,_lowerCamelCase ) ) else: max_lens.extend(_lowerCamelCase ) return max_lens _lowerCAmelCase : Optional[Any] = get_lens(_lowerCamelCase ) _lowerCAmelCase : int = SeqaSeqDataset(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,type_path="""val""" ,**_lowerCamelCase ) _lowerCAmelCase : int = get_lens(_lowerCamelCase ) pickle_save(_lowerCamelCase ,train_ds.len_file ) pickle_save(_lowerCamelCase ,val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
706
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
0
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __A ( SCREAMING_SNAKE_CASE_ ): @require_torch def __A ( self ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowerCAmelCase : int = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _lowerCAmelCase : str = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _lowerCAmelCase : int = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _lowerCAmelCase : Optional[Any] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(a__ ) BertModel.from_pretrained(a__ ) BertTokenizer.from_pretrained(a__ ) pipeline(task="""fill-mask""" , model=a__ ) # baseline - just load from_pretrained with normal network _lowerCAmelCase : Any = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _lowerCAmelCase : Union[str, Any] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCAmelCase : Dict = """1""" _lowerCAmelCase : Optional[int] = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def __A ( self ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowerCAmelCase : Dict = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _lowerCAmelCase : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _lowerCAmelCase : List[Any] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _lowerCAmelCase : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(a__ ) BertModel.from_pretrained(a__ ) BertTokenizer.from_pretrained(a__ ) pipeline(task="""fill-mask""" , model=a__ ) # baseline - just load from_pretrained with normal network _lowerCAmelCase : int = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _lowerCAmelCase : List[Any] = self.get_env() _lowerCAmelCase : List[str] = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def __A ( self ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowerCAmelCase : str = """ from transformers import BertConfig, BertModel, BertTokenizer """ _lowerCAmelCase : int = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _lowerCAmelCase : Union[str, Any] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _lowerCAmelCase : int = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _lowerCAmelCase : Any = self.get_env() _lowerCAmelCase : int = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network _lowerCAmelCase : Optional[int] = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCAmelCase : Any = """1""" _lowerCAmelCase : List[Any] = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def __A ( self ): _lowerCAmelCase : Optional[Any] = """ from transformers import pipeline """ _lowerCAmelCase : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _lowerCAmelCase : List[Any] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _lowerCAmelCase : List[Any] = self.get_env() _lowerCAmelCase : Union[str, Any] = """1""" _lowerCAmelCase : Tuple = [sys.executable, """-c""", """\n""".join([load, mock, run] )] _lowerCAmelCase : Tuple = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def __A ( self ): _lowerCAmelCase : List[str] = """ from transformers import AutoModel """ _lowerCAmelCase : Optional[Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _lowerCAmelCase : Tuple = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _lowerCAmelCase : Dict = self.get_env() _lowerCAmelCase : Tuple = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCAmelCase : Dict = """1""" _lowerCAmelCase : List[Any] = subprocess.run(a__ , env=a__ , check=a__ , capture_output=a__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase = 42 _UpperCamelCase = None _UpperCamelCase = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
708
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ,_lowerCamelCase : int = 10 ) -> int: _lowerCAmelCase : defaultdict = defaultdict(_lowerCamelCase ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _lowerCAmelCase : Union[str, Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _lowerCAmelCase : Dict = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_lowerCamelCase ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
709
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
0
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Any = OpenAIGPTTokenizer _UpperCamelCase : Tuple = OpenAIGPTTokenizerFast _UpperCamelCase : List[Any] = True _UpperCamelCase : Tuple = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] _lowerCAmelCase : Union[str, Any] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : int = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(a__ ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , a__ ): return "lower newer", "lower newer" def __A ( self ): _lowerCAmelCase : Optional[Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _lowerCAmelCase : Optional[int] = """lower""" _lowerCAmelCase : Optional[Any] = ["""low""", """er</w>"""] _lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : int = tokens + ["""<unk>"""] _lowerCAmelCase : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Tuple = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[Any] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Any = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): pass @require_ftfy @require_spacy @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ ): pass
710
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : int ) -> int: if exponent == 1: return base if exponent % 2 == 0: _lowerCAmelCase : Dict = _modexpt(_lowerCamelCase ,exponent // 2 ,_lowerCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_lowerCamelCase ,exponent - 1 ,_lowerCamelCase )) % modulo_value def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1777 ,_lowerCamelCase : int = 1855 ,_lowerCamelCase : int = 8 ) -> int: _lowerCAmelCase : List[Any] = base for _ in range(1 ,_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = _modexpt(_lowerCamelCase ,_lowerCamelCase ,10**digits ) return result if __name__ == "__main__": print(F"""{solution() = }""")
711
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
0
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , a__="</s>" , a__="<unk>" , a__="<pad>" , a__=125 , a__=None , **a__ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _lowerCAmelCase : Dict = [F"<extra_id_{i}>" for i in range(a__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _lowerCAmelCase : int = len(set(filter(lambda a__ : bool("""extra_id""" in str(a__ ) ) , a__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) _lowerCAmelCase : Any = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else pad_token _lowerCAmelCase : Any = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else eos_token _lowerCAmelCase : Union[str, Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else unk_token super().__init__( eos_token=a__ , unk_token=a__ , pad_token=a__ , extra_ids=a__ , additional_special_tokens=a__ , **a__ , ) _lowerCAmelCase : int = extra_ids _lowerCAmelCase : Optional[int] = 2**8 # utf is 8 bits # define special tokens dict _lowerCAmelCase : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _lowerCAmelCase : Dict = len(self.special_tokens_encoder ) _lowerCAmelCase : Union[str, Any] = len(a__ ) for i, token in enumerate(a__ ): _lowerCAmelCase : Any = self.vocab_size + i - n _lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def __A ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a__ )) + [1] return ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] def __A ( self , a__ ): if len(a__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Optional[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Tuple = self._add_eos_if_not_present(a__ ) if token_ids_a is None: return token_ids_a else: _lowerCAmelCase : int = self._add_eos_if_not_present(a__ ) return token_ids_a + token_ids_a def __A ( self , a__ ): _lowerCAmelCase : Tuple = [chr(a__ ) for i in text.encode("""utf-8""" )] return tokens def __A ( self , a__ ): if token in self.special_tokens_encoder: _lowerCAmelCase : Tuple = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _lowerCAmelCase : List[Any] = self.added_tokens_encoder[token] elif len(a__ ) != 1: _lowerCAmelCase : List[Any] = self.unk_token_id else: _lowerCAmelCase : List[Any] = ord(a__ ) + self._num_special_tokens return token_id def __A ( self , a__ ): if index in self.special_tokens_decoder: _lowerCAmelCase : Optional[int] = self.special_tokens_decoder[index] else: _lowerCAmelCase : Dict = chr(index - self._num_special_tokens ) return token def __A ( self , a__ ): _lowerCAmelCase : Dict = B"""""" for token in tokens: if token in self.special_tokens_decoder: _lowerCAmelCase : Tuple = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: _lowerCAmelCase : List[str] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: _lowerCAmelCase : Union[str, Any] = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: _lowerCAmelCase : Dict = token.encode("""utf-8""" ) else: _lowerCAmelCase : Optional[int] = bytes([ord(a__ )] ) bstring += tok_string _lowerCAmelCase : Any = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def __A ( self , a__ , a__ = None ): return ()
712
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
0
"""simple docstring""" from __future__ import annotations _a : Dict = 8.9_88e9 # units = N * m^s * C^-2 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ) -> dict[str, float]: _lowerCAmelCase : List[str] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if distance < 0: raise ValueError("""Distance cannot be negative""" ) if force == 0: _lowerCAmelCase : str = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: _lowerCAmelCase : Any = abs(_lowerCamelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: _lowerCAmelCase : int = abs(_lowerCamelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: _lowerCAmelCase : Optional[Any] = (COULOMBS_CONSTANT * charge_product / abs(_lowerCamelCase )) ** 0.5 return {"distance": distance} raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
713
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
0
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Any = GPTaTokenizer _UpperCamelCase : Optional[int] = GPTaTokenizerFast _UpperCamelCase : Optional[int] = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : int = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : str = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Dict = {"""unk_token""": """<unk>"""} _lowerCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : Any = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : List[Any] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : List[str] = """lower newer""" _lowerCAmelCase : Union[str, Any] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[Any] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : List[str] = tokens + [tokenizer.unk_token] _lowerCAmelCase : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = """lower newer""" # Testing tokenization _lowerCAmelCase : Optional[Any] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : List[str] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Optional[Any] = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : Dict = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : int = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Optional[Any] = """This is a simple input""" _lowerCAmelCase : Any = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Tuple = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Tuple = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Any = """This is a simple input""" _lowerCAmelCase : List[Any] = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : List[str] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Union[str, Any] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[Any] = tokenizer.pad_token_id _lowerCAmelCase : Tuple = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : List[str] = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : Tuple = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : str = """$$$""" _lowerCAmelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : List[str] = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = tokenizer.bos_token_id _lowerCAmelCase : Optional[int] = tokenizer(a__ ) _lowerCAmelCase : Optional[Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __A ( self ): pass def __A ( self ): # TODO: change to self.get_tokenizers() when the fast version is implemented _lowerCAmelCase : List[Any] = [self.get_tokenizer(do_lower_case=a__ , add_bos_token=a__ )] for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _lowerCAmelCase : int = """Encode this.""" _lowerCAmelCase : Dict = """This one too please.""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ , add_special_tokens=a__ ) encoded_sequence += tokenizer.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : List[Any] = tokenizer.encode_plus( a__ , a__ , add_special_tokens=a__ , return_special_tokens_mask=a__ , ) _lowerCAmelCase : Tuple = encoded_sequence_dict["""input_ids"""] _lowerCAmelCase : List[str] = encoded_sequence_dict["""special_tokens_mask"""] self.assertEqual(len(a__ ) , len(a__ ) ) _lowerCAmelCase : Dict = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(a__ ) ] _lowerCAmelCase : List[str] = [x for x in filtered_sequence if x is not None] self.assertEqual(a__ , a__ ) @require_tokenizers class __A ( unittest.TestCase ): def __A ( self ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=a__ ) _lowerCAmelCase : Tuple = """A photo of a cat""" _lowerCAmelCase : List[str] = tokenizer.encode( a__ , ) self.assertEqual(a__ , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("""test_opt""" ) _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""./test_opt""" ) _lowerCAmelCase : List[Any] = tokenizer.encode( a__ , ) self.assertEqual(a__ , [2, 250, 1345, 9, 10, 4758] ) def __A ( self ): _lowerCAmelCase : str = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , use_slow=a__ ) _lowerCAmelCase : Any = """A photo of a cat""" _lowerCAmelCase : Dict = tokenizer.encode( a__ , ) # Same as above self.assertEqual(a__ , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("""This test is failing because of a bug in the fast tokenizer""" ) def __A ( self ): _lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=a__ ) _lowerCAmelCase : Dict = """bos""" _lowerCAmelCase : str = tokenizer.get_vocab()["""bos"""] _lowerCAmelCase : Any = """A photo of a cat""" _lowerCAmelCase : List[Any] = tokenizer.encode( a__ , ) # We changed the bos token self.assertEqual(a__ , [31957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("""./tok""" ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained("""./tok""" ) self.assertTrue(tokenizer.is_fast ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode( a__ , ) self.assertEqual(a__ , [31957, 250, 1345, 9, 10, 4758] )
714
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
0
"""simple docstring""" from collections import defaultdict def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> bool: _lowerCAmelCase : List[Any] = first_str.lower().strip() _lowerCAmelCase : Union[str, Any] = second_str.lower().strip() # Remove whitespace _lowerCAmelCase : str = first_str.replace(""" """ ,"""""" ) _lowerCAmelCase : Any = second_str.replace(""" """ ,"""""" ) # Strings of different lengths are not anagrams if len(_lowerCamelCase ) != len(_lowerCamelCase ): return False # Default values for count should be 0 _lowerCAmelCase : defaultdict[str, int] = defaultdict(_lowerCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowerCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _a : Union[str, Any] = input('Enter the first string ').strip() _a : Union[str, Any] = input('Enter the second string ').strip() _a : List[str] = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
716
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ,_lowerCamelCase : list ,_lowerCamelCase : int ) -> int: if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _lowerCAmelCase : Union[str, Any] = [p / w for p, w in zip(_lowerCamelCase ,_lowerCamelCase )] # Creating a copy of the list and sorting profit/weight in ascending order _lowerCAmelCase : Union[str, Any] = sorted(_lowerCamelCase ) # declaring useful variables _lowerCAmelCase : Dict = len(_lowerCamelCase ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : str = 0 _lowerCAmelCase : Dict = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _lowerCAmelCase : List[Any] = sorted_profit_by_weight[length - i - 1] _lowerCAmelCase : Union[str, Any] = profit_by_weight.index(_lowerCamelCase ) _lowerCAmelCase : Dict = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) _a : List[Any] = [int(x) for x in input('Input profits separated by spaces: ').split()] _a : List[Any] = [int(x) for x in input('Input weights separated by spaces: ').split()] _a : str = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
0
"""simple docstring""" _a : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_02_17_66_34e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_58_18, } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ,_lowerCamelCase : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _lowerCAmelCase : Tuple = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(_lowerCamelCase )}" ) raise ValueError(_lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : int = IFInpaintingPipeline _UpperCamelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} _UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - {"latents"} def __A ( self ): return self._get_dummy_components() def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Dict = torch.manual_seed(a__ ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) _lowerCAmelCase : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) _lowerCAmelCase : str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __A ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __A ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __A ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __A ( self ): self._test_save_load_local() def __A ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
719
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
0
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self ): super().__init__() _lowerCAmelCase : Any = nn.Linear(3 , 4 ) _lowerCAmelCase : int = nn.BatchNormad(4 ) _lowerCAmelCase : List[str] = nn.Linear(4 , 5 ) def __A ( self , a__ ): return self.lineara(self.batchnorm(self.lineara(a__ ) ) ) class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self , a__ , *a__ , **a__ ): return (args[0] + 1,) + args[1:], kwargs class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self , a__ , a__ ): return output + 1 class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = ModelForTest() _lowerCAmelCase : Optional[Any] = ModelHook() add_hook_to_module(a__ , a__ ) self.assertEqual(test_model._hf_hook , a__ ) self.assertTrue(hasattr(a__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(a__ ) self.assertFalse(hasattr(a__ , """_hf_hook""" ) ) self.assertFalse(hasattr(a__ , """_old_forward""" ) ) def __A ( self ): _lowerCAmelCase : Optional[int] = ModelForTest() _lowerCAmelCase : int = ModelHook() add_hook_to_module(a__ , a__ ) add_hook_to_module(a__ , a__ , append=a__ ) self.assertEqual(isinstance(test_model._hf_hook , a__ ) , a__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(a__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(a__ ) self.assertFalse(hasattr(a__ , """_hf_hook""" ) ) self.assertFalse(hasattr(a__ , """_old_forward""" ) ) def __A ( self ): _lowerCAmelCase : Tuple = ModelForTest() _lowerCAmelCase : Optional[int] = torch.randn(2 , 3 ) _lowerCAmelCase : Optional[Any] = test_model(x + 1 ) _lowerCAmelCase : Optional[int] = test_model(x + 2 ) _lowerCAmelCase : Tuple = PreForwardHook() add_hook_to_module(a__ , a__ ) _lowerCAmelCase : List[str] = test_model(a__ ) self.assertTrue(torch.allclose(a__ , a__ , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _lowerCAmelCase : int = PreForwardHook() add_hook_to_module(a__ , a__ ) _lowerCAmelCase : Union[str, Any] = test_model(a__ ) self.assertTrue(torch.allclose(a__ , a__ , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks _lowerCAmelCase : Tuple = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(a__ , a__ ) _lowerCAmelCase : Union[str, Any] = test_model(a__ ) assert torch.allclose(a__ , a__ , atol=1e-5 ) def __A ( self ): _lowerCAmelCase : List[str] = ModelForTest() _lowerCAmelCase : int = torch.randn(2 , 3 ) _lowerCAmelCase : List[Any] = test_model(a__ ) _lowerCAmelCase : Any = PostForwardHook() add_hook_to_module(a__ , a__ ) _lowerCAmelCase : Optional[int] = test_model(a__ ) self.assertTrue(torch.allclose(a__ , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _lowerCAmelCase : int = PostForwardHook() add_hook_to_module(a__ , a__ ) _lowerCAmelCase : str = test_model(a__ ) self.assertTrue(torch.allclose(a__ , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks _lowerCAmelCase : Optional[Any] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(a__ , a__ ) _lowerCAmelCase : Union[str, Any] = test_model(a__ ) assert torch.allclose(a__ , output + 2 , atol=1e-5 ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = ModelForTest() _lowerCAmelCase : Optional[Any] = torch.randn(2 , 3 ) _lowerCAmelCase : Any = test_model(a__ ) _lowerCAmelCase : Tuple = PostForwardHook() add_hook_to_module(a__ , a__ ) _lowerCAmelCase : str = test_model(a__ ) self.assertTrue(torch.allclose(a__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _lowerCAmelCase : List[str] = True _lowerCAmelCase : Tuple = test_model(a__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def __A ( self ): _lowerCAmelCase : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _lowerCAmelCase : List[Any] = torch.randn(2 , 3 ) _lowerCAmelCase : Optional[int] = model(a__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(a__ , AlignDevicesHook(io_same_device=a__ ) ) _lowerCAmelCase : Union[str, Any] = torch.randn(2 , 3 ).to(0 ) _lowerCAmelCase : List[Any] = model(a__ ) self.assertEqual(output.device , torch.device(0 ) ) def __A ( self ): _lowerCAmelCase : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices _lowerCAmelCase : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**a__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**a__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**a__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCAmelCase : Optional[Any] = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , a__ ) _lowerCAmelCase : Dict = torch.randn(2 , 3 ) _lowerCAmelCase : Union[str, Any] = model(a__ ) self.assertEqual(output.device , a__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload _lowerCAmelCase : Optional[int] = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**a__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**a__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**a__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) _lowerCAmelCase : Union[str, Any] = torch.randn(2 , 3 ) _lowerCAmelCase : Any = model(a__ ) self.assertEqual(output.device , a__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def __A ( self ): _lowerCAmelCase : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices _lowerCAmelCase : Tuple = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(a__ , execution_device=a__ , offload=a__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCAmelCase : Dict = torch.device(a__ ) self.assertEqual(model.batchnorm.running_mean.device , a__ ) _lowerCAmelCase : Any = torch.randn(2 , 3 ) _lowerCAmelCase : Dict = model(a__ ) self.assertEqual(output.device , a__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(a__ , execution_device=a__ , offload=a__ , offload_buffers=a__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) _lowerCAmelCase : Union[str, Any] = torch.randn(2 , 3 ) _lowerCAmelCase : Union[str, Any] = model(a__ ) self.assertEqual(output.device , a__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def __A ( self ): _lowerCAmelCase : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices _lowerCAmelCase : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( a__ , execution_device=a__ , offload=a__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCAmelCase : int = torch.device(a__ ) self.assertEqual(model.batchnorm.running_mean.device , a__ ) _lowerCAmelCase : Dict = torch.randn(2 , 3 ) _lowerCAmelCase : Any = model(a__ ) self.assertEqual(output.device , a__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( a__ , execution_device=a__ , offload=a__ , weights_map=model.state_dict() , offload_buffers=a__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) _lowerCAmelCase : List[str] = torch.randn(2 , 3 ) _lowerCAmelCase : Any = model(a__ ) self.assertEqual(output.device , a__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
720
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
0
"""simple docstring""" from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def SCREAMING_SNAKE_CASE ( ) -> Any: _lowerCAmelCase : Tuple = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=_lowerCamelCase ) env_command_parser(subparsers=_lowerCamelCase ) launch_command_parser(subparsers=_lowerCamelCase ) tpu_command_parser(subparsers=_lowerCamelCase ) test_command_parser(subparsers=_lowerCamelCase ) # Let's go _lowerCAmelCase : Optional[Any] = parser.parse_args() if not hasattr(_lowerCamelCase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(_lowerCamelCase ) if __name__ == "__main__": main()
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _a : int = Lock() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ,_lowerCamelCase : List[str] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ,_lowerCamelCase : int ,_lowerCamelCase : str ) -> Tuple: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 ,10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowerCamelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _lowerCAmelCase : List[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _lowerCAmelCase : Any = min(_lowerCamelCase ,_lowerCamelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowerCamelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _lowerCAmelCase : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _lowerCAmelCase : Dict = max(_lowerCamelCase ,_lowerCamelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Optional[int]: _lowerCAmelCase : int = [] _lowerCAmelCase : List[str] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _lowerCAmelCase : Optional[Any] = Pipe() _lowerCAmelCase : Optional[int] = Pipe() process_array_.append( Process( target=_lowerCamelCase ,args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) ,) ) _lowerCAmelCase : List[Any] = temp_rs _lowerCAmelCase : int = temp_rr for i in range(1 ,len(_lowerCamelCase ) - 1 ): _lowerCAmelCase : List[Any] = Pipe() _lowerCAmelCase : Dict = Pipe() process_array_.append( Process( target=_lowerCamelCase ,args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) ,) ) _lowerCAmelCase : List[Any] = temp_rs _lowerCAmelCase : str = temp_rr process_array_.append( Process( target=_lowerCamelCase ,args=( len(_lowerCamelCase ) - 1, arr[len(_lowerCamelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowerCamelCase ) - 1], ) ,) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 ,len(_lowerCamelCase ) ): _lowerCAmelCase : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def SCREAMING_SNAKE_CASE ( ) -> Any: _lowerCAmelCase : List[str] = list(range(10 ,0 ,-1 ) ) print("""Initial List""" ) print(*_lowerCamelCase ) _lowerCAmelCase : int = odd_even_transposition(_lowerCamelCase ) print("""Sorted List\n""" ) print(*_lowerCamelCase ) if __name__ == "__main__": main()
700
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: _a : Tuple = None _a : List[str] = logging.get_logger(__name__) _a : Optional[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _a : Tuple = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } _a : Dict = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } _a : Optional[Any] = '▁' class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ["input_ids", "attention_mask"] _UpperCamelCase : List[str] = BarthezTokenizer def __init__( self , a__=None , a__=None , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Optional[int] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , **a__ , ) _lowerCAmelCase : Optional[Any] = vocab_file _lowerCAmelCase : Dict = False if not self.vocab_file else True def __A ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] _lowerCAmelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Tuple = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , a__ , a__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : List[str] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
701
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[List[PIL.Image.Image], np.ndarray] _UpperCamelCase : Optional[List[bool]] _UpperCamelCase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
702
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : int = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = "pegasus" _UpperCamelCase : int = ["past_key_values"] _UpperCamelCase : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , a__=50265 , a__=1024 , a__=12 , a__=4096 , a__=16 , a__=12 , a__=4096 , a__=16 , a__=0.0 , a__=0.0 , a__=True , a__=True , a__="gelu" , a__=1024 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=0 , a__=False , a__=0 , a__=1 , a__=1 , **a__ , ): _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Dict = d_model _lowerCAmelCase : List[str] = encoder_ffn_dim _lowerCAmelCase : Any = encoder_layers _lowerCAmelCase : Any = encoder_attention_heads _lowerCAmelCase : Union[str, Any] = decoder_ffn_dim _lowerCAmelCase : Union[str, Any] = decoder_layers _lowerCAmelCase : List[Any] = decoder_attention_heads _lowerCAmelCase : Tuple = dropout _lowerCAmelCase : Dict = attention_dropout _lowerCAmelCase : Any = activation_dropout _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Optional[int] = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : Tuple = decoder_layerdrop _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : int = encoder_layers _lowerCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , forced_eos_token_id=a__ , **a__ , ) @property def __A ( self ): return self.encoder_attention_heads @property def __A ( self ): return self.d_model
703
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _a : Optional[Any] = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict=True ) -> List[str]: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=SCREAMING_SNAKE_CASE_ ) ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = None _UpperCamelCase : Dict = None def __A ( self , a__ , a__ ): with TemporaryDirectory() as tmp_dir: _lowerCAmelCase : int = dataset_module_factory(a__ , cache_dir=a__ ) _lowerCAmelCase : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=a__ ) _lowerCAmelCase : DatasetBuilder = builder_cls( cache_dir=a__ , config_name=a__ , hash=dataset_module.hash , ) _lowerCAmelCase : Any = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a__ ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) _lowerCAmelCase : Optional[Any] = cached_path(a__ , cache_dir=a__ ) self.assertTrue(os.path.exists(a__ ) ) @pytest.mark.integration def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ) -> str: '''simple docstring''' _lowerCAmelCase : str = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" _lowerCAmelCase : List[str] = dataset_module_factory("""wikipedia""" ,cache_dir=_lowerCamelCase ) _lowerCAmelCase : Any = import_main_class(dataset_module.module_path ) _lowerCAmelCase : DatasetBuilder = builder_cls( cache_dir=_lowerCamelCase ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _lowerCAmelCase : Any = None builder_instance.download_and_prepare() _lowerCAmelCase : List[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = dataset_module_factory("""wikipedia""" ,cache_dir=_lowerCamelCase ) _lowerCAmelCase : List[Any] = import_main_class(dataset_module.module_path ,dataset=_lowerCamelCase ) _lowerCAmelCase : DatasetBuilder = builder_cls( cache_dir=_lowerCamelCase ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) _lowerCAmelCase : List[str] = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCamelCase ,_lowerCamelCase ) assert "train" in ds assert isinstance(ds["""train"""] ,_lowerCamelCase ) assert next(iter(ds["""train"""] ) )
704
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __A : def __A ( self , a__ ): raise NotImplementedError() def __A ( self ): raise NotImplementedError() class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ = False , **a__ ): _lowerCAmelCase : int = tokenizer _lowerCAmelCase : List[Any] = skip_prompt _lowerCAmelCase : int = decode_kwargs # variables used in the streaming process _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = True def __A ( self , a__ ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: _lowerCAmelCase : Dict = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _lowerCAmelCase : List[Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _lowerCAmelCase : Union[str, Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): _lowerCAmelCase : int = text[self.print_len :] _lowerCAmelCase : List[str] = [] _lowerCAmelCase : List[Any] = 0 # If the last token is a CJK character, we print the characters. elif len(a__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _lowerCAmelCase : List[str] = text[self.print_len :] self.print_len += len(a__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _lowerCAmelCase : Optional[int] = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(a__ ) self.on_finalized_text(a__ ) def __A ( self ): # Flush the cache, if it exists if len(self.token_cache ) > 0: _lowerCAmelCase : Optional[Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _lowerCAmelCase : Union[str, Any] = text[self.print_len :] _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Tuple = 0 else: _lowerCAmelCase : Optional[Any] = """""" _lowerCAmelCase : Dict = True self.on_finalized_text(a__ , stream_end=a__ ) def __A ( self , a__ , a__ = False ): print(a__ , flush=a__ , end="""""" if not stream_end else None ) def __A ( self , a__ ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ = False , a__ = None , **a__ ): super().__init__(a__ , a__ , **a__ ) _lowerCAmelCase : List[Any] = Queue() _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Union[str, Any] = timeout def __A ( self , a__ , a__ = False ): self.text_queue.put(a__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): return self def __A ( self ): _lowerCAmelCase : List[str] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
705
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
0
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _a : Optional[Any] = re.compile(r'\s+') def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> Dict: return {"hash": hashlib.mda(re.sub(_lowerCamelCase ,"""""" ,example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> Optional[int]: _lowerCAmelCase : Optional[int] = [len(_lowerCamelCase ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(_lowerCamelCase ), "line_max": max(_lowerCamelCase )} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Any: _lowerCAmelCase : Tuple = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : Any ) -> str: if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : Any=5 ) -> int: _lowerCAmelCase : str = ["""auto-generated""", """autogenerated""", """automatically generated"""] _lowerCAmelCase : List[str] = example["""content"""].splitlines() for _, line in zip(range(_lowerCamelCase ) ,_lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Any=5 ,_lowerCamelCase : Any=0.05 ) -> Dict: _lowerCAmelCase : Tuple = ["""unit tests""", """test file""", """configuration file"""] _lowerCAmelCase : Any = example["""content"""].splitlines() _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = 0 # first test for _, line in zip(range(_lowerCamelCase ) ,_lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCAmelCase : Tuple = example["""content"""].count("""\n""" ) _lowerCAmelCase : Optional[Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> int: _lowerCAmelCase : Any = ["""def """, """class """, """for """, """while """] _lowerCAmelCase : Optional[int] = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : Union[str, Any]=4 ) -> str: _lowerCAmelCase : Any = example["""content"""].splitlines() _lowerCAmelCase : Tuple = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: _lowerCAmelCase : Optional[int] = tokenizer(example["""content"""] ,truncation=_lowerCamelCase )["""input_ids"""] _lowerCAmelCase : int = len(example["""content"""] ) / len(_lowerCamelCase ) return {"ratio": ratio} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Dict: _lowerCAmelCase : List[Any] = {} results.update(get_hash(_lowerCamelCase ) ) results.update(line_stats(_lowerCamelCase ) ) results.update(alpha_stats(_lowerCamelCase ) ) results.update(char_token_ratio(_lowerCamelCase ) ) results.update(is_autogenerated(_lowerCamelCase ) ) results.update(is_config_or_test(_lowerCamelCase ) ) results.update(has_no_keywords(_lowerCamelCase ) ) results.update(has_few_assignments(_lowerCamelCase ) ) return results def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ,_lowerCamelCase : int ) -> Tuple: if not check_uniques(_lowerCamelCase ,_lowerCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> Union[str, Any]: with open(_lowerCamelCase ,"""rb""" ) as f_in: with gzip.open(str(_lowerCamelCase ) + """.gz""" ,"""wb""" ,compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCamelCase ,_lowerCamelCase ) os.unlink(_lowerCamelCase ) # Settings _a : Dict = HfArgumentParser(PreprocessingArguments) _a : Dict = parser.parse_args() if args.num_workers is None: _a : str = multiprocessing.cpu_count() _a : str = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _a : Dict = time.time() _a : int = load_dataset(args.dataset_name, split='train') print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing _a : List[Any] = time.time() _a : Any = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes _a : Optional[int] = set(ds.unique('hash')) _a : Dict = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics _a : Dict = time.time() _a : Dict = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _a : Optional[int] = time.time() _a : Union[str, Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file _a : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) _a : Dict = output_dir / 'data' data_dir.mkdir(exist_ok=True) _a : Any = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _a : Union[str, Any] = str(data_dir / F"""file-{file_number+1:012}.json""") _a : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
706
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
0
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets _a : str = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' _a : Any = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' _a : Optional[int] = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : List[str] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : bool ,_lowerCamelCase : Optional[Dict[int, int]] = None ,_lowerCamelCase : bool = False ,) -> List[str]: if label_map is not None: for old_id, new_id in label_map.items(): _lowerCAmelCase : Dict = new_id # turn into Numpy arrays _lowerCAmelCase : Dict = np.array(_lowerCamelCase ) _lowerCAmelCase : str = np.array(_lowerCamelCase ) if reduce_labels: _lowerCAmelCase : Optional[int] = 255 _lowerCAmelCase : Union[str, Any] = label - 1 _lowerCAmelCase : Optional[Any] = 255 _lowerCAmelCase : Optional[Any] = label != ignore_index _lowerCAmelCase : List[str] = np.not_equal(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[int] = pred_label[mask] _lowerCAmelCase : Tuple = np.array(_lowerCamelCase )[mask] _lowerCAmelCase : Tuple = pred_label[pred_label == label] _lowerCAmelCase : int = np.histogram(_lowerCamelCase ,bins=_lowerCamelCase ,range=(0, num_labels - 1) )[0] _lowerCAmelCase : Dict = np.histogram(_lowerCamelCase ,bins=_lowerCamelCase ,range=(0, num_labels - 1) )[0] _lowerCAmelCase : List[str] = np.histogram(_lowerCamelCase ,bins=_lowerCamelCase ,range=(0, num_labels - 1) )[0] _lowerCAmelCase : int = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : str ,_lowerCamelCase : Any ,_lowerCamelCase : bool ,_lowerCamelCase : Optional[Dict[int, int]] = None ,_lowerCamelCase : bool = False ,) -> Optional[int]: _lowerCAmelCase : Tuple = np.zeros((num_labels,) ,dtype=np.floataa ) _lowerCAmelCase : Any = np.zeros((num_labels,) ,dtype=np.floataa ) _lowerCAmelCase : List[Any] = np.zeros((num_labels,) ,dtype=np.floataa ) _lowerCAmelCase : Optional[Any] = np.zeros((num_labels,) ,dtype=np.floataa ) for result, gt_seg_map in zip(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Dict = intersect_and_union( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : bool ,_lowerCamelCase : Optional[int] = None ,_lowerCamelCase : Optional[Dict[int, int]] = None ,_lowerCamelCase : bool = False ,) -> Dict: _lowerCAmelCase : Any = total_intersect_and_union( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # compute metrics _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : Dict = total_area_intersect.sum() / total_area_label.sum() _lowerCAmelCase : str = total_area_intersect / total_area_union _lowerCAmelCase : Dict = total_area_intersect / total_area_label _lowerCAmelCase : Union[str, Any] = np.nanmean(_lowerCamelCase ) _lowerCAmelCase : Dict = np.nanmean(_lowerCamelCase ) _lowerCAmelCase : List[str] = all_acc _lowerCAmelCase : Any = iou _lowerCAmelCase : Optional[int] = acc if nan_to_num is not None: _lowerCAmelCase : Optional[int] = {metric: np.nan_to_num(_lowerCamelCase ,nan=_lowerCamelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), } ) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def __A ( self , a__ , a__ , a__ , a__ , a__ = None , a__ = None , a__ = False , ): _lowerCAmelCase : str = mean_iou( results=a__ , gt_seg_maps=a__ , num_labels=a__ , ignore_index=a__ , nan_to_num=a__ , label_map=a__ , reduce_labels=a__ , ) return iou_result
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Union[str, Any] ) -> List[Any]: print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) ,end="""\t""" ) else: print("""INF""" ,end="""\t""" ) print() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Union[str, Any] ) -> str: _lowerCAmelCase : List[str] = [[float("""inf""" ) for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): _lowerCAmelCase : Any = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_lowerCamelCase ): # looping through rows of graph array for i in range(_lowerCamelCase ): # looping through columns of graph array for j in range(_lowerCamelCase ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): _lowerCAmelCase : List[str] = dist[i][k] + dist[k][j] _print_dist(_lowerCamelCase ,_lowerCamelCase ) return dist, v if __name__ == "__main__": _a : Optional[Any] = int(input('Enter number of vertices: ')) _a : Dict = int(input('Enter number of edges: ')) _a : Any = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): _a : int = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) _a : Optional[Any] = int(input('Enter source:')) _a : List[str] = int(input('Enter destination:')) _a : Tuple = float(input('Enter weight:')) _a : Tuple = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
708
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva _a : Union[str, Any] = '' _a : Optional[Any] = '' _a : List[str] = '' _a : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def SCREAMING_SNAKE_CASE ( ) -> None: _lowerCAmelCase : int = get_dataset(_lowerCamelCase ,_lowerCamelCase ) print("""Processing...""" ) _lowerCAmelCase : List[Any] = update_image_and_anno(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) for index, image in enumerate(_lowerCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase : Tuple = random_chars(32 ) _lowerCAmelCase : Union[str, Any] = paths[index].split(os.sep )[-1].rsplit(""".""" ,1 )[0] _lowerCAmelCase : List[str] = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(f"/{file_root}.jpg" ,_lowerCamelCase ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"Success {index+1}/{len(_lowerCamelCase )} with {file_name}" ) _lowerCAmelCase : Tuple = [] for anno in new_annos[index]: _lowerCAmelCase : str = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(_lowerCamelCase ) with open(f"/{file_root}.txt" ,"""w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> tuple[list, list]: _lowerCAmelCase : Dict = [] _lowerCAmelCase : Optional[Any] = [] for label_file in glob.glob(os.path.join(_lowerCamelCase ,"""*.txt""" ) ): _lowerCAmelCase : Optional[int] = label_file.split(os.sep )[-1].rsplit(""".""" ,1 )[0] with open(_lowerCamelCase ) as in_file: _lowerCAmelCase : Union[str, Any] = in_file.readlines() _lowerCAmelCase : str = os.path.join(_lowerCamelCase ,f"{label_name}.jpg" ) _lowerCAmelCase : Dict = [] for obj_list in obj_lists: _lowerCAmelCase : Dict = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ,_lowerCamelCase : list ,_lowerCamelCase : int = 1 ) -> tuple[list, list, list]: _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : str = [] _lowerCAmelCase : Tuple = [] for idx in range(len(_lowerCamelCase ) ): _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Dict = img_list[idx] path_list.append(_lowerCamelCase ) _lowerCAmelCase : Any = anno_list[idx] _lowerCAmelCase : Any = cva.imread(_lowerCamelCase ) if flip_type == 1: _lowerCAmelCase : List[Any] = cva.flip(_lowerCamelCase ,_lowerCamelCase ) for bbox in img_annos: _lowerCAmelCase : Union[str, Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase : str = cva.flip(_lowerCamelCase ,_lowerCamelCase ) for bbox in img_annos: _lowerCAmelCase : Optional[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowerCamelCase ) new_imgs_list.append(_lowerCamelCase ) return new_imgs_list, new_annos_lists, path_list def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase : Optional[int] = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
709
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Any: _lowerCAmelCase : Tuple = 384 _lowerCAmelCase : Optional[Any] = 7 if "tiny" in model_name: _lowerCAmelCase : List[Any] = 96 _lowerCAmelCase : List[str] = (2, 2, 6, 2) _lowerCAmelCase : int = (3, 6, 12, 24) elif "small" in model_name: _lowerCAmelCase : Any = 96 _lowerCAmelCase : Dict = (2, 2, 18, 2) _lowerCAmelCase : Any = (3, 6, 12, 24) elif "base" in model_name: _lowerCAmelCase : Optional[int] = 128 _lowerCAmelCase : int = (2, 2, 18, 2) _lowerCAmelCase : Union[str, Any] = (4, 8, 16, 32) _lowerCAmelCase : str = 12 _lowerCAmelCase : List[Any] = 512 elif "large" in model_name: _lowerCAmelCase : List[str] = 192 _lowerCAmelCase : Tuple = (2, 2, 18, 2) _lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) _lowerCAmelCase : Union[str, Any] = 12 _lowerCAmelCase : Optional[int] = 768 # set label information _lowerCAmelCase : Dict = 150 _lowerCAmelCase : List[Any] = """huggingface/label-files""" _lowerCAmelCase : Optional[Any] = """ade20k-id2label.json""" _lowerCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase ,_lowerCamelCase ,repo_type="""dataset""" ) ,"""r""" ) ) _lowerCAmelCase : Tuple = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : int = {v: k for k, v in idalabel.items()} _lowerCAmelCase : List[str] = SwinConfig( embed_dim=_lowerCamelCase ,depths=_lowerCamelCase ,num_heads=_lowerCamelCase ,window_size=_lowerCamelCase ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ,) _lowerCAmelCase : Dict = UperNetConfig( backbone_config=_lowerCamelCase ,auxiliary_in_channels=_lowerCamelCase ,num_labels=_lowerCamelCase ,idalabel=_lowerCamelCase ,labelaid=_lowerCamelCase ,) return config def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : List[str] = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.stages.{i}.downsample.reduction.weight", f"backbone.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.weight", f"backbone.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.bias", f"backbone.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : Dict ,_lowerCamelCase : Optional[int] ) -> Optional[Any]: _lowerCAmelCase : Optional[int] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : int ) -> str: _lowerCAmelCase : Tuple = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCAmelCase : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCAmelCase : str = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" ) _lowerCAmelCase : List[Any] = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Optional[Any] = in_proj_weight[:dim, :] _lowerCAmelCase : Union[str, Any] = in_proj_bias[: dim] _lowerCAmelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCAmelCase : Tuple = in_proj_bias[ dim : dim * 2 ] _lowerCAmelCase : Tuple = in_proj_weight[ -dim :, : ] _lowerCAmelCase : Any = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Optional[Any]: _lowerCAmelCase : Union[str, Any] = x.shape _lowerCAmelCase : Any = x.reshape(_lowerCamelCase ,4 ,in_channel // 4 ) _lowerCAmelCase : Optional[Any] = x[:, [0, 2, 1, 3], :].transpose(1 ,2 ).reshape(_lowerCamelCase ,_lowerCamelCase ) return x def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ) -> Dict: _lowerCAmelCase : str = x.shape _lowerCAmelCase : List[str] = x.reshape(_lowerCamelCase ,in_channel // 4 ,4 ) _lowerCAmelCase : int = x[:, :, [0, 2, 1, 3]].transpose(1 ,2 ).reshape(_lowerCamelCase ,_lowerCamelCase ) return x def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ) -> Dict: _lowerCAmelCase : Tuple = x.shape[0] _lowerCAmelCase : Optional[Any] = x.reshape(4 ,in_channel // 4 ) _lowerCAmelCase : Optional[int] = x[[0, 2, 1, 3], :].transpose(0 ,1 ).reshape(_lowerCamelCase ) return x def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> List[str]: _lowerCAmelCase : Tuple = x.shape[0] _lowerCAmelCase : Any = x.reshape(in_channel // 4 ,4 ) _lowerCAmelCase : Any = x[:, [0, 2, 1, 3]].transpose(0 ,1 ).reshape(_lowerCamelCase ) return x def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : List[Any] ) -> List[Any]: _lowerCAmelCase : Optional[Any] = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } _lowerCAmelCase : Union[str, Any] = model_name_to_url[model_name] _lowerCAmelCase : Optional[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ,map_location="""cpu""" ,file_name=_lowerCamelCase )[ """state_dict""" ] for name, param in state_dict.items(): print(_lowerCamelCase ,param.shape ) _lowerCAmelCase : Optional[Any] = get_upernet_config(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = UperNetForSemanticSegmentation(_lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase : Optional[int] = state_dict.pop(_lowerCamelCase ) if "bn" in key: _lowerCAmelCase : List[Any] = key.replace("""bn""" ,"""batch_norm""" ) _lowerCAmelCase : str = val # rename keys _lowerCAmelCase : int = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) read_in_q_k_v(_lowerCamelCase ,config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _lowerCAmelCase : Any = reverse_correct_unfold_reduction_order(_lowerCamelCase ) if "norm" in key: _lowerCAmelCase : Any = reverse_correct_unfold_norm_order(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) # verify on image _lowerCAmelCase : Optional[Any] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase : List[Any] = Image.open(requests.get(_lowerCamelCase ,stream=_lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase : Tuple = SegformerImageProcessor() _lowerCAmelCase : Optional[Any] = processor(_lowerCamelCase ,return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase : Dict = model(_lowerCamelCase ) _lowerCAmelCase : List[str] = outputs.logits print(logits.shape ) print("""First values of logits:""" ,logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ) elif model_name == "upernet-swin-small": _lowerCAmelCase : Tuple = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]] ) elif model_name == "upernet-swin-base": _lowerCAmelCase : Optional[Any] = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]] ) elif model_name == "upernet-swin-large": _lowerCAmelCase : Tuple = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]] ) print("""Logits:""" ,outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] ,_lowerCamelCase ,atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": _a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"""upernet-swin-{size}""" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a : Optional[Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
710
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : int = StableDiffusionInpaintPipeline _UpperCamelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCamelCase : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _UpperCamelCase : str = frozenset([] ) def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) _lowerCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a__ ) torch.manual_seed(0 ) _lowerCAmelCase : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) _lowerCAmelCase : List[str] = CLIPTextModel(a__ ) _lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __A ( self , a__ , a__=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched _lowerCAmelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) _lowerCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : str = Image.fromarray(np.uinta(a__ ) ).convert("""RGB""" ).resize((64, 64) ) _lowerCAmelCase : List[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Tuple = torch.manual_seed(a__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : Any = StableDiffusionInpaintPipeline(**a__ ) _lowerCAmelCase : Any = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = self.get_dummy_inputs(a__ ) _lowerCAmelCase : Optional[int] = sd_pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : int = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _lowerCAmelCase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _lowerCAmelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) _lowerCAmelCase : str = """stabilityai/stable-diffusion-2-inpainting""" _lowerCAmelCase : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(a__ , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() _lowerCAmelCase : Tuple = """Face of a yellow cat, high resolution, sitting on a park bench""" _lowerCAmelCase : Tuple = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __A ( self ): _lowerCAmelCase : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _lowerCAmelCase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _lowerCAmelCase : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) _lowerCAmelCase : Optional[Any] = """stabilityai/stable-diffusion-2-inpainting""" _lowerCAmelCase : str = StableDiffusionInpaintPipeline.from_pretrained( a__ , torch_dtype=torch.floataa , safety_checker=a__ , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() _lowerCAmelCase : int = """Face of a yellow cat, high resolution, sitting on a park bench""" _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : Any = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __A ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _lowerCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _lowerCAmelCase : Optional[Any] = """stabilityai/stable-diffusion-2-inpainting""" _lowerCAmelCase : Optional[int] = PNDMScheduler.from_pretrained(a__ , subfolder="""scheduler""" ) _lowerCAmelCase : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained( a__ , safety_checker=a__ , scheduler=a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase : Tuple = """Face of a yellow cat, high resolution, sitting on a park bench""" _lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
711
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["image_processor", "tokenizer"] _UpperCamelCase : Any = "AutoImageProcessor" _UpperCamelCase : int = "AutoTokenizer" def __init__( self , a__ , a__ ): super().__init__(a__ , a__ ) _lowerCAmelCase : Union[str, Any] = self.image_processor def __call__( self , a__=None , a__=None , a__=None , **a__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _lowerCAmelCase : Dict = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: _lowerCAmelCase : Tuple = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: _lowerCAmelCase : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __A ( self , *a__ , **a__ ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __A ( self , *a__ , **a__ ): return self.tokenizer.decode(*a__ , **a__ ) @property def __A ( self ): return ["input_ids", "attention_mask", "pixel_values"]
712
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
0
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping _a : Union[str, Any] = tuple[int, int] class __A : def __init__( self , a__ , a__ ): _lowerCAmelCase : set[int] = vertices _lowerCAmelCase : dict[EdgeT, int] = { (min(a__ ), max(a__ )): weight for edge, weight in edges.items() } def __A ( self , a__ , a__ ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) _lowerCAmelCase : Optional[Any] = weight def __A ( self ): _lowerCAmelCase : Graph = Graph({min(self.vertices )} , {} ) _lowerCAmelCase : EdgeT _lowerCAmelCase : int _lowerCAmelCase : EdgeT _lowerCAmelCase : int while len(subgraph.vertices ) < len(self.vertices ): _lowerCAmelCase : Optional[int] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _lowerCAmelCase : str = edge _lowerCAmelCase : Any = weight subgraph.add_edge(a__ , a__ ) return subgraph def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str = "p107_network.txt" ) -> int: _lowerCAmelCase : str = os.path.abspath(os.path.dirname(_lowerCamelCase ) ) _lowerCAmelCase : str = os.path.join(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : dict[EdgeT, int] = {} _lowerCAmelCase : list[str] _lowerCAmelCase : int _lowerCAmelCase : int with open(_lowerCamelCase ) as f: _lowerCAmelCase : Optional[Any] = f.read().strip().split("""\n""" ) _lowerCAmelCase : int = [line.split(""",""" ) for line in data] for edgea in range(1 ,len(_lowerCamelCase ) ): for edgea in range(_lowerCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": _lowerCAmelCase : Union[str, Any] = int(adjaceny_matrix[edgea][edgea] ) _lowerCAmelCase : Graph = Graph(set(range(len(_lowerCamelCase ) ) ) ,_lowerCamelCase ) _lowerCAmelCase : Graph = graph.prims_algorithm() _lowerCAmelCase : int = sum(graph.edges.values() ) _lowerCAmelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
713
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
714
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> float: def get_matched_characters(_lowerCamelCase : str ,_lowerCamelCase : str ) -> str: _lowerCAmelCase : Any = [] _lowerCAmelCase : List[Any] = min(len(_stra ) ,len(_stra ) ) // 2 for i, l in enumerate(_stra ): _lowerCAmelCase : Tuple = int(max(0 ,i - limit ) ) _lowerCAmelCase : Union[str, Any] = int(min(i + limit + 1 ,len(_stra ) ) ) if l in _stra[left:right]: matched.append(_lowerCamelCase ) _lowerCAmelCase : List[str] = f"{_stra[0:_stra.index(_lowerCamelCase )]} {_stra[_stra.index(_lowerCamelCase ) + 1:]}" return "".join(_lowerCamelCase ) # matching characters _lowerCAmelCase : Any = get_matched_characters(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[int] = get_matched_characters(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = len(_lowerCamelCase ) # transposition _lowerCAmelCase : Union[str, Any] = ( len([(ca, ca) for ca, ca in zip(_lowerCamelCase ,_lowerCamelCase ) if ca != ca] ) // 2 ) if not match_count: _lowerCAmelCase : int = 0.0 else: _lowerCAmelCase : Optional[Any] = ( 1 / 3 * ( match_count / len(_lowerCamelCase ) + match_count / len(_lowerCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _lowerCAmelCase : Dict = 0 for ca, ca in zip(stra[:4] ,stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[int] = logging.get_logger(__name__) _a : Optional[Any] = {'vocab_file': 'spiece.model'} _a : Union[str, Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } _a : Union[str, Any] = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : str = ["input_ids", "attention_mask"] _UpperCamelCase : List[int] = [] def __init__( self , a__ , a__="<unk>" , a__="<s>" , a__="</s>" , a__="<pad>" , a__="[SEP]" , a__="[MASK]" , a__="[CLS]" , a__ = None , **a__ , ): _lowerCAmelCase : Union[str, Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else bos_token _lowerCAmelCase : Tuple = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else eos_token _lowerCAmelCase : Any = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else unk_token _lowerCAmelCase : int = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else pad_token _lowerCAmelCase : int = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else cls_token _lowerCAmelCase : Tuple = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Union[str, Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token _lowerCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , pad_token=a__ , sep_token=a__ , mask_token=a__ , cls_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) _lowerCAmelCase : Optional[Any] = vocab_file _lowerCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) @property def __A ( self ): return self.sp_model.get_piece_size() def __A ( self ): _lowerCAmelCase : str = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self , a__ ): _lowerCAmelCase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , a__ ): return self.sp_model.encode(a__ , out_type=a__ ) def __A ( self , a__ ): return self.sp_model.piece_to_id(a__ ) def __A ( self , a__ ): _lowerCAmelCase : Any = self.sp_model.IdToPiece(a__ ) return token def __A ( self , a__ ): _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token _lowerCAmelCase : List[Any] = True _lowerCAmelCase : int = [] else: current_sub_tokens.append(a__ ) _lowerCAmelCase : List[str] = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def __A ( self , a__ , a__ = False , a__ = None , a__ = True , **a__ , ): _lowerCAmelCase : Any = kwargs.pop("""use_source_tokenizer""" , a__ ) _lowerCAmelCase : Tuple = self.convert_ids_to_tokens(a__ , skip_special_tokens=a__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Optional[int] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a__ ) ) _lowerCAmelCase : str = [] sub_texts.append(a__ ) else: current_sub_text.append(a__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _lowerCAmelCase : Tuple = re.sub(r""" (\[(MASK|SEP)\])""" , r"""\1""" , """ """.join(a__ ) ) else: _lowerCAmelCase : Tuple = """""".join(a__ ) _lowerCAmelCase : Optional[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : Any = self.clean_up_tokenization(a__ ) return clean_text else: return text def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : Any = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , """wb""" ) as fi: _lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,) def __A ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Dict = [self.cls_token_id] _lowerCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : int = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
716
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
0
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _a : Optional[Any] = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize _a : Optional[Any] = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' _a : Any = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' _a : Optional[Any] = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def __A ( self , a__ ): import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def __A ( self , a__ , a__ , a__=0.9 , a__=3 , a__=0.5 ): if NLTK_VERSION >= version.Version("""3.6.5""" ): _lowerCAmelCase : List[str] = [ meteor_score.single_meteor_score( word_tokenize(a__ ) , word_tokenize(a__ ) , alpha=a__ , beta=a__ , gamma=a__ ) for ref, pred in zip(a__ , a__ ) ] else: _lowerCAmelCase : Tuple = [ meteor_score.single_meteor_score(a__ , a__ , alpha=a__ , beta=a__ , gamma=a__ ) for ref, pred in zip(a__ , a__ ) ] return {"meteor": np.mean(a__ )}
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __A : def __init__( self , a__ , a__=13 , a__=32 , a__=2 , a__=3 , a__=16 , a__=[1, 2, 1] , a__=[2, 2, 4] , a__=2 , a__=2.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=True , a__=0.0_2 , a__=1e-5 , a__=True , a__=None , a__=True , a__=10 , a__=8 , a__=["stage1", "stage2", "stage3"] , a__=[1, 2, 3] , ): _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : Any = image_size _lowerCAmelCase : Optional[int] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : List[str] = embed_dim _lowerCAmelCase : str = depths _lowerCAmelCase : Tuple = num_heads _lowerCAmelCase : Dict = window_size _lowerCAmelCase : Optional[Any] = mlp_ratio _lowerCAmelCase : Tuple = qkv_bias _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : Any = drop_path_rate _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : List[Any] = use_absolute_embeddings _lowerCAmelCase : Tuple = patch_norm _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : str = scope _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : List[str] = type_sequence_label_size _lowerCAmelCase : List[Any] = encoder_stride _lowerCAmelCase : Any = out_features _lowerCAmelCase : int = out_indices def __A ( self ): _lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : str = MaskFormerSwinModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Union[str, Any] = model(a__ ) _lowerCAmelCase : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = MaskFormerSwinBackbone(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(a__ ): _lowerCAmelCase : int = ["""stem"""] _lowerCAmelCase : Union[str, Any] = MaskFormerSwinBackbone(config=a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() _lowerCAmelCase : Any = config_and_inputs _lowerCAmelCase : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[str] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _UpperCamelCase : List[Any] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} _UpperCamelCase : Optional[int] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[str] = False _UpperCamelCase : Tuple = False _UpperCamelCase : Tuple = False def __A ( self ): _lowerCAmelCase : Union[str, Any] = MaskFormerSwinModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self , config_class=a__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def __A ( self ): pass def __A ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ): return def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def __A ( self ): pass @unittest.skip("""Swin does not support feedforward chunking""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : str = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(a__ ) _lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] _lowerCAmelCase : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def __A ( self ): pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def __A ( self ): pass def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Dict = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCAmelCase : Union[str, Any] = outputs.hidden_states _lowerCAmelCase : Any = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a__ ) , a__ ) # Swin has a different seq_length _lowerCAmelCase : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : int = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Tuple = 3 _lowerCAmelCase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Optional[Any] = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def __A ( self ): pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def __A ( self ): pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a__ ): _lowerCAmelCase : List[str] = 0 return t def check_equivalence(a__ , a__ , a__ , a__={} ): with torch.no_grad(): _lowerCAmelCase : Dict = model(**a__ , return_dict=a__ , **a__ ) _lowerCAmelCase : Dict = model(**a__ , return_dict=a__ , **a__ ).to_tuple() def recursive_check(a__ , a__ ): if isinstance(a__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a__ , a__ ): recursive_check(a__ , a__ ) elif isinstance(a__ , a__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a__ , a__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a__ ) , set_nan_tensor_to_zero(a__ ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(a__ ).any()} and `inf`: {torch.isinf(a__ )}. Dict has" F" `nan`: {torch.isnan(a__ ).any()} and `inf`: {torch.isinf(a__ )}." ) , ) recursive_check(a__ , a__ ) for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Any = self._prepare_for_class(a__ , a__ ) _lowerCAmelCase : Optional[Any] = self._prepare_for_class(a__ , a__ ) check_equivalence(a__ , a__ , a__ ) _lowerCAmelCase : List[Any] = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _lowerCAmelCase : Tuple = self._prepare_for_class(a__ , a__ , return_labels=a__ ) check_equivalence(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(a__ , a__ ) _lowerCAmelCase : Dict = self._prepare_for_class(a__ , a__ ) check_equivalence(a__ , a__ , a__ , {"""output_hidden_states""": True} ) _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _lowerCAmelCase : Any = self._prepare_for_class(a__ , a__ , return_labels=a__ ) check_equivalence(a__ , a__ , a__ , {"""output_hidden_states""": True} ) @require_torch class __A ( unittest.TestCase , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = (MaskFormerSwinBackbone,) if is_torch_available() else () _UpperCamelCase : Optional[Any] = MaskFormerSwinConfig def __A ( self ): _lowerCAmelCase : Tuple = MaskFormerSwinModelTester(self ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[Any] = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = backbone_class(a__ ) backbone.to(a__ ) backbone.eval() _lowerCAmelCase : Optional[Any] = backbone(**a__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _lowerCAmelCase : str = backbone(**a__ , output_hidden_states=a__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _lowerCAmelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _lowerCAmelCase : Any = backbone(**a__ , output_attentions=a__ ) self.assertIsNotNone(outputs.attentions )
718
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["image_processor", "tokenizer"] _UpperCamelCase : Dict = "ChineseCLIPImageProcessor" _UpperCamelCase : List[str] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , a__=None , a__=None , **a__ ): _lowerCAmelCase : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , a__ , ) _lowerCAmelCase : List[str] = kwargs.pop("""feature_extractor""" ) _lowerCAmelCase : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(a__ , a__ ) _lowerCAmelCase : Any = self.image_processor def __call__( self , a__=None , a__=None , a__=None , **a__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _lowerCAmelCase : List[str] = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: _lowerCAmelCase : str = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: _lowerCAmelCase : int = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __A ( self , *a__ , **a__ ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __A ( self , *a__ , **a__ ): return self.tokenizer.decode(*a__ , **a__ ) @property def __A ( self ): _lowerCAmelCase : Any = self.tokenizer.model_input_names _lowerCAmelCase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , a__ , ) return self.image_processor_class
719
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : List[str] = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
0
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" _a : Any = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} _a : Any = ['a', 'b', 'c', 'd', 'e'] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ) -> int: _lowerCAmelCase : List[Any] = start # add current to visited visited.append(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _lowerCAmelCase : str = topological_sort(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # if all neighbors visited add current to sort sort.append(_lowerCamelCase ) # if all vertices haven't been visited select a new one to visit if len(_lowerCamelCase ) != len(_lowerCamelCase ): for vertice in vertices: if vertice not in visited: _lowerCAmelCase : List[Any] = topological_sort(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # return sort return sort if __name__ == "__main__": _a : Tuple = topological_sort('a', [], []) print(sort)
700
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
701
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
0
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = "EncodecFeatureExtractor" _UpperCamelCase : Optional[int] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , a__ , a__ ): super().__init__(a__ , a__ ) _lowerCAmelCase : Optional[Any] = self.feature_extractor _lowerCAmelCase : Dict = False def __A ( self , a__=None , a__=None , a__=True ): return self.tokenizer.get_decoder_prompt_ids(task=a__ , language=a__ , no_timestamps=a__ ) def __call__( self , *a__ , **a__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a__ , **a__ ) _lowerCAmelCase : Any = kwargs.pop("""audio""" , a__ ) _lowerCAmelCase : Dict = kwargs.pop("""sampling_rate""" , a__ ) _lowerCAmelCase : List[Any] = kwargs.pop("""text""" , a__ ) if len(a__ ) > 0: _lowerCAmelCase : List[str] = args[0] _lowerCAmelCase : str = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: _lowerCAmelCase : Union[str, Any] = self.tokenizer(a__ , **a__ ) if audio is not None: _lowerCAmelCase : List[str] = self.feature_extractor(a__ , *a__ , sampling_rate=a__ , **a__ ) if audio is None: return inputs elif text is None: return audio_inputs else: _lowerCAmelCase : Optional[int] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: _lowerCAmelCase : Union[str, Any] = audio_inputs["""padding_mask"""] return inputs def __A ( self , *a__ , **a__ ): _lowerCAmelCase : Optional[int] = kwargs.pop("""audio""" , a__ ) _lowerCAmelCase : Dict = kwargs.pop("""padding_mask""" , a__ ) if len(a__ ) > 0: _lowerCAmelCase : Optional[int] = args[0] _lowerCAmelCase : str = args[1:] if audio_values is not None: return self._decode_audio(a__ , padding_mask=a__ ) else: return self.tokenizer.batch_decode(*a__ , **a__ ) def __A ( self , *a__ , **a__ ): return self.tokenizer.decode(*a__ , **a__ ) def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Optional[Any] = to_numpy(a__ ) _lowerCAmelCase : List[str] = audio_values.shape if padding_mask is None: return list(a__ ) _lowerCAmelCase : Any = to_numpy(a__ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _lowerCAmelCase : List[str] = seq_len - padding_mask.shape[-1] _lowerCAmelCase : Optional[int] = 1 - self.feature_extractor.padding_value _lowerCAmelCase : List[str] = np.pad(a__ , ((0, 0), (0, difference)) , """constant""" , constant_values=a__ ) _lowerCAmelCase : List[str] = audio_values.tolist() for i in range(a__ ): _lowerCAmelCase : Union[str, Any] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _lowerCAmelCase : Optional[int] = sliced_audio.reshape(a__ , -1 ) return audio_values
702
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
0
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __A ( nn.Module ): def __init__( self , a__ = 16 , a__ = 88 , a__ = None , a__ = 1 , a__ = 0.0 , a__ = 32 , a__ = None , a__ = False , a__ = None , a__ = None , a__ = "geglu" , a__ = None , ): super().__init__() _lowerCAmelCase : Optional[int] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=a__ , attention_head_dim=a__ , in_channels=a__ , num_layers=a__ , dropout=a__ , norm_num_groups=a__ , cross_attention_dim=a__ , attention_bias=a__ , sample_size=a__ , num_vector_embeds=a__ , activation_fn=a__ , num_embeds_ada_norm=a__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowerCAmelCase : List[Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowerCAmelCase : List[str] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowerCAmelCase : str = [1, 0] def __A ( self , a__ , a__ , a__=None , a__=None , a__=None , a__ = True , ): _lowerCAmelCase : Any = hidden_states _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Dict = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowerCAmelCase : List[str] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowerCAmelCase : Union[str, Any] = self.transformer_index_for_condition[i] _lowerCAmelCase : str = self.transformers[transformer_index]( a__ , encoder_hidden_states=a__ , timestep=a__ , cross_attention_kwargs=a__ , return_dict=a__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowerCAmelCase : Tuple = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowerCAmelCase : str = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=a__ )
703
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = "Salesforce/blip-image-captioning-base" _UpperCamelCase : Any = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) _UpperCamelCase : Dict = "image_captioner" _UpperCamelCase : Dict = AutoModelForVisionaSeq _UpperCamelCase : str = ["image"] _UpperCamelCase : List[str] = ["text"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""vision"""] ) super().__init__(*a__ , **a__ ) def __A ( self , a__ ): return self.pre_processor(images=a__ , return_tensors="""pt""" ) def __A ( self , a__ ): return self.model.generate(**a__ ) def __A ( self , a__ ): return self.pre_processor.batch_decode(a__ , skip_special_tokens=a__ )[0].strip()
704
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : List[str] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Dict ) -> List[Any]: _lowerCAmelCase : Dict = s.rsplit(_lowerCamelCase ,_lowerCamelCase ) return new.join(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Dict: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Dict: _lowerCAmelCase : str = {} _lowerCAmelCase : Optional[int] = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _lowerCAmelCase : Optional[Any] = key.replace(f"{group_key}." ,f"{group_key}.group." ) if "res_path" in key: _lowerCAmelCase : List[Any] = key.replace("""res_path.""" ,"""res_path.path.""" ) if key.endswith(""".w""" ): _lowerCAmelCase : Optional[int] = rreplace(_lowerCamelCase ,""".w""" ,""".weight""" ,1 ) if key.endswith(""".b""" ): _lowerCAmelCase : Dict = rreplace(_lowerCamelCase ,""".b""" ,""".bias""" ,1 ) _lowerCAmelCase : Tuple = value.float() return upgrade @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : int ,_lowerCamelCase : Optional[Any]=None ,_lowerCamelCase : List[str]=True ) -> Optional[Any]: from dall_e import Encoder _lowerCAmelCase : Optional[Any] = Encoder() if os.path.exists(_lowerCamelCase ): _lowerCAmelCase : int = torch.load(_lowerCamelCase ) else: _lowerCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Any = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: _lowerCAmelCase : Tuple = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = FlavaImageCodebookConfig() _lowerCAmelCase : Optional[int] = FlavaImageCodebook(_lowerCamelCase ).eval() _lowerCAmelCase : Any = encoder.state_dict() _lowerCAmelCase : List[str] = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) _lowerCAmelCase : Any = hf_model.state_dict() _lowerCAmelCase : Optional[Any] = count_parameters(_lowerCamelCase ) _lowerCAmelCase : int = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _a : Optional[Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
706
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : Tuple = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase = WavaVecaPhonemeCTCTokenizer _UpperCamelCase = False def __A ( self ): super().setUp() _lowerCAmelCase : Tuple = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) _lowerCAmelCase : Any = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : int = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} _lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) def __A ( self , a__ , a__=False , a__=20 , a__=5 ): _lowerCAmelCase : Tuple = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=a__ )) for i in range(len(a__ ) )] _lowerCAmelCase : List[Any] = list(filter(lambda a__ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=a__ ) , a__ ) ) if max_length is not None and len(a__ ) > max_length: _lowerCAmelCase : Optional[Any] = toks[:max_length] if min_length is not None and len(a__ ) < min_length and len(a__ ) > 0: while len(a__ ) < min_length: _lowerCAmelCase : List[str] = toks + toks # toks_str = [t[1] for t in toks] _lowerCAmelCase : Any = [t[0] for t in toks] # Ensure consistency _lowerCAmelCase : str = tokenizer.decode(a__ , clean_up_tokenization_spaces=a__ ) if " " not in output_txt and len(a__ ) > 1: _lowerCAmelCase : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a__ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a__ ) ) if with_prefix_space: _lowerCAmelCase : Dict = """ """ + output_txt _lowerCAmelCase : int = tokenizer.encode(a__ , add_special_tokens=a__ ) return output_txt, output_ids def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) _lowerCAmelCase : List[str] = tokenizer("""m xxx ɪ""" , do_phonemize=a__ ).input_ids self.assertEqual(a__ , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) _lowerCAmelCase : Dict = tokenizer("""m aaa ɪ ccc""" , do_phonemize=a__ ).input_ids self.assertEqual(a__ , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa _lowerCAmelCase : Any = tokenizer("""maɪ c""" , do_phonemize=a__ ).input_ids self.assertEqual(a__ , [3, 200] ) # mai should be <unk> (=3) def __A ( self ): _lowerCAmelCase : str = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _lowerCAmelCase : Any = """Hello how are you""" _lowerCAmelCase : str = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) self.assertEqual(a__ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) def __A ( self ): _lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _lowerCAmelCase : Union[str, Any] = """Hello how are you""" _lowerCAmelCase : str = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(a__ ).input_ids , tokenizer(a__ , do_phonemize=a__ ).input_ids ) def __A ( self ): _lowerCAmelCase : int = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _lowerCAmelCase : Dict = """Hello how are you""" _lowerCAmelCase : Dict = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(tokenizer(a__ ).input_ids ) self.assertEqual(a__ , a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _lowerCAmelCase : Union[str, Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] _lowerCAmelCase : Tuple = tokenizer.decode(sample_ids[0] ) _lowerCAmelCase : Any = tokenizer.batch_decode(a__ ) self.assertEqual(a__ , batch_tokens[0] ) self.assertEqual(a__ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _lowerCAmelCase : str = """Hello how are you""" _lowerCAmelCase : Optional[int] = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) self.assertEqual(a__ , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def __A ( self ): _lowerCAmelCase : Any = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _lowerCAmelCase : int = """Hello how are you""" _lowerCAmelCase : List[Any] = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(a__ ).input_ids , tokenizer(a__ , do_phonemize=a__ ).input_ids ) def __A ( self ): _lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off _lowerCAmelCase : List[str] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter _lowerCAmelCase : List[str] = tokenizer.decode(sample_ids[0] ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(a__ ) self.assertEqual(a__ , batch_tokens[0] ) self.assertEqual(a__ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter _lowerCAmelCase : List[Any] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=a__ ) _lowerCAmelCase : List[str] = tokenizer.batch_decode(a__ , filter_word_delimiter_token=a__ ) self.assertEqual(a__ , batch_tokens[0] ) self.assertEqual(a__ , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _lowerCAmelCase : Tuple = """Hello how are you""" _lowerCAmelCase : Dict = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) _lowerCAmelCase : Optional[int] = tokenizer.decode(tokenizer(a__ ).input_ids , filter_word_delimiter_token=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _lowerCAmelCase : Optional[int] = """Hello how are you""" _lowerCAmelCase : Any = tokenizer.phonemize(a__ , phonemizer_lang="""en-us""" ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(tokenizer(a__ ).input_ids , filter_word_delimiter_token=a__ ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , a__ ) def __A ( self ): _lowerCAmelCase : str = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=a__ ) _lowerCAmelCase : Tuple = """Hello how are you""" _lowerCAmelCase : Union[str, Any] = tokenizer(a__ , phonemizer_lang="""en-us""" ).input_ids _lowerCAmelCase : Union[str, Any] = tokenizer(a__ , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(a__ , a__ ) _lowerCAmelCase : Dict = tokenizer.decode(a__ ) _lowerCAmelCase : Dict = tokenizer.decode(a__ ) self.assertEqual(a__ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(a__ , """ɛ l o h aʊ a ʁ j u""" ) def __A ( self ): _lowerCAmelCase : Any = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _lowerCAmelCase : Union[str, Any] = """Hello how Are you""" _lowerCAmelCase : Optional[Any] = """hello how are you""" _lowerCAmelCase : List[str] = tokenizer(a__ ).input_ids _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ).input_ids self.assertEqual(a__ , a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off _lowerCAmelCase : str = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on _lowerCAmelCase : Tuple = tokenizer.batch_decode(a__ ) self.assertEqual(a__ , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def __A ( a__ , a__ ): _lowerCAmelCase : List[str] = [d[key] for d in offsets] return retrieved_list def __A ( self ): _lowerCAmelCase : List[Any] = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" _lowerCAmelCase : Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on _lowerCAmelCase : Tuple = tokenizer.decode(a__ , output_char_offsets=a__ , filter_word_delimiter_token=a__ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(a__ , a__ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def __A ( self ): _lowerCAmelCase : int = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(a__ , a__ ): self.assertTrue(isinstance(a__ , a__ ) ) self.assertTrue(isinstance(outputs_list[0] , a__ ) ) # transform list to ModelOutput _lowerCAmelCase : List[Any] = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(a__ , a__ ): if isinstance(a__ , a__ ): [recursive_check(a__ , a__ ) for la, la in zip(a__ , a__ )] self.assertEqual(a__ , a__ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off _lowerCAmelCase : Tuple = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char _lowerCAmelCase : str = tokenizer.batch_decode(a__ , output_char_offsets=a__ ) _lowerCAmelCase : List[Any] = [tokenizer.decode(a__ , output_char_offsets=a__ ) for ids in sample_ids] check_list_tuples_equal(a__ , a__ ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def __A ( self ): pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def __A ( self ): pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def __A ( self ): pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : Dict = self.get_tokenizers(do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _lowerCAmelCase : Dict = tokenizer.vocab_size _lowerCAmelCase : List[str] = len(a__ ) self.assertNotEqual(a__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCAmelCase : Tuple = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] _lowerCAmelCase : List[Any] = tokenizer.add_tokens(a__ ) _lowerCAmelCase : Optional[Any] = tokenizer.vocab_size _lowerCAmelCase : Optional[Any] = len(a__ ) self.assertNotEqual(a__ , 0 ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , len(a__ ) ) self.assertEqual(a__ , all_size + len(a__ ) ) _lowerCAmelCase : str = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=a__ ) self.assertGreaterEqual(len(a__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _lowerCAmelCase : str = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} _lowerCAmelCase : Dict = tokenizer.add_special_tokens(a__ ) _lowerCAmelCase : int = tokenizer.vocab_size _lowerCAmelCase : Any = len(a__ ) self.assertNotEqual(a__ , 0 ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , len(a__ ) ) self.assertEqual(a__ , all_size_a + len(a__ ) ) _lowerCAmelCase : Any = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=a__ ) self.assertGreaterEqual(len(a__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def __A ( self ): pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def __A ( self ): pass def __A ( self ): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. _lowerCAmelCase : List[str] = self.get_tokenizers(fast=a__ , do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _lowerCAmelCase : Tuple = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] _lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_string(a__ ) self.assertIsInstance(output["""text"""] , a__ )
708
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _a : List[Any] = logging.get_logger(__name__) # TODO: upload to AWS _a : Dict = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = "retribert" def __init__( self , a__=30522 , a__=768 , a__=8 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=True , a__=128 , a__=0 , **a__ , ): super().__init__(pad_token_id=a__ , **a__ ) _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : str = type_vocab_size _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : str = share_encoders _lowerCAmelCase : int = projection_dim
710
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _a : Optional[int] = list[list[float | int]] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Matrix ,_lowerCamelCase : Matrix ) -> Matrix: _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Any = matrix[row][col] _lowerCAmelCase : Optional[Any] = vector[row][0] _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Optional[int] = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Dict = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase ,_lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase : Any = augmented[pivot_row], augmented[row] for rowa in range(row + 1 ,_lowerCamelCase ): _lowerCAmelCase : Optional[int] = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : str = 0 for cola in range(col + 1 ,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 ,_lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : Any = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase ,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] ,10 )] for row in range(_lowerCamelCase ) ] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ) -> Callable[[int], int]: _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Any = y_val _lowerCAmelCase : List[str] = solve(_lowerCamelCase ,_lowerCamelCase ) def interpolated_func(_lowerCamelCase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Callable[[int], int] = question_function ,_lowerCamelCase : int = 10 ) -> int: _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 ,order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 ,order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Tuple = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
711
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): @register_to_config def __init__( self , a__ = 768 , ): super().__init__() _lowerCAmelCase : Optional[int] = nn.Parameter(torch.zeros(1 , a__ ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.ones(1 , a__ ) ) def __A ( self , a__ = None , a__ = None , ): _lowerCAmelCase : Any = nn.Parameter(self.mean.to(a__ ).to(a__ ) ) _lowerCAmelCase : Any = nn.Parameter(self.std.to(a__ ).to(a__ ) ) return self def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self , a__ ): _lowerCAmelCase : Tuple = (embeds * self.std) + self.mean return embeds
712
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : List[str] = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
0
"""simple docstring""" import numpy class __A : def __init__( self , a__ , a__ ): _lowerCAmelCase : int = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase : Union[str, Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase : List[str] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase : List[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase : Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase : int = numpy.zeros(output_array.shape ) def __A ( self ): _lowerCAmelCase : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase : str = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase : Tuple = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __A ( self ): _lowerCAmelCase : str = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase : Tuple = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase : Optional[Any] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __A ( self , a__ , a__ , a__ ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase : Any = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase : Union[str, Any] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def __A ( self , a__ ): _lowerCAmelCase : str = input_arr _lowerCAmelCase : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase : Tuple = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase : Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : numpy.ndarray ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : numpy.ndarray ) -> numpy.ndarray: return (value) * (1 - (value)) def SCREAMING_SNAKE_CASE ( ) -> int: _lowerCAmelCase : List[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) ,dtype=numpy.floataa ,) # True output values for the given input values. _lowerCAmelCase : Optional[int] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) ,dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase : str = TwoHiddenLayerNeuralNetwork( input_array=_lowerCamelCase ,output_array=_lowerCamelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowerCamelCase ,iterations=10 ,give_loss=_lowerCamelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) ,dtype=numpy.floataa ) ) if __name__ == "__main__": example()
714
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _a : Union[str, Any] = logging.get_logger(__name__) class __A : _UpperCamelCase : str _UpperCamelCase : str = None @staticmethod def __A ( ): raise NotImplementedError def __A ( self , a__ , a__ , a__ , **a__ ): raise NotImplementedError def __A ( self , a__ ): raise NotImplementedError def __A ( self ): if not self.is_available(): raise RuntimeError( F"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def __A ( cls ): return F"`pip install {cls.pip_package or cls.name}`" class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = "optuna" @staticmethod def __A ( ): return is_optuna_available() def __A ( self , a__ , a__ , a__ , **a__ ): return run_hp_search_optuna(a__ , a__ , a__ , **a__ ) def __A ( self , a__ ): return default_hp_space_optuna(a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = "ray" _UpperCamelCase : Tuple = "'ray[tune]'" @staticmethod def __A ( ): return is_ray_available() def __A ( self , a__ , a__ , a__ , **a__ ): return run_hp_search_ray(a__ , a__ , a__ , **a__ ) def __A ( self , a__ ): return default_hp_space_ray(a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = "sigopt" @staticmethod def __A ( ): return is_sigopt_available() def __A ( self , a__ , a__ , a__ , **a__ ): return run_hp_search_sigopt(a__ , a__ , a__ , **a__ ) def __A ( self , a__ ): return default_hp_space_sigopt(a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = "wandb" @staticmethod def __A ( ): return is_wandb_available() def __A ( self , a__ , a__ , a__ , **a__ ): return run_hp_search_wandb(a__ , a__ , a__ , **a__ ) def __A ( self , a__ ): return default_hp_space_wandb(a__ ) _a : Tuple = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : str = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_lowerCamelCase ) > 0: _lowerCAmelCase : Optional[Any] = available_backends[0].name if len(_lowerCamelCase ) > 1: logger.info( f"{len(_lowerCamelCase )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
716
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
0