code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict:
# Initialise PyTorch model
_lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE )
print(f'''Building PyTorch model from configuration: {config}''' )
_lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--albert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained ALBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 664 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = DiTPipeline
SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ = False
def __lowerCAmelCase ( self ):
torch.manual_seed(0 )
_lowerCAmelCase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , )
_lowerCAmelCase = AutoencoderKL()
_lowerCAmelCase = DDIMScheduler()
_lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler}
return components
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ):
if str(_lowerCAmelCase ).startswith('''mps''' ):
_lowerCAmelCase = torch.manual_seed(_lowerCAmelCase )
else:
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
_lowerCAmelCase = {
'''class_labels''': [1],
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''cpu'''
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase )
_lowerCAmelCase = pipe(**_lowerCAmelCase ).images
_lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
_lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] )
_lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowerCAmelCase , 1E-3 )
def __lowerCAmelCase ( self ):
self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class UpperCAmelCase ( unittest.TestCase ):
def __lowerCAmelCase ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' )
pipe.to('''cuda''' )
_lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf''']
_lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase )
_lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images
for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = load_numpy(
F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-2
def __lowerCAmelCase ( self ):
_lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('''cuda''' )
_lowerCAmelCase = ['''vase''', '''umbrella''']
_lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images
for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
F'''/dit/{word}_512.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-1
| 664 | 1 |
from typing import List
import jiwer
import jiwer.transforms as tr
from packaging import version
import datasets
from datasets.config import PY_VERSION
if PY_VERSION < version.parse("3.8"):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
UpperCAmelCase_ = ""
if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"):
class UpperCAmelCase ( tr.AbstractTransform ):
def __init__( self , _lowerCAmelCase = " " ):
_lowerCAmelCase = sentence_delimiter
def __lowerCAmelCase ( self , _lowerCAmelCase ):
return list(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = []
for sent_idx, sentence in enumerate(_lowerCAmelCase ):
chars.extend(self.process_string(_lowerCAmelCase ) )
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(_lowerCAmelCase ) - 1:
chars.append(self.sentence_delimiter )
return chars
UpperCAmelCase_ = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
else:
UpperCAmelCase_ = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
UpperCAmelCase_ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
UpperCAmelCase_ = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n"
UpperCAmelCase_ = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
def __lowerCAmelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
'''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''',
] , )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ):
if concatenate_texts:
return jiwer.compute_measures(
_lowerCAmelCase , _lowerCAmelCase , truth_transform=_lowerCAmelCase , hypothesis_transform=_lowerCAmelCase , )["wer"]
_lowerCAmelCase = 0
_lowerCAmelCase = 0
for prediction, reference in zip(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = jiwer.compute_measures(
_lowerCAmelCase , _lowerCAmelCase , truth_transform=_lowerCAmelCase , hypothesis_transform=_lowerCAmelCase , )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 664 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
UpperCAmelCase_ = {"UserAgent": UserAgent().random}
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict:
_lowerCAmelCase = script.contents[0]
_lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase ):
_lowerCAmelCase = F'''https://www.instagram.com/{username}/'''
_lowerCAmelCase = self.get_json()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text
_lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self ):
return F'''{self.__class__.__name__}(\'{self.username}\')'''
def __str__( self ):
return F'''{self.fullname} ({self.username}) is {self.biography}'''
@property
def __lowerCAmelCase ( self ):
return self.user_data["username"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["full_name"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["biography"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["business_email"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["external_url"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_followed_by"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_follow"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["profile_pic_url_hd"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["is_verified"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["is_private"]
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None:
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
_lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 1_5_0
assert instagram_user.number_of_followers > 1_2_0_0_0_0
assert instagram_user.number_of_followings > 1_5
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ = InstagramUser("github")
print(instagram_user)
print(F"""{instagram_user.number_of_posts = }""")
print(F"""{instagram_user.number_of_followers = }""")
print(F"""{instagram_user.number_of_followings = }""")
print(F"""{instagram_user.email = }""")
print(F"""{instagram_user.website = }""")
print(F"""{instagram_user.profile_picture_url = }""")
print(F"""{instagram_user.is_verified = }""")
print(F"""{instagram_user.is_private = }""")
| 664 | 1 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
UpperCAmelCase_ = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
UpperCAmelCase_ = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
UpperCAmelCase_ = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
def __lowerCAmelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ),
'''references''': datasets.Sequence(
datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=4 , _lowerCAmelCase=False ):
_lowerCAmelCase = compute_bleu(
reference_corpus=_lowerCAmelCase , translation_corpus=_lowerCAmelCase , max_order=_lowerCAmelCase , smooth=_lowerCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 664 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]:
_lowerCAmelCase = int(_SCREAMING_SNAKE_CASE )
# Initialize Result
_lowerCAmelCase = []
# Traverse through all denomination
for denomination in reversed(_SCREAMING_SNAKE_CASE ):
# Find denominations
while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ):
total_value -= int(_SCREAMING_SNAKE_CASE )
answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
UpperCAmelCase_ = []
UpperCAmelCase_ = "0"
if (
input("Do you want to enter your denominations ? (yY/n): ").strip().lower()
== "y"
):
UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip())
for i in range(0, n):
denominations.append(int(input(F"""Denomination {i}: """).strip()))
UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip()
else:
# All denominations of Indian Currency if user does not enter
UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0]
UpperCAmelCase_ = input("Enter the change you want to make: ").strip()
if int(value) == 0 or int(value) < 0:
print("The total value cannot be zero or negative.")
else:
print(F"""Following is minimal change for {value}: """)
UpperCAmelCase_ = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=" ")
| 664 | 1 |
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
UpperCAmelCase_ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int = 1_6_0_0_0 )->List[str]:
_lowerCAmelCase = int(round(sample_rate * max_length ) )
if len(_SCREAMING_SNAKE_CASE ) <= sample_length:
return wav
_lowerCAmelCase = randint(0 , len(_SCREAMING_SNAKE_CASE ) - sample_length - 1 )
return wav[random_offset : random_offset + sample_length]
@dataclass
class UpperCAmelCase :
SCREAMING_SNAKE_CASE__ = field(default=snake_case_ ,metadata={'''help''': '''Name of a dataset from the datasets package'''} )
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={'''help''': '''A file containing the training audio paths and labels.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={'''help''': '''A file containing the validation audio paths and labels.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''train''' ,metadata={
'''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\''''
} ,)
SCREAMING_SNAKE_CASE__ = field(
default='''validation''' ,metadata={
'''help''': (
'''The name of the training data set split to use (via the datasets library). Defaults to \'validation\''''
)
} ,)
SCREAMING_SNAKE_CASE__ = field(
default='''audio''' ,metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} ,)
SCREAMING_SNAKE_CASE__ = field(
default='''label''' ,metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} )
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} ,)
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} ,)
SCREAMING_SNAKE_CASE__ = field(
default=2_0 ,metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} ,)
@dataclass
class UpperCAmelCase :
SCREAMING_SNAKE_CASE__ = field(
default='''facebook/wav2vec2-base''' ,metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ,)
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''main''' ,metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} ,)
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={'''help''': '''Name or path of preprocessor config.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} ,)
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=snake_case_ ,metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} ,)
def __lowerCAmelCase ( self ):
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
'''The argument `--freeze_feature_extractor` is deprecated and '''
'''will be removed in a future version. Use `--freeze_feature_encoder`'''
'''instead. Setting `freeze_feature_encoder==True`.''' , _lowerCAmelCase , )
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
'''The argument `--freeze_feature_extractor` is deprecated and '''
'''should not be used in combination with `--freeze_feature_encoder`.'''
'''Only make use of `--freeze_feature_encoder`.''' )
def UpperCAmelCase__ ( )->Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_audio_classification''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_lowerCAmelCase = training_args.get_process_log_level()
logger.setLevel(_SCREAMING_SNAKE_CASE )
transformers.utils.logging.set_verbosity(_SCREAMING_SNAKE_CASE )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} '''
+ f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(f'''Training/evaluation parameters {training_args}''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Detecting last checkpoint.
_lowerCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_lowerCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'''Use --overwrite_output_dir to train from scratch.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Initialize our dataset and prepare it for the audio classification task.
_lowerCAmelCase = DatasetDict()
_lowerCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , )
_lowerCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , )
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. '''
'''Make sure to set `--audio_column_name` to the correct audio column - one of '''
f'''{", ".join(raw_datasets["train"].column_names )}.''' )
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. '''
'''Make sure to set `--label_column_name` to the correct text column - one of '''
f'''{", ".join(raw_datasets["train"].column_names )}.''' )
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
_lowerCAmelCase = raw_datasets.cast_column(
data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) )
_lowerCAmelCase = feature_extractor.model_input_names[0]
def train_transforms(_SCREAMING_SNAKE_CASE : Any ):
_lowerCAmelCase = []
for audio in batch[data_args.audio_column_name]:
_lowerCAmelCase = random_subsample(
audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate )
subsampled_wavs.append(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=feature_extractor.sampling_rate )
_lowerCAmelCase = {model_input_name: inputs.get(_SCREAMING_SNAKE_CASE )}
_lowerCAmelCase = list(batch[data_args.label_column_name] )
return output_batch
def val_transforms(_SCREAMING_SNAKE_CASE : List[str] ):
_lowerCAmelCase = [audio['''array'''] for audio in batch[data_args.audio_column_name]]
_lowerCAmelCase = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=feature_extractor.sampling_rate )
_lowerCAmelCase = {model_input_name: inputs.get(_SCREAMING_SNAKE_CASE )}
_lowerCAmelCase = list(batch[data_args.label_column_name] )
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
_lowerCAmelCase = raw_datasets['''train'''].features[data_args.label_column_name].names
_lowerCAmelCase , _lowerCAmelCase = {}, {}
for i, label in enumerate(_SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = str(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = label
# Load the accuracy metric from the datasets package
_lowerCAmelCase = evaluate.load('''accuracy''' )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(_SCREAMING_SNAKE_CASE : Dict ):
_lowerCAmelCase = np.argmax(eval_pred.predictions , axis=1 )
return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=eval_pred.label_ids )
_lowerCAmelCase = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(_SCREAMING_SNAKE_CASE ) , labelaid=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_lowerCAmelCase = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
_lowerCAmelCase = (
raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
raw_datasets["train"].set_transform(_SCREAMING_SNAKE_CASE , output_all_columns=_SCREAMING_SNAKE_CASE )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
_lowerCAmelCase = (
raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
raw_datasets["eval"].set_transform(_SCREAMING_SNAKE_CASE , output_all_columns=_SCREAMING_SNAKE_CASE )
# Initialize our trainer
_lowerCAmelCase = Trainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , )
# Training
if training_args.do_train:
_lowerCAmelCase = None
if training_args.resume_from_checkpoint is not None:
_lowerCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_lowerCAmelCase = last_checkpoint
_lowerCAmelCase = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE )
trainer.save_model()
trainer.log_metrics('''train''' , train_result.metrics )
trainer.save_metrics('''train''' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_lowerCAmelCase = trainer.evaluate()
trainer.log_metrics('''eval''' , _SCREAMING_SNAKE_CASE )
trainer.save_metrics('''eval''' , _SCREAMING_SNAKE_CASE )
# Write model card and (optionally) push to hub
_lowerCAmelCase = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''audio-classification''',
'''dataset''': data_args.dataset_name,
'''tags''': ['''audio-classification'''],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_SCREAMING_SNAKE_CASE )
else:
trainer.create_model_card(**_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 664 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict:
# Initialise PyTorch model
_lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE )
print(f'''Building PyTorch model from configuration: {config}''' )
_lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--albert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained ALBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 664 | 1 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class UpperCAmelCase ( unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = hf_hub_download(
repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' )
_lowerCAmelCase = VideoClassificationPipeline(model=_lowerCAmelCase , image_processor=_lowerCAmelCase , top_k=2 )
_lowerCAmelCase = [
example_video_filepath,
'''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''',
]
return video_classifier, examples
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
for example in examples:
_lowerCAmelCase = video_classifier(_lowerCAmelCase )
self.assertEqual(
_lowerCAmelCase , [
{'''score''': ANY(_lowerCAmelCase ), '''label''': ANY(_lowerCAmelCase )},
{'''score''': ANY(_lowerCAmelCase ), '''label''': ANY(_lowerCAmelCase )},
] , )
@require_torch
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification'''
_lowerCAmelCase = VideoMAEFeatureExtractor(
size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} )
_lowerCAmelCase = pipeline(
'''video-classification''' , model=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , frame_sampling_rate=4 )
_lowerCAmelCase = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' )
_lowerCAmelCase = video_classifier(_lowerCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}] , )
_lowerCAmelCase = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [
[{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}],
[{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}],
] , )
@require_tf
def __lowerCAmelCase ( self ):
pass
| 664 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("1.0.0a"):
raise Exception("requires fairseq >= 1.0.0a")
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = "Hello world! cécé herlolip"
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]:
_lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE )
roberta.eval() # disable dropout
_lowerCAmelCase = roberta.model.encoder.sentence_encoder
_lowerCAmelCase = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , )
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
_lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight
_lowerCAmelCase = roberta_sent_encoder.embed_positions.weight
_lowerCAmelCase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
_lowerCAmelCase = roberta_sent_encoder.layer_norm.weight
_lowerCAmelCase = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
_lowerCAmelCase = model.roberta.encoder.layer[i]
_lowerCAmelCase = roberta_sent_encoder.layers[i]
_lowerCAmelCase = layer.attention
_lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight
_lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias
# self attention
_lowerCAmelCase = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
_lowerCAmelCase = roberta_layer.self_attn.q_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.q_proj.bias
_lowerCAmelCase = roberta_layer.self_attn.k_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.k_proj.bias
_lowerCAmelCase = roberta_layer.self_attn.v_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.v_proj.bias
# self-attention output
_lowerCAmelCase = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
_lowerCAmelCase = roberta_layer.self_attn.out_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
_lowerCAmelCase = roberta_layer.final_layer_norm.weight
_lowerCAmelCase = roberta_layer.final_layer_norm.bias
# intermediate
_lowerCAmelCase = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
_lowerCAmelCase = roberta_layer.fca.weight
_lowerCAmelCase = roberta_layer.fca.bias
# output
_lowerCAmelCase = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
_lowerCAmelCase = roberta_layer.fca.weight
_lowerCAmelCase = roberta_layer.fca.bias
# end of layer
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
_lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias
_lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias
_lowerCAmelCase = roberta.model.encoder.lm_head.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
_lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
_lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0]
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) )
else:
_lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0]
print(our_output.shape , their_output.shape )
_lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
_lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
UpperCAmelCase_ = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 664 | 1 |
UpperCAmelCase_ = 8.31_4462 # Unit - J mol-1 K-1
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float )->float:
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError('''Invalid inputs. Enter positive value.''' )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float )->float:
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError('''Invalid inputs. Enter positive value.''' )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod()
| 664 |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
_lowerCAmelCase = []
for i in range(_SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = i / num_diffusion_timesteps
_lowerCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) )
return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class UpperCAmelCase ( snake_case_ ,snake_case_ ):
SCREAMING_SNAKE_CASE__ = 1
@register_to_config
def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ):
if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None:
_lowerCAmelCase = (
'''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.'''
)
deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase )
_lowerCAmelCase = kwargs['''set_alpha_to_one''']
if trained_betas is not None:
_lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
_lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_lowerCAmelCase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase )
else:
raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' )
_lowerCAmelCase = 1.0 - self.betas
_lowerCAmelCase = torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
_lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
_lowerCAmelCase = 1.0
# setable values
_lowerCAmelCase = None
_lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
return sample
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:'''
F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle'''
F''' maximal {self.config.num_train_timesteps} timesteps.''' )
_lowerCAmelCase = num_inference_steps
_lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa )
_lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase )
self.timesteps += self.config.steps_offset
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ):
# 1. get previous step value (=t+1)
_lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
_lowerCAmelCase = self.alphas_cumprod[timestep]
_lowerCAmelCase = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
_lowerCAmelCase = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
_lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
_lowerCAmelCase = model_output
elif self.config.prediction_type == "sample":
_lowerCAmelCase = model_output
_lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
_lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
_lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or'''
''' `v_prediction`''' )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
_lowerCAmelCase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase )
def __len__( self ):
return self.config.num_train_timesteps
| 664 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ = {
"configuration_clipseg": [
"CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPSegConfig",
"CLIPSegTextConfig",
"CLIPSegVisionConfig",
],
"processing_clipseg": ["CLIPSegProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPSegModel",
"CLIPSegPreTrainedModel",
"CLIPSegTextModel",
"CLIPSegVisionModel",
"CLIPSegForImageSegmentation",
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 |
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCAmelCase_ = {
"configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"],
"tokenization_cpmant": ["CpmAntTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST",
"CpmAntForCausalLM",
"CpmAntModel",
"CpmAntPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 1 |
import heapq
import sys
import numpy as np
UpperCAmelCase_ = tuple[int, int]
class UpperCAmelCase :
def __init__( self ):
_lowerCAmelCase = []
_lowerCAmelCase = set()
def __lowerCAmelCase ( self ):
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def __lowerCAmelCase ( self ):
return len(self.elements ) == 0
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(_lowerCAmelCase )
else:
# update
# print("update", item)
_lowerCAmelCase = []
((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
if item in self.set:
self.set.remove(_lowerCAmelCase )
_lowerCAmelCase = []
((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def __lowerCAmelCase ( self ):
return self.elements[0][1]
def __lowerCAmelCase ( self ):
((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements )
self.set.remove(_lowerCAmelCase )
return (priority, item)
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : TPos )->List[str]:
# euclidean distance
_lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE )
return np.linalg.norm(a - b )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : TPos )->List[str]:
# integer division by time variable
return consistent_heuristic(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) // t
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : TPos )->List[Any]:
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : dict[TPos, float] )->List[Any]:
_lowerCAmelCase = g_function[start] + Wa * heuristics[i](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return ans
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->List[Any]:
_lowerCAmelCase = np.chararray((n, n) )
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = '''*'''
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
if (j, (n - 1) - i) in blocks:
_lowerCAmelCase = '''#'''
_lowerCAmelCase = '''-'''
_lowerCAmelCase = back_pointer[goal]
while x != start:
((_lowerCAmelCase) , (_lowerCAmelCase)) = x
# print(x)
_lowerCAmelCase = '''-'''
_lowerCAmelCase = back_pointer[x]
_lowerCAmelCase = '''-'''
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
_lowerCAmelCase = back_pointer[goal]
while x != start:
print(_SCREAMING_SNAKE_CASE , end=''' ''' )
_lowerCAmelCase = back_pointer[x]
print(_SCREAMING_SNAKE_CASE )
sys.exit()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TPos )->Optional[int]:
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , )->str:
for itera in range(_SCREAMING_SNAKE_CASE ):
open_list[itera].remove_element(_SCREAMING_SNAKE_CASE )
# print("s", s)
# print("j", j)
((_lowerCAmelCase) , (_lowerCAmelCase)) = s
_lowerCAmelCase = (x - 1, y)
_lowerCAmelCase = (x + 1, y)
_lowerCAmelCase = (x, y + 1)
_lowerCAmelCase = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(_SCREAMING_SNAKE_CASE ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = -1
_lowerCAmelCase = float('''inf''' )
if valid(_SCREAMING_SNAKE_CASE ) and g_function[neighbours] > g_function[s] + 1:
_lowerCAmelCase = g_function[s] + 1
_lowerCAmelCase = s
if neighbours not in close_list_anchor:
open_list[0].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
if neighbours not in close_list_inad:
for var in range(1 , _SCREAMING_SNAKE_CASE ):
if key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) <= Wa * key(
_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
open_list[j].put(
_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
def UpperCAmelCase__ ( )->Optional[Any]:
_lowerCAmelCase = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
UpperCAmelCase_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
UpperCAmelCase_ = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(1_0, 1),
(1_1, 1),
(1_2, 1),
(1_3, 1),
(1_4, 1),
(1_5, 1),
(1_6, 1),
(1_7, 1),
(1_8, 1),
(1_9, 1),
]
UpperCAmelCase_ = make_common_ground()
UpperCAmelCase_ = blocks_blk
# hyper parameters
UpperCAmelCase_ = 1
UpperCAmelCase_ = 1
UpperCAmelCase_ = 2_0
UpperCAmelCase_ = 3 # one consistent and two other inconsistent
# start and end destination
UpperCAmelCase_ = (0, 0)
UpperCAmelCase_ = (n - 1, n - 1)
UpperCAmelCase_ = 1
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : int )->List[Any]:
_lowerCAmelCase = {start: 0, goal: float('''inf''' )}
_lowerCAmelCase = {start: -1, goal: -1}
_lowerCAmelCase = []
_lowerCAmelCase = set()
for i in range(_SCREAMING_SNAKE_CASE ):
open_list.append(PriorityQueue() )
open_list[i].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
_lowerCAmelCase = []
_lowerCAmelCase = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , _SCREAMING_SNAKE_CASE ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase , _lowerCAmelCase = open_list[i].top_show()
visited.add(_SCREAMING_SNAKE_CASE )
expand_state(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
close_list_inad.append(_SCREAMING_SNAKE_CASE )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = open_list[0].top_show()
visited.add(_SCREAMING_SNAKE_CASE )
expand_state(
_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
close_list_anchor.append(_SCREAMING_SNAKE_CASE )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(_SCREAMING_SNAKE_CASE ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 664 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor'''
SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase )
if text is None and audios is None:
raise ValueError('''You have to specify either text or audios. Both cannot be none.''' )
if text is not None:
_lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if audios is not None:
_lowerCAmelCase = self.feature_extractor(
_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is not None and audios is not None:
_lowerCAmelCase = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer.model_input_names
_lowerCAmelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 664 | 1 |
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = list(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
_lowerCAmelCase = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool:
_lowerCAmelCase = [
'''CUDA out of memory.''', # CUDA OOM
'''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU
'''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM
]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]:
if function is None:
return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = starting_batch_size
def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
_lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() )
# Guard against user error
if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1):
_lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] )
raise TypeError(
f'''Batch size was passed into `{function.__name__}` as the first argument when called.'''
f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' )
while True:
if batch_size == 0:
raise RuntimeError('''No executable batch size found, reached zero.''' )
try:
return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
except Exception as e:
if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 664 |
from __future__ import annotations
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list:
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = int(max_value - min_value ) + 1
_lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 664 | 1 |
from __future__ import annotations
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , )->tuple[str, float]:
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 664 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
def UpperCAmelCase__ ( )->Any:
_lowerCAmelCase = _ask_options(
'''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
_lowerCAmelCase = get_sagemaker_input()
else:
_lowerCAmelCase = get_cluster_input()
return config
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str:
if subparsers is not None:
_lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE )
parser.add_argument(
'''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=_SCREAMING_SNAKE_CASE )
return parser
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str:
_lowerCAmelCase = get_user_input()
if args.config_file is not None:
_lowerCAmelCase = args.config_file
else:
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
os.makedirs(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = default_yaml_config_file
if config_file.endswith('''.json''' ):
config.to_json_file(_SCREAMING_SNAKE_CASE )
else:
config.to_yaml_file(_SCREAMING_SNAKE_CASE )
print(f'''accelerate configuration saved at {config_file}''' )
def UpperCAmelCase__ ( )->List[Any]:
_lowerCAmelCase = config_command_parser()
_lowerCAmelCase = parser.parse_args()
config_command(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 664 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ = {
"configuration_time_series_transformer": [
"TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TimeSeriesTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimeSeriesTransformerForPrediction",
"TimeSeriesTransformerModel",
"TimeSeriesTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 |
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase_ = 1_0
UpperCAmelCase_ = 2_5_6
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]:
if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS:
return None
_lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE )
for token in set(_SCREAMING_SNAKE_CASE ):
min_hash.update(token.encode() )
return min_hash
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]:
return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0}
class UpperCAmelCase :
def __init__( self , *,
_lowerCAmelCase = 0.85 , ):
_lowerCAmelCase = duplication_jaccard_threshold
_lowerCAmelCase = NUM_PERM
_lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
_lowerCAmelCase = defaultdict(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self._index.query(_lowerCAmelCase )
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''' )
return
self._index.insert(_lowerCAmelCase , _lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = []
for base, duplicates in self._duplicate_clusters.items():
_lowerCAmelCase = [base] + list(_lowerCAmelCase )
# reformat the cluster to be a list of dict
_lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster]
duplicate_clusters.append(_lowerCAmelCase )
return duplicate_clusters
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = self.get_duplicate_clusters()
with open(_lowerCAmelCase , '''w''' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = element
_lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ):
if data is not None:
yield data
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str:
_lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ):
di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float:
_lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase_ = None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]:
_lowerCAmelCase = []
for elementa in cluster:
_lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content''']
for elementa in extremes:
_lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content''']
if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
_lowerCAmelCase = 1
extremes.append(_SCREAMING_SNAKE_CASE )
return extremes
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple:
global _shared_dataset
_lowerCAmelCase = dataset
_lowerCAmelCase = []
_lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ):
extremes_list.append(_SCREAMING_SNAKE_CASE )
return extremes_list
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]:
_lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster}
_lowerCAmelCase = {}
_lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for extremes in extremes_clusters:
for element in extremes:
_lowerCAmelCase = element
_lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() )
_lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
_lowerCAmelCase = element['''base_index'''] in extreme_dict
if element["is_extreme"]:
_lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies''']
print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' )
return ds_filter, duplicate_clusters
| 664 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ = {
"configuration_trajectory_transformer": [
"TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TrajectoryTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrajectoryTransformerModel",
"TrajectoryTransformerPreTrainedModel",
"load_tf_weights_in_trajectory_transformer",
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = process
_lowerCAmelCase = params
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
_lowerCAmelCase = self.dataset[i]
_lowerCAmelCase = self.process(_lowerCAmelCase , **self.params )
return processed
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowerCAmelCase = loader
_lowerCAmelCase = infer
_lowerCAmelCase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_lowerCAmelCase = None
_lowerCAmelCase = loader_batch_size
# Internal bookkeeping
_lowerCAmelCase = None
_lowerCAmelCase = None
def __len__( self ):
return len(self.loader )
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
return self
def __lowerCAmelCase ( self ):
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_lowerCAmelCase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_lowerCAmelCase = {}
for k, element in self._loader_batch_data.items():
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
# Convert ModelOutput to tuple first
_lowerCAmelCase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
_lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
_lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_lowerCAmelCase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_lowerCAmelCase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase )
self._loader_batch_index += 1
return result
def __lowerCAmelCase ( self ):
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_lowerCAmelCase = next(self.iterator )
_lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(_lowerCAmelCase , torch.Tensor ):
_lowerCAmelCase = processed
else:
_lowerCAmelCase = list(processed.keys() )[0]
_lowerCAmelCase = processed[key]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = len(_lowerCAmelCase )
else:
_lowerCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_lowerCAmelCase = observed_batch_size
# Setting internal index to unwrap the batch
_lowerCAmelCase = processed
_lowerCAmelCase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
_lowerCAmelCase = None
return self
def __lowerCAmelCase ( self ):
if self.subiterator is None:
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
_lowerCAmelCase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
_lowerCAmelCase = next(self.subiterator )
return processed
class UpperCAmelCase ( snake_case_ ):
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
return self
def __lowerCAmelCase ( self ):
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
_lowerCAmelCase = False
_lowerCAmelCase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_lowerCAmelCase = self.loader_batch_item()
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
if is_last:
return accumulator
while not is_last:
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(_lowerCAmelCase , torch.Tensor ):
_lowerCAmelCase = processed
else:
_lowerCAmelCase = list(processed.keys() )[0]
_lowerCAmelCase = processed[key]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = len(_lowerCAmelCase )
else:
_lowerCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_lowerCAmelCase = observed_batch_size
_lowerCAmelCase = processed
_lowerCAmelCase = 0
while self._loader_batch_index < self.loader_batch_size:
_lowerCAmelCase = self.loader_batch_item()
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
if is_last:
return accumulator
else:
_lowerCAmelCase = processed
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
return accumulator
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = key
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
return self.dataset[i][self.key]
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = keya
_lowerCAmelCase = keya
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 664 | 1 |
from __future__ import annotations
from collections.abc import Iterator
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase ):
_lowerCAmelCase = value
_lowerCAmelCase = None
_lowerCAmelCase = None
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase ):
_lowerCAmelCase = tree
def __lowerCAmelCase ( self , _lowerCAmelCase ):
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self ):
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 664 |
import numpy
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
_lowerCAmelCase = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
_lowerCAmelCase = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
_lowerCAmelCase = numpy.random.rand(3 , 1 )
# Real output values provided.
_lowerCAmelCase = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
_lowerCAmelCase = numpy.zeros(output_array.shape )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def __lowerCAmelCase ( self ):
_lowerCAmelCase = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
_lowerCAmelCase = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
_lowerCAmelCase = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
for iteration in range(1 , iterations + 1 ):
_lowerCAmelCase = self.feedforward()
self.back_propagation()
if give_loss:
_lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F'''Iteration {iteration} Loss: {loss}''' )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = input_arr
_lowerCAmelCase = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray:
return 1 / (1 + numpy.exp(-value ))
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray:
return (value) * (1 - (value))
def UpperCAmelCase__ ( )->int:
_lowerCAmelCase = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
_lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
_lowerCAmelCase = TwoHiddenLayerNeuralNetwork(
input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 664 | 1 |
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->str:
_lowerCAmelCase = []
for line in lines:
_lowerCAmelCase = re.sub(r'''#.*''' , '''''' , _SCREAMING_SNAKE_CASE ) # remove comments
if line:
filtered_lines.append(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = '''\n'''.join(_SCREAMING_SNAKE_CASE )
# Make a hash from all this code
_lowerCAmelCase = full_str.encode('''utf-8''' )
return shaaaa(_SCREAMING_SNAKE_CASE ).hexdigest()
# get importable module names and hash for caching
UpperCAmelCase_ = {
"csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
"json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
"pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
"parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
"arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
"text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
"imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
"audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
UpperCAmelCase_ = {
".csv": ("csv", {}),
".tsv": ("csv", {"sep": "\t"}),
".json": ("json", {}),
".jsonl": ("json", {}),
".parquet": ("parquet", {}),
".arrow": ("arrow", {}),
".txt": ("text", {}),
}
_EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
UpperCAmelCase_ = {"imagefolder", "audiofolder"}
# Used to filter data files based on extensions given a module name
UpperCAmelCase_ = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append(".zip")
_MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
| 664 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["LayoutXLMTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["LayoutXLMTokenizerFast"]
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ):
_lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18}
_lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = num_frames
_lowerCAmelCase = image_size
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean
_lowerCAmelCase = image_std
_lowerCAmelCase = crop_size
def __lowerCAmelCase ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self ):
_lowerCAmelCase = VivitImageProcessingTester(self )
@property
def __lowerCAmelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 664 |
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = list(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
_lowerCAmelCase = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool:
_lowerCAmelCase = [
'''CUDA out of memory.''', # CUDA OOM
'''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU
'''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM
]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]:
if function is None:
return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = starting_batch_size
def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
_lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() )
# Guard against user error
if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1):
_lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] )
raise TypeError(
f'''Batch size was passed into `{function.__name__}` as the first argument when called.'''
f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' )
while True:
if batch_size == 0:
raise RuntimeError('''No executable batch size found, reached zero.''' )
try:
return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
except Exception as e:
if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 664 | 1 |
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class UpperCAmelCase ( unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils )
SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] )
SCREAMING_SNAKE_CASE__ = ['''accelerate''', '''launch''']
SCREAMING_SNAKE_CASE__ = Path.home() / '''.cache/huggingface/accelerate'''
SCREAMING_SNAKE_CASE__ = '''default_config.yaml'''
SCREAMING_SNAKE_CASE__ = config_folder / config_file
SCREAMING_SNAKE_CASE__ = config_folder / '''_default_config.yaml'''
SCREAMING_SNAKE_CASE__ = Path('''tests/test_configs''' )
@classmethod
def __lowerCAmelCase ( cls ):
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def __lowerCAmelCase ( cls ):
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() )
def __lowerCAmelCase ( self ):
for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ):
with self.subTest(config_file=_lowerCAmelCase ):
execute_subprocess_async(
self.base_cmd + ['''--config_file''', str(_lowerCAmelCase ), self.test_file_path] , env=os.environ.copy() )
def __lowerCAmelCase ( self ):
execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() )
class UpperCAmelCase ( unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = '''test-tpu'''
SCREAMING_SNAKE_CASE__ = '''us-central1-a'''
SCREAMING_SNAKE_CASE__ = '''ls'''
SCREAMING_SNAKE_CASE__ = ['''accelerate''', '''tpu-config''']
SCREAMING_SNAKE_CASE__ = '''cd /usr/share'''
SCREAMING_SNAKE_CASE__ = '''tests/test_samples/test_command_file.sh'''
SCREAMING_SNAKE_CASE__ = '''Running gcloud compute tpus tpu-vm ssh'''
def __lowerCAmelCase ( self ):
_lowerCAmelCase = run_command(
self.cmd
+ ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowerCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _lowerCAmelCase , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/0_12_0.yaml''',
'''--command''',
self.command,
'''--tpu_zone''',
self.tpu_zone,
'''--tpu_name''',
self.tpu_name,
'''--debug''',
] , return_stdout=_lowerCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _lowerCAmelCase , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowerCAmelCase )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _lowerCAmelCase , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowerCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _lowerCAmelCase , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/latest.yaml''',
'''--command''',
self.command,
'''--command''',
'''echo "Hello World"''',
'''--debug''',
] , return_stdout=_lowerCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , _lowerCAmelCase , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = run_command(
self.cmd
+ ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowerCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _lowerCAmelCase , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/0_12_0.yaml''',
'''--command_file''',
self.command_file,
'''--tpu_zone''',
self.tpu_zone,
'''--tpu_name''',
self.tpu_name,
'''--debug''',
] , return_stdout=_lowerCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _lowerCAmelCase , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowerCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , _lowerCAmelCase , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/latest.yaml''',
'''--install_accelerate''',
'''--accelerate_version''',
'''12.0.0''',
'''--debug''',
] , return_stdout=_lowerCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , _lowerCAmelCase , )
| 664 |
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_input_mask
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = num_labels
_lowerCAmelCase = num_choices
_lowerCAmelCase = scope
def __lowerCAmelCase ( self ):
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = None
if self.use_input_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase = None
if self.use_token_type_ids:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self ):
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_config()
_lowerCAmelCase = 300
return config
def __lowerCAmelCase ( self ):
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = self.prepare_config_and_inputs()
_lowerCAmelCase = True
_lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
_lowerCAmelCase = True
_lowerCAmelCase = MraModel(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , )
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , )
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_choices
_lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = ()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 )
def __lowerCAmelCase ( self ):
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase = type
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
@slow
def __lowerCAmelCase ( self ):
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@unittest.skip(reason='''MRA does not output attentions''' )
def __lowerCAmelCase ( self ):
return
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
_lowerCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
_lowerCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = 50_265
_lowerCAmelCase = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
_lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = 50_265
_lowerCAmelCase = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
| 664 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase_ = {
"configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"],
"tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
"AdaptiveEmbedding",
"TransfoXLForSequenceClassification",
"TransfoXLLMHeadModel",
"TransfoXLModel",
"TransfoXLPreTrainedModel",
"load_tf_weights_in_transfo_xl",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFAdaptiveEmbedding",
"TFTransfoXLForSequenceClassification",
"TFTransfoXLLMHeadModel",
"TFTransfoXLMainLayer",
"TFTransfoXLModel",
"TFTransfoXLPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,
TransfoXLForSequenceClassification,
TransfoXLLMHeadModel,
TransfoXLModel,
TransfoXLPreTrainedModel,
load_tf_weights_in_transfo_xl,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLMainLayer,
TFTransfoXLModel,
TFTransfoXLPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 664 | 1 |
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase_ = 1_0
UpperCAmelCase_ = 2_5_6
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]:
if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS:
return None
_lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE )
for token in set(_SCREAMING_SNAKE_CASE ):
min_hash.update(token.encode() )
return min_hash
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]:
return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0}
class UpperCAmelCase :
def __init__( self , *,
_lowerCAmelCase = 0.85 , ):
_lowerCAmelCase = duplication_jaccard_threshold
_lowerCAmelCase = NUM_PERM
_lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
_lowerCAmelCase = defaultdict(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self._index.query(_lowerCAmelCase )
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''' )
return
self._index.insert(_lowerCAmelCase , _lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = []
for base, duplicates in self._duplicate_clusters.items():
_lowerCAmelCase = [base] + list(_lowerCAmelCase )
# reformat the cluster to be a list of dict
_lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster]
duplicate_clusters.append(_lowerCAmelCase )
return duplicate_clusters
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = self.get_duplicate_clusters()
with open(_lowerCAmelCase , '''w''' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = element
_lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ):
if data is not None:
yield data
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str:
_lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ):
di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float:
_lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase_ = None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]:
_lowerCAmelCase = []
for elementa in cluster:
_lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content''']
for elementa in extremes:
_lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content''']
if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
_lowerCAmelCase = 1
extremes.append(_SCREAMING_SNAKE_CASE )
return extremes
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple:
global _shared_dataset
_lowerCAmelCase = dataset
_lowerCAmelCase = []
_lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ):
extremes_list.append(_SCREAMING_SNAKE_CASE )
return extremes_list
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]:
_lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster}
_lowerCAmelCase = {}
_lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for extremes in extremes_clusters:
for element in extremes:
_lowerCAmelCase = element
_lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() )
_lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
_lowerCAmelCase = element['''base_index'''] in extreme_dict
if element["is_extreme"]:
_lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies''']
print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' )
return ds_filter, duplicate_clusters
| 664 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ):
_lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18}
_lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = num_frames
_lowerCAmelCase = image_size
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean
_lowerCAmelCase = image_std
_lowerCAmelCase = crop_size
def __lowerCAmelCase ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self ):
_lowerCAmelCase = VivitImageProcessingTester(self )
@property
def __lowerCAmelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 664 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class UpperCAmelCase ( snake_case_ ,snake_case_ ):
SCREAMING_SNAKE_CASE__ = '''focalnet'''
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=False , _lowerCAmelCase=[192, 384, 768, 768] , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[2, 2, 2, 2] , _lowerCAmelCase=[3, 3, 3, 3] , _lowerCAmelCase="gelu" , _lowerCAmelCase=4.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=False , _lowerCAmelCase=1E-4 , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ):
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = use_conv_embed
_lowerCAmelCase = hidden_sizes
_lowerCAmelCase = depths
_lowerCAmelCase = focal_levels
_lowerCAmelCase = focal_windows
_lowerCAmelCase = hidden_act
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = use_layerscale
_lowerCAmelCase = layerscale_value
_lowerCAmelCase = use_post_layernorm
_lowerCAmelCase = use_post_layernorm_in_modulation
_lowerCAmelCase = normalize_modulator
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = encoder_stride
_lowerCAmelCase = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
_lowerCAmelCase , _lowerCAmelCase = get_aligned_output_features_output_indices(
out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
| 664 |
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n"
UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n"
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]:
def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ):
_lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE )
def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ):
return " ".join(text.split() )
def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ):
_lowerCAmelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_SCREAMING_SNAKE_CASE : Optional[int] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any:
return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int:
_lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]:
_lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams]
_lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = Counter()
for sgram, scount in sgramcounter.items():
_lowerCAmelCase = scount * numref
_lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = Counter()
for cgram, ccount in cgramcounter.items():
_lowerCAmelCase = ccount * numref
# KEEP
_lowerCAmelCase = sgramcounter_rep & cgramcounter_rep
_lowerCAmelCase = keepgramcounter_rep & rgramcounter
_lowerCAmelCase = sgramcounter_rep & rgramcounter
_lowerCAmelCase = 0
_lowerCAmelCase = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_lowerCAmelCase = 1
_lowerCAmelCase = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_lowerCAmelCase = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_lowerCAmelCase = sgramcounter_rep - cgramcounter_rep
_lowerCAmelCase = delgramcounter_rep - rgramcounter
_lowerCAmelCase = sgramcounter_rep - rgramcounter
_lowerCAmelCase = 0
_lowerCAmelCase = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_lowerCAmelCase = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE )
# ADDITION
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_lowerCAmelCase = 1
_lowerCAmelCase = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
if addscore_precision > 0 or addscore_recall > 0:
_lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]:
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = ssent.split(''' ''' )
_lowerCAmelCase = csent.split(''' ''' )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
for rsent in rsents:
_lowerCAmelCase = rsent.split(''' ''' )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
ragramslist.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4
_lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4
_lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int:
# Normalization is requried for the ASSET dataset (one of the primary
# datasets in sentence simplification) to allow using space
# to split the sentence. Even though Wiki-Auto and TURK datasets,
# do not require normalization, we do it for consistency.
# Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
# [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7
if lowercase:
_lowerCAmelCase = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE )
elif tokenizer == "moses":
_lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE )
elif tokenizer == "penn":
_lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = sentence
if not return_str:
_lowerCAmelCase = normalized_sent.split()
return normalized_sent
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str:
if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_lowerCAmelCase = 0
for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] )
_lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE )
return 1_0_0 * sari_score
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str:
_lowerCAmelCase = len(references[0] )
if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )]
_lowerCAmelCase = sacrebleu.corpus_bleu(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
def __lowerCAmelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = {}
result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} )
result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} )
return result
| 664 | 1 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCAmelCase ( unittest.TestCase ):
def __lowerCAmelCase ( self , _lowerCAmelCase ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
_lowerCAmelCase = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''sshleifer/tiny-gpt2'''
_lowerCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_lowerCAmelCase , multi_process=_lowerCAmelCase , )
_lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase )
_lowerCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''sgugger/tiny-distilbert-classification'''
_lowerCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , only_pretrain_model=_lowerCAmelCase , )
_lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase )
_lowerCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''sshleifer/tiny-gpt2'''
_lowerCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , )
_lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase )
_lowerCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''sshleifer/tiny-gpt2'''
_lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase )
_lowerCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_lowerCAmelCase , multi_process=_lowerCAmelCase , )
_lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase , [config] )
_lowerCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''sshleifer/tiny-gpt2'''
_lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase )
_lowerCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , )
_lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase , [config] )
_lowerCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''sshleifer/tiny-gpt2'''
_lowerCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , )
_lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase )
_lowerCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''sshleifer/tiny-gpt2'''
_lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase )
_lowerCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , )
_lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase , [config] )
_lowerCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''patrickvonplaten/t5-tiny-random'''
_lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase )
_lowerCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , )
_lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase , configs=[config] )
_lowerCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''sshleifer/tiny-gpt2'''
_lowerCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_lowerCAmelCase , multi_process=_lowerCAmelCase , )
_lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase )
_lowerCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=_lowerCAmelCase , save_to_csv=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCAmelCase , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(_lowerCAmelCase , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(_lowerCAmelCase , '''env.csv''' ) , multi_process=_lowerCAmelCase , )
_lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''env.csv''' ) ).exists() )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_lowerCAmelCase ):
self.assertTrue(hasattr(_lowerCAmelCase , '''sequential''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''cumulative''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''current''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCAmelCase , '''log.txt''' ) , log_print=_lowerCAmelCase , trace_memory_line_by_line=_lowerCAmelCase , eager_mode=_lowerCAmelCase , multi_process=_lowerCAmelCase , )
_lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase )
_lowerCAmelCase = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''log.txt''' ) ).exists() )
| 664 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["DeiTFeatureExtractor"]
UpperCAmelCase_ = ["DeiTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DeiTForImageClassification",
"DeiTForImageClassificationWithTeacher",
"DeiTForMaskedImageModeling",
"DeiTModel",
"DeiTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDeiTForImageClassification",
"TFDeiTForImageClassificationWithTeacher",
"TFDeiTForMaskedImageModeling",
"TFDeiTModel",
"TFDeiTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 1 |
from typing import List
from .keymap import KEYMAP, get_character
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Tuple:
def decorator(_SCREAMING_SNAKE_CASE : List[Any] ):
_lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , '''handle_key''' , [] )
handle += [key]
setattr(_SCREAMING_SNAKE_CASE , '''handle_key''' , _SCREAMING_SNAKE_CASE )
return func
return decorator
def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : List[str] )->Tuple:
def decorator(_SCREAMING_SNAKE_CASE : Optional[Any] ):
_lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , '''handle_key''' , [] )
handle += keys
setattr(_SCREAMING_SNAKE_CASE , '''handle_key''' , _SCREAMING_SNAKE_CASE )
return func
return decorator
class UpperCAmelCase ( snake_case_ ):
def __new__( cls , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = super().__new__(cls , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if not hasattr(_lowerCAmelCase , '''key_handler''' ):
setattr(_lowerCAmelCase , '''key_handler''' , {} )
setattr(_lowerCAmelCase , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
_lowerCAmelCase = getattr(_lowerCAmelCase , '''handle_key''' , [] )
for key in handled_keys:
_lowerCAmelCase = value
return new_cls
@staticmethod
def __lowerCAmelCase ( cls ):
_lowerCAmelCase = get_character()
if char != KEYMAP["undefined"]:
_lowerCAmelCase = ord(_lowerCAmelCase )
_lowerCAmelCase = cls.key_handler.get(_lowerCAmelCase )
if handler:
_lowerCAmelCase = char
return handler(cls )
else:
return None
def UpperCAmelCase__ ( cls : Union[str, Any] )->Optional[Any]:
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 664 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
_lowerCAmelCase = [0] * n
_lowerCAmelCase = [False] * n
_lowerCAmelCase = [False] * n
def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ):
if parent == root:
out_edge_count += 1
_lowerCAmelCase = True
_lowerCAmelCase = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
_lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
_lowerCAmelCase = True
# AP found via cycle
if at == low[to]:
_lowerCAmelCase = True
else:
_lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE )
return out_edge_count
for i in range(_SCREAMING_SNAKE_CASE ):
if not visited[i]:
_lowerCAmelCase = 0
_lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = out_edge_count > 1
for x in range(len(_SCREAMING_SNAKE_CASE ) ):
if is_art[x] is True:
print(_SCREAMING_SNAKE_CASE )
# Adjacency list of graph
UpperCAmelCase_ = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 664 | 1 |
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
UpperCAmelCase_ = TypeVar("T")
class UpperCAmelCase ( Generic[T] ):
SCREAMING_SNAKE_CASE__ = 42 # Cache store of keys
SCREAMING_SNAKE_CASE__ = 42 # References of the keys in cache
SCREAMING_SNAKE_CASE__ = 1_0 # Maximum capacity of cache
def __init__( self , _lowerCAmelCase ):
_lowerCAmelCase = deque()
_lowerCAmelCase = set()
if not n:
_lowerCAmelCase = sys.maxsize
elif n < 0:
raise ValueError('''n should be an integer greater than 0.''' )
else:
_lowerCAmelCase = n
def __lowerCAmelCase ( self , _lowerCAmelCase ):
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
_lowerCAmelCase = self.dq_store.pop()
self.key_reference.remove(_lowerCAmelCase )
else:
self.dq_store.remove(_lowerCAmelCase )
self.dq_store.appendleft(_lowerCAmelCase )
self.key_reference.add(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
for k in self.dq_store:
print(_lowerCAmelCase )
def __repr__( self ):
return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ = LRUCache(4)
lru_cache.refer("A")
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer("A")
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 664 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class UpperCAmelCase ( snake_case_ ):
def __lowerCAmelCase ( self ):
_lowerCAmelCase = SMALL_MODEL_IDENTIFIER
_lowerCAmelCase = '''pt'''
_lowerCAmelCase = '''tf'''
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase )
model_tf.save_pretrained(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''mock_framework'''
# Framework provided - return whatever the user provides
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_lowerCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_lowerCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_lowerCAmelCase , self.framework_pt )
# Both not in environment -> raise error
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ):
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
| 664 | 1 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[list[int | float]] )->int:
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = len(matrix[0] )
_lowerCAmelCase = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for row in range(_SCREAMING_SNAKE_CASE ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , _SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = matrix[col][row] / matrix[row][row]
for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
_lowerCAmelCase = True
for i in range(row + 1 , _SCREAMING_SNAKE_CASE ):
if matrix[i][row] != 0:
_lowerCAmelCase , _lowerCAmelCase = matrix[i], matrix[row]
_lowerCAmelCase = False
break
if reduce:
rank -= 1
for i in range(_SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 664 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = DiTPipeline
SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ = False
def __lowerCAmelCase ( self ):
torch.manual_seed(0 )
_lowerCAmelCase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , )
_lowerCAmelCase = AutoencoderKL()
_lowerCAmelCase = DDIMScheduler()
_lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler}
return components
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ):
if str(_lowerCAmelCase ).startswith('''mps''' ):
_lowerCAmelCase = torch.manual_seed(_lowerCAmelCase )
else:
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
_lowerCAmelCase = {
'''class_labels''': [1],
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''cpu'''
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase )
_lowerCAmelCase = pipe(**_lowerCAmelCase ).images
_lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
_lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] )
_lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowerCAmelCase , 1E-3 )
def __lowerCAmelCase ( self ):
self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class UpperCAmelCase ( unittest.TestCase ):
def __lowerCAmelCase ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' )
pipe.to('''cuda''' )
_lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf''']
_lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase )
_lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images
for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = load_numpy(
F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-2
def __lowerCAmelCase ( self ):
_lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('''cuda''' )
_lowerCAmelCase = ['''vase''', '''umbrella''']
_lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images
for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
F'''/dit/{word}_512.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-1
| 664 | 1 |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
_lowerCAmelCase = []
for i in range(_SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = i / num_diffusion_timesteps
_lowerCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) )
return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class UpperCAmelCase ( snake_case_ ,snake_case_ ):
SCREAMING_SNAKE_CASE__ = 1
@register_to_config
def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ):
if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None:
_lowerCAmelCase = (
'''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.'''
)
deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase )
_lowerCAmelCase = kwargs['''set_alpha_to_one''']
if trained_betas is not None:
_lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
_lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_lowerCAmelCase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase )
else:
raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' )
_lowerCAmelCase = 1.0 - self.betas
_lowerCAmelCase = torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
_lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
_lowerCAmelCase = 1.0
# setable values
_lowerCAmelCase = None
_lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
return sample
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:'''
F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle'''
F''' maximal {self.config.num_train_timesteps} timesteps.''' )
_lowerCAmelCase = num_inference_steps
_lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa )
_lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase )
self.timesteps += self.config.steps_offset
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ):
# 1. get previous step value (=t+1)
_lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
_lowerCAmelCase = self.alphas_cumprod[timestep]
_lowerCAmelCase = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
_lowerCAmelCase = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
_lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
_lowerCAmelCase = model_output
elif self.config.prediction_type == "sample":
_lowerCAmelCase = model_output
_lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
_lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
_lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or'''
''' `v_prediction`''' )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
_lowerCAmelCase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase )
def __len__( self ):
return self.config.num_train_timesteps
| 664 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
UpperCAmelCase_ = {"UserAgent": UserAgent().random}
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict:
_lowerCAmelCase = script.contents[0]
_lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase ):
_lowerCAmelCase = F'''https://www.instagram.com/{username}/'''
_lowerCAmelCase = self.get_json()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text
_lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self ):
return F'''{self.__class__.__name__}(\'{self.username}\')'''
def __str__( self ):
return F'''{self.fullname} ({self.username}) is {self.biography}'''
@property
def __lowerCAmelCase ( self ):
return self.user_data["username"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["full_name"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["biography"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["business_email"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["external_url"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_followed_by"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_follow"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["profile_pic_url_hd"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["is_verified"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["is_private"]
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None:
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
_lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 1_5_0
assert instagram_user.number_of_followers > 1_2_0_0_0_0
assert instagram_user.number_of_followings > 1_5
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ = InstagramUser("github")
print(instagram_user)
print(F"""{instagram_user.number_of_posts = }""")
print(F"""{instagram_user.number_of_followers = }""")
print(F"""{instagram_user.number_of_followings = }""")
print(F"""{instagram_user.email = }""")
print(F"""{instagram_user.website = }""")
print(F"""{instagram_user.profile_picture_url = }""")
print(F"""{instagram_user.is_verified = }""")
print(F"""{instagram_user.is_private = }""")
| 664 | 1 |
from __future__ import annotations
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list:
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = int(max_value - min_value ) + 1
_lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 664 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]:
_lowerCAmelCase = int(_SCREAMING_SNAKE_CASE )
# Initialize Result
_lowerCAmelCase = []
# Traverse through all denomination
for denomination in reversed(_SCREAMING_SNAKE_CASE ):
# Find denominations
while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ):
total_value -= int(_SCREAMING_SNAKE_CASE )
answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
UpperCAmelCase_ = []
UpperCAmelCase_ = "0"
if (
input("Do you want to enter your denominations ? (yY/n): ").strip().lower()
== "y"
):
UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip())
for i in range(0, n):
denominations.append(int(input(F"""Denomination {i}: """).strip()))
UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip()
else:
# All denominations of Indian Currency if user does not enter
UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0]
UpperCAmelCase_ = input("Enter the change you want to make: ").strip()
if int(value) == 0 or int(value) < 0:
print("The total value cannot be zero or negative.")
else:
print(F"""Following is minimal change for {value}: """)
UpperCAmelCase_ = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=" ")
| 664 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , ):
_lowerCAmelCase = size if size is not None else {'''shortest_edge''': 20}
_lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = image_size
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_center_crop
_lowerCAmelCase = crop_size
_lowerCAmelCase = do_flip_channel_order
def __lowerCAmelCase ( self ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = MobileViTImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MobileViTImageProcessingTester(self )
@property
def __lowerCAmelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''center_crop''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_flip_channel_order''' ) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def __lowerCAmelCase ( self ):
pass
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 664 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict:
# Initialise PyTorch model
_lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE )
print(f'''Building PyTorch model from configuration: {config}''' )
_lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--albert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained ALBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 664 | 1 |
from string import ascii_uppercase
UpperCAmelCase_ = {char: i for i, char in enumerate(ascii_uppercase)}
UpperCAmelCase_ = dict(enumerate(ascii_uppercase))
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->str:
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
while True:
if x == i:
_lowerCAmelCase = 0
if len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ):
break
key += key[i]
i += 1
return key
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->str:
_lowerCAmelCase = ''''''
_lowerCAmelCase = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
_lowerCAmelCase = (dicta[letter] - dicta[key_new[i]]) % 2_6
i += 1
cipher_text += dicta[x]
return cipher_text
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->str:
_lowerCAmelCase = ''''''
_lowerCAmelCase = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
_lowerCAmelCase = (dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6
i += 1
or_txt += dicta[x]
return or_txt
def UpperCAmelCase__ ( )->None:
_lowerCAmelCase = '''THE GERMAN ATTACK'''
_lowerCAmelCase = '''SECRET'''
_lowerCAmelCase = generate_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = cipher_text(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f'''Encrypted Text = {s}''' )
print(f'''Original Text = {original_text(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 664 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("1.0.0a"):
raise Exception("requires fairseq >= 1.0.0a")
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = "Hello world! cécé herlolip"
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]:
_lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE )
roberta.eval() # disable dropout
_lowerCAmelCase = roberta.model.encoder.sentence_encoder
_lowerCAmelCase = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , )
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
_lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight
_lowerCAmelCase = roberta_sent_encoder.embed_positions.weight
_lowerCAmelCase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
_lowerCAmelCase = roberta_sent_encoder.layer_norm.weight
_lowerCAmelCase = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
_lowerCAmelCase = model.roberta.encoder.layer[i]
_lowerCAmelCase = roberta_sent_encoder.layers[i]
_lowerCAmelCase = layer.attention
_lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight
_lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias
# self attention
_lowerCAmelCase = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
_lowerCAmelCase = roberta_layer.self_attn.q_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.q_proj.bias
_lowerCAmelCase = roberta_layer.self_attn.k_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.k_proj.bias
_lowerCAmelCase = roberta_layer.self_attn.v_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.v_proj.bias
# self-attention output
_lowerCAmelCase = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
_lowerCAmelCase = roberta_layer.self_attn.out_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
_lowerCAmelCase = roberta_layer.final_layer_norm.weight
_lowerCAmelCase = roberta_layer.final_layer_norm.bias
# intermediate
_lowerCAmelCase = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
_lowerCAmelCase = roberta_layer.fca.weight
_lowerCAmelCase = roberta_layer.fca.bias
# output
_lowerCAmelCase = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
_lowerCAmelCase = roberta_layer.fca.weight
_lowerCAmelCase = roberta_layer.fca.bias
# end of layer
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
_lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias
_lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias
_lowerCAmelCase = roberta.model.encoder.lm_head.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
_lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
_lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0]
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) )
else:
_lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0]
print(our_output.shape , their_output.shape )
_lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
_lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
UpperCAmelCase_ = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 664 | 1 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = ['''image_processor''', '''tokenizer''']
SCREAMING_SNAKE_CASE__ = '''BlipImageProcessor'''
SCREAMING_SNAKE_CASE__ = '''AutoTokenizer'''
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = False
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = self.image_processor
def __call__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = None , **_lowerCAmelCase , ):
if images is None and text is None:
raise ValueError('''You have to specify either images or text.''' )
# Get only text
if images is None:
_lowerCAmelCase = self.tokenizer
_lowerCAmelCase = self.tokenizer(
text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , )
return text_encoding
# add pixel_values
_lowerCAmelCase = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase )
if text is not None:
_lowerCAmelCase = self.tokenizer(
text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , )
else:
_lowerCAmelCase = None
if text_encoding is not None:
encoding_image_processor.update(_lowerCAmelCase )
return encoding_image_processor
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer.model_input_names
_lowerCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 664 |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
_lowerCAmelCase = []
for i in range(_SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = i / num_diffusion_timesteps
_lowerCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) )
return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class UpperCAmelCase ( snake_case_ ,snake_case_ ):
SCREAMING_SNAKE_CASE__ = 1
@register_to_config
def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ):
if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None:
_lowerCAmelCase = (
'''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.'''
)
deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase )
_lowerCAmelCase = kwargs['''set_alpha_to_one''']
if trained_betas is not None:
_lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
_lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_lowerCAmelCase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase )
else:
raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' )
_lowerCAmelCase = 1.0 - self.betas
_lowerCAmelCase = torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
_lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
_lowerCAmelCase = 1.0
# setable values
_lowerCAmelCase = None
_lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
return sample
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:'''
F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle'''
F''' maximal {self.config.num_train_timesteps} timesteps.''' )
_lowerCAmelCase = num_inference_steps
_lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa )
_lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase )
self.timesteps += self.config.steps_offset
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ):
# 1. get previous step value (=t+1)
_lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
_lowerCAmelCase = self.alphas_cumprod[timestep]
_lowerCAmelCase = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
_lowerCAmelCase = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
_lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
_lowerCAmelCase = model_output
elif self.config.prediction_type == "sample":
_lowerCAmelCase = model_output
_lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
_lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
_lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or'''
''' `v_prediction`''' )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
_lowerCAmelCase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase )
def __len__( self ):
return self.config.num_train_timesteps
| 664 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] )->List[Any]:
_lowerCAmelCase = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class UpperCAmelCase ( snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = StableDiffusionLatentUpscalePipeline
SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'''height''',
'''width''',
'''cross_attention_kwargs''',
'''negative_prompt_embeds''',
'''prompt_embeds''',
}
SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''}
SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
SCREAMING_SNAKE_CASE__ = frozenset([] )
SCREAMING_SNAKE_CASE__ = True
@property
def __lowerCAmelCase ( self ):
_lowerCAmelCase = 1
_lowerCAmelCase = 4
_lowerCAmelCase = (16, 16)
_lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase )
return image
def __lowerCAmelCase ( self ):
torch.manual_seed(0 )
_lowerCAmelCase = UNetaDConditionModel(
act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_lowerCAmelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
'''KDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
) , in_channels=8 , mid_block_type=_lowerCAmelCase , only_cross_attention=_lowerCAmelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , )
_lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
_lowerCAmelCase = EulerDiscreteScheduler(prediction_type='''sample''' )
_lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''quick_gelu''' , projection_dim=512 , )
_lowerCAmelCase = CLIPTextModel(_lowerCAmelCase )
_lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_lowerCAmelCase = {
'''unet''': model.eval(),
'''vae''': vae.eval(),
'''scheduler''': scheduler,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ):
if str(_lowerCAmelCase ).startswith('''mps''' ):
_lowerCAmelCase = torch.manual_seed(_lowerCAmelCase )
else:
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
_lowerCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': self.dummy_image.cpu(),
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''cpu'''
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase )
_lowerCAmelCase = pipe(**_lowerCAmelCase ).images
_lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 256, 256, 3) )
_lowerCAmelCase = np.array(
[0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] )
_lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowerCAmelCase , 1E-3 )
def __lowerCAmelCase ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 )
def __lowerCAmelCase ( self ):
super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 )
def __lowerCAmelCase ( self ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def __lowerCAmelCase ( self ):
super().test_inference_batch_single_identical(expected_max_diff=7E-3 )
def __lowerCAmelCase ( self ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 )
def __lowerCAmelCase ( self ):
super().test_save_load_local(expected_max_difference=3E-3 )
def __lowerCAmelCase ( self ):
super().test_save_load_optional_components(expected_max_difference=3E-3 )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = [
'''DDIMScheduler''',
'''DDPMScheduler''',
'''PNDMScheduler''',
'''HeunDiscreteScheduler''',
'''EulerAncestralDiscreteScheduler''',
'''KDPM2DiscreteScheduler''',
'''KDPM2AncestralDiscreteScheduler''',
'''DPMSolverSDEScheduler''',
]
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=_lowerCAmelCase )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase )
_lowerCAmelCase = 2
_lowerCAmelCase = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
_lowerCAmelCase = getattr(_lowerCAmelCase , scheduler_enum.name )
_lowerCAmelCase = scheduler_cls.from_config(pipe.scheduler.config )
_lowerCAmelCase = pipe(**_lowerCAmelCase )[0]
outputs.append(_lowerCAmelCase )
assert check_same_shape(_lowerCAmelCase )
@require_torch_gpu
@slow
class UpperCAmelCase ( unittest.TestCase ):
def __lowerCAmelCase ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = torch.manual_seed(33 )
_lowerCAmelCase = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa )
pipe.to('''cuda''' )
_lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
_lowerCAmelCase = '''a photo of an astronaut high resolution, unreal engine, ultra realistic'''
_lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , output_type='''latent''' ).images
_lowerCAmelCase = upscaler(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=_lowerCAmelCase , output_type='''np''' , ).images[0]
_lowerCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' )
assert np.abs((expected_image - image).mean() ) < 5E-2
def __lowerCAmelCase ( self ):
_lowerCAmelCase = torch.manual_seed(33 )
_lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
_lowerCAmelCase = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas'''
_lowerCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' )
_lowerCAmelCase = upscaler(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=_lowerCAmelCase , output_type='''np''' , ).images[0]
_lowerCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' )
assert np.abs((expected_image - image).max() ) < 5E-2
| 664 |
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCAmelCase_ = {
"configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"],
"tokenization_cpmant": ["CpmAntTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST",
"CpmAntForCausalLM",
"CpmAntModel",
"CpmAntPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 1 |
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = image.size
_lowerCAmelCase , _lowerCAmelCase = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32
_lowerCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
_lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0
_lowerCAmelCase = image[None].transpose(0 , 3 , 1 , 2 )
_lowerCAmelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE )
return 2.0 * image - 1.0
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
super().__init__()
self.register_modules(vqvae=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase )
@torch.no_grad()
def __call__( self , _lowerCAmelCase = None , _lowerCAmelCase = 1 , _lowerCAmelCase = 100 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = None , _lowerCAmelCase = "pil" , _lowerCAmelCase = True , ):
if isinstance(_lowerCAmelCase , PIL.Image.Image ):
_lowerCAmelCase = 1
elif isinstance(_lowerCAmelCase , torch.Tensor ):
_lowerCAmelCase = image.shape[0]
else:
raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_lowerCAmelCase )}''' )
if isinstance(_lowerCAmelCase , PIL.Image.Image ):
_lowerCAmelCase = preprocess(_lowerCAmelCase )
_lowerCAmelCase , _lowerCAmelCase = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
_lowerCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width)
_lowerCAmelCase = next(self.unet.parameters() ).dtype
_lowerCAmelCase = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase )
_lowerCAmelCase = image.to(device=self.device , dtype=_lowerCAmelCase )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(_lowerCAmelCase , device=self.device )
_lowerCAmelCase = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
_lowerCAmelCase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_lowerCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_lowerCAmelCase = {}
if accepts_eta:
_lowerCAmelCase = eta
for t in self.progress_bar(_lowerCAmelCase ):
# concat latents and low resolution image in the channel dimension.
_lowerCAmelCase = torch.cat([latents, image] , dim=1 )
_lowerCAmelCase = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase )
# predict the noise residual
_lowerCAmelCase = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
_lowerCAmelCase = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
# decode the image latents with the VQVAE
_lowerCAmelCase = self.vqvae.decode(_lowerCAmelCase ).sample
_lowerCAmelCase = torch.clamp(_lowerCAmelCase , -1.0 , 1.0 )
_lowerCAmelCase = image / 2 + 0.5
_lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_lowerCAmelCase = self.numpy_to_pil(_lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_lowerCAmelCase )
| 664 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor'''
SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase )
if text is None and audios is None:
raise ValueError('''You have to specify either text or audios. Both cannot be none.''' )
if text is not None:
_lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if audios is not None:
_lowerCAmelCase = self.feature_extractor(
_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is not None and audios is not None:
_lowerCAmelCase = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer.model_input_names
_lowerCAmelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 664 | 1 |
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=False )->int:
_lowerCAmelCase = OmegaConf.load(_SCREAMING_SNAKE_CASE )
if display:
print(yaml.dump(OmegaConf.to_container(_SCREAMING_SNAKE_CASE ) ) )
return config
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Union[str, Any]=None )->Union[str, Any]:
if conf_path is None:
_lowerCAmelCase = '''./model_checkpoints/vqgan_only.yaml'''
_lowerCAmelCase = load_config(_SCREAMING_SNAKE_CASE , display=_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = VQModel(**config.model.params )
if ckpt_path is None:
_lowerCAmelCase = '''./model_checkpoints/vqgan_only.pt'''
_lowerCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE )
if ".ckpt" in ckpt_path:
_lowerCAmelCase = sd['''state_dict''']
model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
del sd
return model
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->int:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = model.encode(_SCREAMING_SNAKE_CASE )
print(f'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' )
_lowerCAmelCase = model.decode(_SCREAMING_SNAKE_CASE )
return xrec
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any=False )->str:
_lowerCAmelCase , _lowerCAmelCase = string.rsplit('''.''' , 1 )
if reload:
_lowerCAmelCase = importlib.import_module(_SCREAMING_SNAKE_CASE )
importlib.reload(_SCREAMING_SNAKE_CASE )
return getattr(importlib.import_module(_SCREAMING_SNAKE_CASE , package=_SCREAMING_SNAKE_CASE ) , cls )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->Dict:
if "target" not in config:
raise KeyError('''Expected key `target` to instantiate.''' )
return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : Optional[int]=True )->List[str]:
_lowerCAmelCase = instantiate_from_config(_SCREAMING_SNAKE_CASE )
if sd is not None:
model.load_state_dict(_SCREAMING_SNAKE_CASE )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] )->Optional[Any]:
# load the specified checkpoint
if ckpt:
_lowerCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )
_lowerCAmelCase = pl_sd['''global_step''']
print(f'''loaded model from global step {global_step}.''' )
else:
_lowerCAmelCase = {'''state_dict''': None}
_lowerCAmelCase = None
_lowerCAmelCase = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=_SCREAMING_SNAKE_CASE , eval_mode=_SCREAMING_SNAKE_CASE )['''model''']
return model, global_step
| 664 |
from __future__ import annotations
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list:
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = int(max_value - min_value ) + 1
_lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 664 | 1 |
UpperCAmelCase_ = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )->list[str]:
_lowerCAmelCase = set()
# keep track of all the paths to be checked
_lowerCAmelCase = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
_lowerCAmelCase = queue.pop(0 )
# get the last node from the path
_lowerCAmelCase = path[-1]
if node not in explored:
_lowerCAmelCase = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
_lowerCAmelCase = list(_SCREAMING_SNAKE_CASE )
new_path.append(_SCREAMING_SNAKE_CASE )
queue.append(_SCREAMING_SNAKE_CASE )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(_SCREAMING_SNAKE_CASE )
# in case there's no path between the 2 nodes
return []
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] )->int:
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
_lowerCAmelCase = [start]
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE )
# Keep tab on distances from `start` node.
_lowerCAmelCase = {start: 0, target: -1}
while queue:
_lowerCAmelCase = queue.pop(0 )
if node == target:
_lowerCAmelCase = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(_SCREAMING_SNAKE_CASE )
queue.append(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
| 664 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
def UpperCAmelCase__ ( )->Any:
_lowerCAmelCase = _ask_options(
'''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
_lowerCAmelCase = get_sagemaker_input()
else:
_lowerCAmelCase = get_cluster_input()
return config
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str:
if subparsers is not None:
_lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE )
parser.add_argument(
'''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=_SCREAMING_SNAKE_CASE )
return parser
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str:
_lowerCAmelCase = get_user_input()
if args.config_file is not None:
_lowerCAmelCase = args.config_file
else:
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
os.makedirs(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = default_yaml_config_file
if config_file.endswith('''.json''' ):
config.to_json_file(_SCREAMING_SNAKE_CASE )
else:
config.to_yaml_file(_SCREAMING_SNAKE_CASE )
print(f'''accelerate configuration saved at {config_file}''' )
def UpperCAmelCase__ ( )->List[Any]:
_lowerCAmelCase = config_command_parser()
_lowerCAmelCase = parser.parse_args()
config_command(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 664 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class UpperCAmelCase ( unittest.TestCase ):
def __lowerCAmelCase ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __lowerCAmelCase ( self ):
_lowerCAmelCase = 1
_lowerCAmelCase = 3
_lowerCAmelCase = (32, 32)
_lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase )
return image
@property
def __lowerCAmelCase ( self ):
torch.manual_seed(0 )
_lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_lowerCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , )
return model
@property
def __lowerCAmelCase ( self ):
torch.manual_seed(0 )
_lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def __lowerCAmelCase ( self ):
torch.manual_seed(0 )
_lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , )
return CLIPTextModel(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase = self.dummy_cond_unet_upscale
_lowerCAmelCase = DDPMScheduler()
_lowerCAmelCase = DDIMScheduler(prediction_type='''v_prediction''' )
_lowerCAmelCase = self.dummy_vae
_lowerCAmelCase = self.dummy_text_encoder
_lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_lowerCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase = StableDiffusionUpscalePipeline(
unet=_lowerCAmelCase , low_res_scheduler=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , max_noise_level=350 , )
_lowerCAmelCase = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowerCAmelCase = '''A painting of a squirrel eating a burger'''
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
_lowerCAmelCase = sd_pipe(
[prompt] , image=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , )
_lowerCAmelCase = output.images
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
_lowerCAmelCase = sd_pipe(
[prompt] , image=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=_lowerCAmelCase , )[0]
_lowerCAmelCase = image[0, -3:, -3:, -1]
_lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
_lowerCAmelCase = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_lowerCAmelCase = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase = self.dummy_cond_unet_upscale
_lowerCAmelCase = DDPMScheduler()
_lowerCAmelCase = DDIMScheduler(prediction_type='''v_prediction''' )
_lowerCAmelCase = self.dummy_vae
_lowerCAmelCase = self.dummy_text_encoder
_lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_lowerCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase = StableDiffusionUpscalePipeline(
unet=_lowerCAmelCase , low_res_scheduler=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , max_noise_level=350 , )
_lowerCAmelCase = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowerCAmelCase = '''A painting of a squirrel eating a burger'''
_lowerCAmelCase = sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , )
_lowerCAmelCase = output.images
assert image.shape[0] == 2
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
_lowerCAmelCase = sd_pipe(
[prompt] , image=_lowerCAmelCase , generator=_lowerCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , )
_lowerCAmelCase = output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.dummy_cond_unet_upscale
_lowerCAmelCase = DDPMScheduler()
_lowerCAmelCase = DDIMScheduler(prediction_type='''v_prediction''' )
_lowerCAmelCase = self.dummy_vae
_lowerCAmelCase = self.dummy_text_encoder
_lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_lowerCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
_lowerCAmelCase = unet.half()
_lowerCAmelCase = text_encoder.half()
# make sure here that pndm scheduler skips prk
_lowerCAmelCase = StableDiffusionUpscalePipeline(
unet=_lowerCAmelCase , low_res_scheduler=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , max_noise_level=350 , )
_lowerCAmelCase = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowerCAmelCase = '''A painting of a squirrel eating a burger'''
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = sd_pipe(
[prompt] , image=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , ).images
_lowerCAmelCase = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class UpperCAmelCase ( unittest.TestCase ):
def __lowerCAmelCase ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-upscale/low_res_cat.png''' )
_lowerCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'''
'''/upsampled_cat.npy''' )
_lowerCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler'''
_lowerCAmelCase = StableDiffusionUpscalePipeline.from_pretrained(_lowerCAmelCase )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase = '''a cat sitting on a park bench'''
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , generator=_lowerCAmelCase , output_type='''np''' , )
_lowerCAmelCase = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1E-3
def __lowerCAmelCase ( self ):
_lowerCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-upscale/low_res_cat.png''' )
_lowerCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'''
'''/upsampled_cat_fp16.npy''' )
_lowerCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler'''
_lowerCAmelCase = StableDiffusionUpscalePipeline.from_pretrained(
_lowerCAmelCase , torch_dtype=torch.floataa , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase = '''a cat sitting on a park bench'''
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , generator=_lowerCAmelCase , output_type='''np''' , )
_lowerCAmelCase = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def __lowerCAmelCase ( self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-upscale/low_res_cat.png''' )
_lowerCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler'''
_lowerCAmelCase = StableDiffusionUpscalePipeline.from_pretrained(
_lowerCAmelCase , torch_dtype=torch.floataa , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase = '''a cat sitting on a park bench'''
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , output_type='''np''' , )
_lowerCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 664 |
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase_ = 1_0
UpperCAmelCase_ = 2_5_6
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]:
if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS:
return None
_lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE )
for token in set(_SCREAMING_SNAKE_CASE ):
min_hash.update(token.encode() )
return min_hash
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]:
return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0}
class UpperCAmelCase :
def __init__( self , *,
_lowerCAmelCase = 0.85 , ):
_lowerCAmelCase = duplication_jaccard_threshold
_lowerCAmelCase = NUM_PERM
_lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
_lowerCAmelCase = defaultdict(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self._index.query(_lowerCAmelCase )
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''' )
return
self._index.insert(_lowerCAmelCase , _lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = []
for base, duplicates in self._duplicate_clusters.items():
_lowerCAmelCase = [base] + list(_lowerCAmelCase )
# reformat the cluster to be a list of dict
_lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster]
duplicate_clusters.append(_lowerCAmelCase )
return duplicate_clusters
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = self.get_duplicate_clusters()
with open(_lowerCAmelCase , '''w''' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = element
_lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ):
if data is not None:
yield data
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str:
_lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ):
di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float:
_lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase_ = None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]:
_lowerCAmelCase = []
for elementa in cluster:
_lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content''']
for elementa in extremes:
_lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content''']
if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
_lowerCAmelCase = 1
extremes.append(_SCREAMING_SNAKE_CASE )
return extremes
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple:
global _shared_dataset
_lowerCAmelCase = dataset
_lowerCAmelCase = []
_lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ):
extremes_list.append(_SCREAMING_SNAKE_CASE )
return extremes_list
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]:
_lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster}
_lowerCAmelCase = {}
_lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for extremes in extremes_clusters:
for element in extremes:
_lowerCAmelCase = element
_lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() )
_lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
_lowerCAmelCase = element['''base_index'''] in extreme_dict
if element["is_extreme"]:
_lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies''']
print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' )
return ds_filter, duplicate_clusters
| 664 | 1 |
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , **_lowerCAmelCase , ):
super().__init__(
_lowerCAmelCase , split=_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase , streaming=_lowerCAmelCase , num_proc=_lowerCAmelCase , **_lowerCAmelCase , )
_lowerCAmelCase = path_or_paths if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else {self.split: path_or_paths}
_lowerCAmelCase = Text(
cache_dir=_lowerCAmelCase , data_files=_lowerCAmelCase , features=_lowerCAmelCase , **_lowerCAmelCase , )
def __lowerCAmelCase ( self ):
# Build iterable dataset
if self.streaming:
_lowerCAmelCase = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
self.builder.download_and_prepare(
download_config=_lowerCAmelCase , download_mode=_lowerCAmelCase , verification_mode=_lowerCAmelCase , base_path=_lowerCAmelCase , num_proc=self.num_proc , )
_lowerCAmelCase = self.builder.as_dataset(
split=self.split , verification_mode=_lowerCAmelCase , in_memory=self.keep_in_memory )
return dataset
| 664 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = process
_lowerCAmelCase = params
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
_lowerCAmelCase = self.dataset[i]
_lowerCAmelCase = self.process(_lowerCAmelCase , **self.params )
return processed
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowerCAmelCase = loader
_lowerCAmelCase = infer
_lowerCAmelCase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_lowerCAmelCase = None
_lowerCAmelCase = loader_batch_size
# Internal bookkeeping
_lowerCAmelCase = None
_lowerCAmelCase = None
def __len__( self ):
return len(self.loader )
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
return self
def __lowerCAmelCase ( self ):
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_lowerCAmelCase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_lowerCAmelCase = {}
for k, element in self._loader_batch_data.items():
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
# Convert ModelOutput to tuple first
_lowerCAmelCase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
_lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
_lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_lowerCAmelCase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_lowerCAmelCase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase )
self._loader_batch_index += 1
return result
def __lowerCAmelCase ( self ):
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_lowerCAmelCase = next(self.iterator )
_lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(_lowerCAmelCase , torch.Tensor ):
_lowerCAmelCase = processed
else:
_lowerCAmelCase = list(processed.keys() )[0]
_lowerCAmelCase = processed[key]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = len(_lowerCAmelCase )
else:
_lowerCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_lowerCAmelCase = observed_batch_size
# Setting internal index to unwrap the batch
_lowerCAmelCase = processed
_lowerCAmelCase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
_lowerCAmelCase = None
return self
def __lowerCAmelCase ( self ):
if self.subiterator is None:
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
_lowerCAmelCase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
_lowerCAmelCase = next(self.subiterator )
return processed
class UpperCAmelCase ( snake_case_ ):
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
return self
def __lowerCAmelCase ( self ):
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
_lowerCAmelCase = False
_lowerCAmelCase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_lowerCAmelCase = self.loader_batch_item()
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
if is_last:
return accumulator
while not is_last:
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(_lowerCAmelCase , torch.Tensor ):
_lowerCAmelCase = processed
else:
_lowerCAmelCase = list(processed.keys() )[0]
_lowerCAmelCase = processed[key]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = len(_lowerCAmelCase )
else:
_lowerCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_lowerCAmelCase = observed_batch_size
_lowerCAmelCase = processed
_lowerCAmelCase = 0
while self._loader_batch_index < self.loader_batch_size:
_lowerCAmelCase = self.loader_batch_item()
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
if is_last:
return accumulator
else:
_lowerCAmelCase = processed
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
return accumulator
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = key
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
return self.dataset[i][self.key]
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = keya
_lowerCAmelCase = keya
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 664 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ = {
"configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"],
"tokenization_roberta": ["RobertaTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["RobertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaForCausalLM",
"RobertaForMaskedLM",
"RobertaForMultipleChoice",
"RobertaForQuestionAnswering",
"RobertaForSequenceClassification",
"RobertaForTokenClassification",
"RobertaModel",
"RobertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaForCausalLM",
"TFRobertaForMaskedLM",
"TFRobertaForMultipleChoice",
"TFRobertaForQuestionAnswering",
"TFRobertaForSequenceClassification",
"TFRobertaForTokenClassification",
"TFRobertaMainLayer",
"TFRobertaModel",
"TFRobertaPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"FlaxRobertaForCausalLM",
"FlaxRobertaForMaskedLM",
"FlaxRobertaForMultipleChoice",
"FlaxRobertaForQuestionAnswering",
"FlaxRobertaForSequenceClassification",
"FlaxRobertaForTokenClassification",
"FlaxRobertaModel",
"FlaxRobertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 |
import numpy
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
_lowerCAmelCase = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
_lowerCAmelCase = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
_lowerCAmelCase = numpy.random.rand(3 , 1 )
# Real output values provided.
_lowerCAmelCase = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
_lowerCAmelCase = numpy.zeros(output_array.shape )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def __lowerCAmelCase ( self ):
_lowerCAmelCase = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
_lowerCAmelCase = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
_lowerCAmelCase = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
for iteration in range(1 , iterations + 1 ):
_lowerCAmelCase = self.feedforward()
self.back_propagation()
if give_loss:
_lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F'''Iteration {iteration} Loss: {loss}''' )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = input_arr
_lowerCAmelCase = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray:
return 1 / (1 + numpy.exp(-value ))
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray:
return (value) * (1 - (value))
def UpperCAmelCase__ ( )->int:
_lowerCAmelCase = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
_lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
_lowerCAmelCase = TwoHiddenLayerNeuralNetwork(
input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 664 | 1 |
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase_ = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
UpperCAmelCase_ = 5_0_0_0_3
UpperCAmelCase_ = 5_0_0_0_2
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = PLBartTokenizer
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = False
def __lowerCAmelCase ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCAmelCase = PLBartTokenizer(_lowerCAmelCase , language_codes='''base''' , keep_accents=_lowerCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = PLBartTokenizer(_lowerCAmelCase , language_codes='''base''' , keep_accents=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowerCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowerCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_lowerCAmelCase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_lowerCAmelCase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
_lowerCAmelCase = tokenizer.vocab_size
_lowerCAmelCase = [tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) for x in range(end - 4 , _lowerCAmelCase )]
self.assertListEqual(_lowerCAmelCase , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] )
_lowerCAmelCase = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go'''
_lowerCAmelCase = tokenizer(_lowerCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) , _lowerCAmelCase , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = PLBartTokenizer(_lowerCAmelCase , language_codes='''multi''' , keep_accents=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowerCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowerCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_lowerCAmelCase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_lowerCAmelCase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
_lowerCAmelCase = tokenizer.vocab_size
_lowerCAmelCase = [tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) for x in range(end - 7 , _lowerCAmelCase )]
self.assertListEqual(
_lowerCAmelCase , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] )
_lowerCAmelCase = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go'''
_lowerCAmelCase = tokenizer(_lowerCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) , _lowerCAmelCase , )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = '''uclanlp/plbart-python-en_XX'''
SCREAMING_SNAKE_CASE__ = [
'''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''',
'''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''',
]
SCREAMING_SNAKE_CASE__ = [
'''Returns the maximum value of a b c.''',
'''Sums the values of a b c.''',
]
SCREAMING_SNAKE_CASE__ = [
1_3_4,
5_4_5_2,
3_3_4_6_0,
3_3_4_4_1,
3_3_4_6_3,
3_3_4_6_5,
3_3_4_6_3,
3_3_4_4_9,
9_8_8,
2_0,
3_3_4_5_6,
1_9,
3_3_4_5_6,
7_7_1,
3_9,
4_2_5_8,
8_8_9,
3_3_1_8,
3_3_4_4_1,
3_3_4_6_3,
3_3_4_6_5,
3_3_4_6_3,
3_3_4_4_9,
2_4_7_1,
2,
PYTHON_CODE,
]
@classmethod
def __lowerCAmelCase ( cls ):
_lowerCAmelCase = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' )
_lowerCAmelCase = 1
return cls
def __lowerCAmelCase ( self ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 50_001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 50_002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 50_003 )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
self.assertIn(_lowerCAmelCase , self.tokenizer.all_special_ids )
_lowerCAmelCase = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2]
_lowerCAmelCase = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20]
self.assertIsInstance(src_text[0] , _lowerCAmelCase )
_lowerCAmelCase = 10
_lowerCAmelCase = self.tokenizer(_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , _lowerCAmelCase )
self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [50_004, 50_001] )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = tempfile.mkdtemp()
_lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowerCAmelCase )
_lowerCAmelCase = PLBartTokenizer.from_pretrained(_lowerCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowerCAmelCase )
@require_torch
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowerCAmelCase , return_tensors='''pt''' )
_lowerCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , _lowerCAmelCase )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
_lowerCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
_lowerCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer(self.src_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=3 , return_tensors='''pt''' )
_lowerCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=10 , return_tensors='''pt''' )
_lowerCAmelCase = targets['''input_ids''']
_lowerCAmelCase = shift_tokens_right(_lowerCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
# A, test, EOS, en_XX
'''input_ids''': [[150, 242, 2, 50_003]],
'''attention_mask''': [[1, 1, 1, 1]],
# java
'''forced_bos_token_id''': 50_001,
} , )
| 664 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["LayoutXLMTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["LayoutXLMTokenizerFast"]
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = '''Salesforce/blip-image-captioning-base'''
SCREAMING_SNAKE_CASE__ = (
'''This is a tool that generates a description of an image. It takes an input named `image` which should be the '''
'''image to caption, and returns a text that contains the description in English.'''
)
SCREAMING_SNAKE_CASE__ = '''image_captioner'''
SCREAMING_SNAKE_CASE__ = AutoModelForVisionaSeq
SCREAMING_SNAKE_CASE__ = ['''image''']
SCREAMING_SNAKE_CASE__ = ['''text''']
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ):
requires_backends(self , ['''vision'''] )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
return self.pre_processor(images=_lowerCAmelCase , return_tensors='''pt''' )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
return self.model.generate(**_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
return self.pre_processor.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )[0].strip()
| 664 |
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = list(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
_lowerCAmelCase = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool:
_lowerCAmelCase = [
'''CUDA out of memory.''', # CUDA OOM
'''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU
'''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM
]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]:
if function is None:
return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = starting_batch_size
def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
_lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() )
# Guard against user error
if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1):
_lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] )
raise TypeError(
f'''Batch size was passed into `{function.__name__}` as the first argument when called.'''
f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' )
while True:
if batch_size == 0:
raise RuntimeError('''No executable batch size found, reached zero.''' )
try:
return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
except Exception as e:
if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 664 | 1 |
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class UpperCAmelCase ( unittest.TestCase ):
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''laion/clap-htsat-unfused'''
_lowerCAmelCase = tempfile.mkdtemp()
def __lowerCAmelCase ( self , **_lowerCAmelCase ):
return RobertaTokenizer.from_pretrained(self.checkpoint , **_lowerCAmelCase )
def __lowerCAmelCase ( self , **_lowerCAmelCase ):
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_lowerCAmelCase )
def __lowerCAmelCase ( self ):
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = self.get_feature_extractor()
_lowerCAmelCase = ClapProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase = ClapProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
_lowerCAmelCase = self.get_feature_extractor(do_normalize=_lowerCAmelCase , padding_value=1.0 )
_lowerCAmelCase = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_feature_extractor()
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = ClapProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase )
_lowerCAmelCase = floats_list((3, 1_000) )
_lowerCAmelCase = feature_extractor(_lowerCAmelCase , return_tensors='''np''' )
_lowerCAmelCase = processor(audios=_lowerCAmelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_feature_extractor()
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = ClapProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase )
_lowerCAmelCase = '''This is a test string'''
_lowerCAmelCase = processor(text=_lowerCAmelCase )
_lowerCAmelCase = tokenizer(_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_feature_extractor()
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = ClapProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase )
_lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_lowerCAmelCase = processor.batch_decode(_lowerCAmelCase )
_lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_feature_extractor()
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = ClapProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase )
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
| 664 |
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_input_mask
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = num_labels
_lowerCAmelCase = num_choices
_lowerCAmelCase = scope
def __lowerCAmelCase ( self ):
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = None
if self.use_input_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase = None
if self.use_token_type_ids:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self ):
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_config()
_lowerCAmelCase = 300
return config
def __lowerCAmelCase ( self ):
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = self.prepare_config_and_inputs()
_lowerCAmelCase = True
_lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
_lowerCAmelCase = True
_lowerCAmelCase = MraModel(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , )
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , )
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_choices
_lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = ()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 )
def __lowerCAmelCase ( self ):
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase = type
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
@slow
def __lowerCAmelCase ( self ):
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@unittest.skip(reason='''MRA does not output attentions''' )
def __lowerCAmelCase ( self ):
return
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
_lowerCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
_lowerCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = 50_265
_lowerCAmelCase = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
_lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = 50_265
_lowerCAmelCase = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
| 664 | 1 |
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class UpperCAmelCase ( unittest.TestCase ,snake_case_ ):
def __lowerCAmelCase ( self ):
_lowerCAmelCase = load_tool('''text-to-speech''' )
self.tool.setup()
def __lowerCAmelCase ( self ):
# SpeechT5 isn't deterministic
torch.manual_seed(0 )
_lowerCAmelCase = self.tool('''hey''' )
_lowerCAmelCase = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
def __lowerCAmelCase ( self ):
# SpeechT5 isn't deterministic
torch.manual_seed(0 )
_lowerCAmelCase = self.tool('''hey''' )
_lowerCAmelCase = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
| 664 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 664 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {}
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = '''llama'''
SCREAMING_SNAKE_CASE__ = ['''past_key_values''']
def __init__( self , _lowerCAmelCase=32_000 , _lowerCAmelCase=4_096 , _lowerCAmelCase=11_008 , _lowerCAmelCase=32 , _lowerCAmelCase=32 , _lowerCAmelCase=None , _lowerCAmelCase="silu" , _lowerCAmelCase=2_048 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-6 , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=None , **_lowerCAmelCase , ):
_lowerCAmelCase = vocab_size
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = hidden_size
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = num_key_value_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = initializer_range
_lowerCAmelCase = rms_norm_eps
_lowerCAmelCase = pretraining_tp
_lowerCAmelCase = use_cache
_lowerCAmelCase = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , **_lowerCAmelCase , )
def __lowerCAmelCase ( self ):
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , _lowerCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F'''got {self.rope_scaling}''' )
_lowerCAmelCase = self.rope_scaling.get('''type''' , _lowerCAmelCase )
_lowerCAmelCase = self.rope_scaling.get('''factor''' , _lowerCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 664 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ):
_lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18}
_lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = num_frames
_lowerCAmelCase = image_size
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean
_lowerCAmelCase = image_std
_lowerCAmelCase = crop_size
def __lowerCAmelCase ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self ):
_lowerCAmelCase = VivitImageProcessingTester(self )
@property
def __lowerCAmelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 664 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class UpperCAmelCase ( unittest.TestCase ):
def __lowerCAmelCase ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
_lowerCAmelCase = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
sd_pipe.set_scheduler('''sample_euler''' )
_lowerCAmelCase = '''A painting of a squirrel eating a burger'''
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = sd_pipe([prompt] , generator=_lowerCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_lowerCAmelCase = output.images
_lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_lowerCAmelCase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCAmelCase ( self ):
_lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_lowerCAmelCase = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
sd_pipe.set_scheduler('''sample_euler''' )
_lowerCAmelCase = '''A painting of a squirrel eating a burger'''
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = sd_pipe([prompt] , generator=_lowerCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_lowerCAmelCase = output.images
_lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_lowerCAmelCase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def __lowerCAmelCase ( self ):
_lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_lowerCAmelCase = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
_lowerCAmelCase = '''A painting of a squirrel eating a burger'''
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = sd_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=_lowerCAmelCase , )
_lowerCAmelCase = output.images
_lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_lowerCAmelCase = np.array(
[0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 664 |
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n"
UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n"
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]:
def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ):
_lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE )
def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ):
return " ".join(text.split() )
def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ):
_lowerCAmelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_SCREAMING_SNAKE_CASE : Optional[int] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any:
return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int:
_lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]:
_lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams]
_lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = Counter()
for sgram, scount in sgramcounter.items():
_lowerCAmelCase = scount * numref
_lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = Counter()
for cgram, ccount in cgramcounter.items():
_lowerCAmelCase = ccount * numref
# KEEP
_lowerCAmelCase = sgramcounter_rep & cgramcounter_rep
_lowerCAmelCase = keepgramcounter_rep & rgramcounter
_lowerCAmelCase = sgramcounter_rep & rgramcounter
_lowerCAmelCase = 0
_lowerCAmelCase = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_lowerCAmelCase = 1
_lowerCAmelCase = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_lowerCAmelCase = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_lowerCAmelCase = sgramcounter_rep - cgramcounter_rep
_lowerCAmelCase = delgramcounter_rep - rgramcounter
_lowerCAmelCase = sgramcounter_rep - rgramcounter
_lowerCAmelCase = 0
_lowerCAmelCase = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_lowerCAmelCase = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE )
# ADDITION
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_lowerCAmelCase = 1
_lowerCAmelCase = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
if addscore_precision > 0 or addscore_recall > 0:
_lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]:
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = ssent.split(''' ''' )
_lowerCAmelCase = csent.split(''' ''' )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
for rsent in rsents:
_lowerCAmelCase = rsent.split(''' ''' )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
ragramslist.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4
_lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4
_lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int:
# Normalization is requried for the ASSET dataset (one of the primary
# datasets in sentence simplification) to allow using space
# to split the sentence. Even though Wiki-Auto and TURK datasets,
# do not require normalization, we do it for consistency.
# Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
# [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7
if lowercase:
_lowerCAmelCase = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE )
elif tokenizer == "moses":
_lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE )
elif tokenizer == "penn":
_lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = sentence
if not return_str:
_lowerCAmelCase = normalized_sent.split()
return normalized_sent
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str:
if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_lowerCAmelCase = 0
for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] )
_lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE )
return 1_0_0 * sari_score
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str:
_lowerCAmelCase = len(references[0] )
if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )]
_lowerCAmelCase = sacrebleu.corpus_bleu(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
def __lowerCAmelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = {}
result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} )
result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} )
return result
| 664 | 1 |
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
UpperCAmelCase_ = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
UpperCAmelCase_ = (
subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("utf-8").split()
)
UpperCAmelCase_ = "|".join(sys.argv[1:])
UpperCAmelCase_ = re.compile(RF"""^({joined_dirs}).*?\.py$""")
UpperCAmelCase_ = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| 664 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["DeiTFeatureExtractor"]
UpperCAmelCase_ = ["DeiTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DeiTForImageClassification",
"DeiTForImageClassificationWithTeacher",
"DeiTForMaskedImageModeling",
"DeiTModel",
"DeiTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDeiTForImageClassification",
"TFDeiTForImageClassificationWithTeacher",
"TFDeiTForMaskedImageModeling",
"TFDeiTModel",
"TFDeiTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 1 |
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class UpperCAmelCase ( snake_case_ ):
def __lowerCAmelCase ( self ):
_lowerCAmelCase = tempfile.mkdtemp()
_lowerCAmelCase = 5
# Realm tok
_lowerCAmelCase = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''test''',
'''question''',
'''this''',
'''is''',
'''the''',
'''first''',
'''second''',
'''third''',
'''fourth''',
'''fifth''',
'''record''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
_lowerCAmelCase = os.path.join(self.tmpdirname , '''realm_tokenizer''' )
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
_lowerCAmelCase = os.path.join(_lowerCAmelCase , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
_lowerCAmelCase = os.path.join(self.tmpdirname , '''realm_block_records''' )
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
def __lowerCAmelCase ( self ):
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) )
def __lowerCAmelCase ( self ):
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = RealmConfig(num_block_records=self.num_block_records )
return config
def __lowerCAmelCase ( self ):
_lowerCAmelCase = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''question''': ['''foo''', '''bar'''],
'''answers''': [['''Foo''', '''Bar'''], ['''Bar''']],
} )
return dataset
def __lowerCAmelCase ( self ):
_lowerCAmelCase = np.array(
[
b'''This is the first record''',
b'''This is the second record''',
b'''This is the third record''',
b'''This is the fourth record''',
b'''This is the fifth record''',
b'''This is a longer longer longer record''',
] , dtype=_lowerCAmelCase , )
return block_records
def __lowerCAmelCase ( self ):
_lowerCAmelCase = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_config()
_lowerCAmelCase = self.get_dummy_retriever()
_lowerCAmelCase = retriever.tokenizer
_lowerCAmelCase = np.array([0, 3] , dtype='''long''' )
_lowerCAmelCase = tokenizer(['''Test question'''] ).input_ids
_lowerCAmelCase = tokenizer(
['''the fourth'''] , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ).input_ids
_lowerCAmelCase = config.reader_seq_len
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = retriever(
_lowerCAmelCase , _lowerCAmelCase , answer_ids=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='''np''' )
self.assertEqual(len(_lowerCAmelCase ) , 2 )
self.assertEqual(len(_lowerCAmelCase ) , 2 )
self.assertEqual(len(_lowerCAmelCase ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_config()
_lowerCAmelCase = self.get_dummy_retriever()
_lowerCAmelCase = retriever.tokenizer
_lowerCAmelCase = np.array([0, 3, 5] , dtype='''long''' )
_lowerCAmelCase = tokenizer(['''Test question'''] ).input_ids
_lowerCAmelCase = tokenizer(
['''the fourth''', '''longer longer'''] , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ).input_ids
_lowerCAmelCase = config.reader_seq_len
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = retriever(
_lowerCAmelCase , _lowerCAmelCase , answer_ids=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='''np''' )
self.assertEqual([False, True, True] , _lowerCAmelCase )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _lowerCAmelCase )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) )
# Test local path
_lowerCAmelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) )
self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
# Test mocked remote path
with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download:
_lowerCAmelCase = os.path.join(
os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME )
_lowerCAmelCase = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' )
self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
| 664 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
_lowerCAmelCase = [0] * n
_lowerCAmelCase = [False] * n
_lowerCAmelCase = [False] * n
def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ):
if parent == root:
out_edge_count += 1
_lowerCAmelCase = True
_lowerCAmelCase = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
_lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
_lowerCAmelCase = True
# AP found via cycle
if at == low[to]:
_lowerCAmelCase = True
else:
_lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE )
return out_edge_count
for i in range(_SCREAMING_SNAKE_CASE ):
if not visited[i]:
_lowerCAmelCase = 0
_lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = out_edge_count > 1
for x in range(len(_SCREAMING_SNAKE_CASE ) ):
if is_art[x] is True:
print(_SCREAMING_SNAKE_CASE )
# Adjacency list of graph
UpperCAmelCase_ = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 664 | 1 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
UpperCAmelCase_ = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
UpperCAmelCase_ = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->Tuple:
_lowerCAmelCase = (images / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
_lowerCAmelCase = numpy_to_pil(_SCREAMING_SNAKE_CASE )
return images
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->List[Any]:
if images.ndim == 3:
_lowerCAmelCase = images[None, ...]
_lowerCAmelCase = (images * 2_5_5).round().astype('''uint8''' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
_lowerCAmelCase = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images]
else:
_lowerCAmelCase = [Image.fromarray(_SCREAMING_SNAKE_CASE ) for image in images]
return pil_images
| 664 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class UpperCAmelCase ( snake_case_ ):
def __lowerCAmelCase ( self ):
_lowerCAmelCase = SMALL_MODEL_IDENTIFIER
_lowerCAmelCase = '''pt'''
_lowerCAmelCase = '''tf'''
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase )
model_tf.save_pretrained(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''mock_framework'''
# Framework provided - return whatever the user provides
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_lowerCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_lowerCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_lowerCAmelCase , self.framework_pt )
# Both not in environment -> raise error
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ):
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
| 664 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ = {
"configuration_longformer": [
"LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"LongformerConfig",
"LongformerOnnxConfig",
],
"tokenization_longformer": ["LongformerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["LongformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"LongformerForMaskedLM",
"LongformerForMultipleChoice",
"LongformerForQuestionAnswering",
"LongformerForSequenceClassification",
"LongformerForTokenClassification",
"LongformerModel",
"LongformerPreTrainedModel",
"LongformerSelfAttention",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFLongformerForMaskedLM",
"TFLongformerForMultipleChoice",
"TFLongformerForQuestionAnswering",
"TFLongformerForSequenceClassification",
"TFLongformerForTokenClassification",
"TFLongformerModel",
"TFLongformerPreTrainedModel",
"TFLongformerSelfAttention",
]
if TYPE_CHECKING:
from .configuration_longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
LongformerConfig,
LongformerOnnxConfig,
)
from .tokenization_longformer import LongformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_longformer_fast import LongformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = DiTPipeline
SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ = False
def __lowerCAmelCase ( self ):
torch.manual_seed(0 )
_lowerCAmelCase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , )
_lowerCAmelCase = AutoencoderKL()
_lowerCAmelCase = DDIMScheduler()
_lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler}
return components
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ):
if str(_lowerCAmelCase ).startswith('''mps''' ):
_lowerCAmelCase = torch.manual_seed(_lowerCAmelCase )
else:
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
_lowerCAmelCase = {
'''class_labels''': [1],
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''cpu'''
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase )
_lowerCAmelCase = pipe(**_lowerCAmelCase ).images
_lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
_lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] )
_lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowerCAmelCase , 1E-3 )
def __lowerCAmelCase ( self ):
self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class UpperCAmelCase ( unittest.TestCase ):
def __lowerCAmelCase ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' )
pipe.to('''cuda''' )
_lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf''']
_lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase )
_lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images
for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = load_numpy(
F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-2
def __lowerCAmelCase ( self ):
_lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('''cuda''' )
_lowerCAmelCase = ['''vase''', '''umbrella''']
_lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images
for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
F'''/dit/{word}_512.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-1
| 664 | 1 |
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
UpperCAmelCase_ = "sshleifer/mar_enro_6_3_student"
class UpperCAmelCase ( snake_case_ ):
def __lowerCAmelCase ( self ):
super().setUp()
_lowerCAmelCase = cached_path(
'''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=_lowerCAmelCase , )
_lowerCAmelCase = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'''
@slow
@require_torch_gpu
def __lowerCAmelCase ( self ):
MarianMTModel.from_pretrained(_lowerCAmelCase )
@slow
@require_torch_gpu
def __lowerCAmelCase ( self ):
_lowerCAmelCase = {
'''$MAX_LEN''': 64,
'''$BS''': 64,
'''$GAS''': 1,
'''$ENRO_DIR''': self.data_dir,
'''facebook/mbart-large-cc25''': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'''--learning_rate=3e-5''': '''--learning_rate 3e-4''',
'''--num_train_epochs 6''': '''--num_train_epochs 1''',
}
# Clean up bash script
_lowerCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip()
_lowerCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
for k, v in env_vars_to_replace.items():
_lowerCAmelCase = bash_script.replace(_lowerCAmelCase , str(_lowerCAmelCase ) )
_lowerCAmelCase = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
_lowerCAmelCase = F'''
--output_dir {output_dir}
--tokenizer_name Helsinki-NLP/opus-mt-en-ro
--sortish_sampler
--do_predict
--gpus 1
--freeze_encoder
--n_train 40000
--n_val 500
--n_test 500
--fp16_opt_level O1
--num_sanity_val_steps 0
--eval_beams 2
'''.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
_lowerCAmelCase = ['''finetune.py'''] + bash_script.split() + args
with patch.object(_lowerCAmelCase , '''argv''' , _lowerCAmelCase ):
_lowerCAmelCase = argparse.ArgumentParser()
_lowerCAmelCase = pl.Trainer.add_argparse_args(_lowerCAmelCase )
_lowerCAmelCase = SummarizationModule.add_model_specific_args(_lowerCAmelCase , os.getcwd() )
_lowerCAmelCase = parser.parse_args()
_lowerCAmelCase = main(_lowerCAmelCase )
# Check metrics
_lowerCAmelCase = load_json(model.metrics_save_path )
_lowerCAmelCase = metrics['''val'''][0]
_lowerCAmelCase = metrics['''val'''][-1]
self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , _lowerCAmelCase )
self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
_lowerCAmelCase = os.listdir(_lowerCAmelCase )
_lowerCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
_lowerCAmelCase = os.path.join(args.output_dir , _lowerCAmelCase )
_lowerCAmelCase = torch.load(_lowerCAmelCase , map_location='''cpu''' )
_lowerCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
_lowerCAmelCase = {os.path.basename(_lowerCAmelCase ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
class UpperCAmelCase ( snake_case_ ):
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def __lowerCAmelCase ( self ):
_lowerCAmelCase = F'''{self.test_file_dir_str}/test_data/wmt_en_ro'''
_lowerCAmelCase = {
'''--fp16_opt_level=O1''': '''''',
'''$MAX_LEN''': 128,
'''$BS''': 16,
'''$GAS''': 1,
'''$ENRO_DIR''': data_dir,
'''$m''': '''sshleifer/student_marian_en_ro_6_1''',
'''val_check_interval=0.25''': '''val_check_interval=1.0''',
}
# Clean up bash script
_lowerCAmelCase = (
(self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip()
)
_lowerCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
_lowerCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' )
for k, v in env_vars_to_replace.items():
_lowerCAmelCase = bash_script.replace(_lowerCAmelCase , str(_lowerCAmelCase ) )
_lowerCAmelCase = self.get_auto_remove_tmp_dir()
_lowerCAmelCase = bash_script.replace('''--fp16''' , '''''' )
_lowerCAmelCase = 6
_lowerCAmelCase = (
['''distillation.py''']
+ bash_script.split()
+ [
F'''--output_dir={output_dir}''',
'''--gpus=1''',
'''--learning_rate=1e-3''',
F'''--num_train_epochs={epochs}''',
'''--warmup_steps=10''',
'''--val_check_interval=1.0''',
'''--do_predict''',
]
)
with patch.object(_lowerCAmelCase , '''argv''' , _lowerCAmelCase ):
_lowerCAmelCase = argparse.ArgumentParser()
_lowerCAmelCase = pl.Trainer.add_argparse_args(_lowerCAmelCase )
_lowerCAmelCase = SummarizationDistiller.add_model_specific_args(_lowerCAmelCase , os.getcwd() )
_lowerCAmelCase = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
_lowerCAmelCase = distill_main(_lowerCAmelCase )
# Check metrics
_lowerCAmelCase = load_json(model.metrics_save_path )
_lowerCAmelCase = metrics['''val'''][0]
_lowerCAmelCase = metrics['''val'''][-1]
assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , _lowerCAmelCase )
# check lightning ckpt can be loaded and has a reasonable statedict
_lowerCAmelCase = os.listdir(_lowerCAmelCase )
_lowerCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
_lowerCAmelCase = os.path.join(args.output_dir , _lowerCAmelCase )
_lowerCAmelCase = torch.load(_lowerCAmelCase , map_location='''cpu''' )
_lowerCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
_lowerCAmelCase = {os.path.basename(_lowerCAmelCase ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
| 664 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
UpperCAmelCase_ = {"UserAgent": UserAgent().random}
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict:
_lowerCAmelCase = script.contents[0]
_lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase ):
_lowerCAmelCase = F'''https://www.instagram.com/{username}/'''
_lowerCAmelCase = self.get_json()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text
_lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self ):
return F'''{self.__class__.__name__}(\'{self.username}\')'''
def __str__( self ):
return F'''{self.fullname} ({self.username}) is {self.biography}'''
@property
def __lowerCAmelCase ( self ):
return self.user_data["username"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["full_name"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["biography"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["business_email"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["external_url"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_followed_by"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_follow"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["profile_pic_url_hd"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["is_verified"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["is_private"]
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None:
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
_lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 1_5_0
assert instagram_user.number_of_followers > 1_2_0_0_0_0
assert instagram_user.number_of_followings > 1_5
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ = InstagramUser("github")
print(instagram_user)
print(F"""{instagram_user.number_of_posts = }""")
print(F"""{instagram_user.number_of_followers = }""")
print(F"""{instagram_user.number_of_followings = }""")
print(F"""{instagram_user.email = }""")
print(F"""{instagram_user.website = }""")
print(F"""{instagram_user.profile_picture_url = }""")
print(F"""{instagram_user.is_verified = }""")
print(F"""{instagram_user.is_private = }""")
| 664 | 1 |
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=3 , _lowerCAmelCase=32 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=[10, 20, 30, 40] , _lowerCAmelCase=[1, 1, 2, 1] , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=3 , _lowerCAmelCase=None , ):
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = image_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embeddings_size
_lowerCAmelCase = hidden_sizes
_lowerCAmelCase = depths
_lowerCAmelCase = is_training
_lowerCAmelCase = use_labels
_lowerCAmelCase = hidden_act
_lowerCAmelCase = num_labels
_lowerCAmelCase = scope
_lowerCAmelCase = len(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase = self.get_config()
return config, pixel_values
def __lowerCAmelCase ( self ):
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = FlaxRegNetModel(config=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = FlaxRegNetForImageClassification(config=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase = config_and_inputs
_lowerCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
def __lowerCAmelCase ( self ):
_lowerCAmelCase = FlaxRegNetModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase )
def __lowerCAmelCase ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowerCAmelCase ( self ):
return
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def __lowerCAmelCase ( self ):
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def __lowerCAmelCase ( self ):
pass
def __lowerCAmelCase ( self ):
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(_lowerCAmelCase )
_lowerCAmelCase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase = [*signature.parameters.keys()]
_lowerCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = model_class(_lowerCAmelCase )
_lowerCAmelCase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) )
_lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowerCAmelCase = self.model_tester.num_stages
self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 )
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = True
check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase = True
check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = model_class(_lowerCAmelCase )
@jax.jit
def model_jitted(_lowerCAmelCase , **_lowerCAmelCase ):
return model(pixel_values=_lowerCAmelCase , **_lowerCAmelCase )
with self.subTest('''JIT Enabled''' ):
_lowerCAmelCase = model_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
_lowerCAmelCase = model_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCAmelCase__ ( )->Optional[Any]:
_lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __lowerCAmelCase ( self ):
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' )
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors='''np''' )
_lowerCAmelCase = model(**_lowerCAmelCase )
# verify the logits
_lowerCAmelCase = (1, 1_000)
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
_lowerCAmelCase = jnp.array([-0.4_180, -1.5_051, -3.4_836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
| 664 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]:
_lowerCAmelCase = int(_SCREAMING_SNAKE_CASE )
# Initialize Result
_lowerCAmelCase = []
# Traverse through all denomination
for denomination in reversed(_SCREAMING_SNAKE_CASE ):
# Find denominations
while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ):
total_value -= int(_SCREAMING_SNAKE_CASE )
answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
UpperCAmelCase_ = []
UpperCAmelCase_ = "0"
if (
input("Do you want to enter your denominations ? (yY/n): ").strip().lower()
== "y"
):
UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip())
for i in range(0, n):
denominations.append(int(input(F"""Denomination {i}: """).strip()))
UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip()
else:
# All denominations of Indian Currency if user does not enter
UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0]
UpperCAmelCase_ = input("Enter the change you want to make: ").strip()
if int(value) == 0 or int(value) < 0:
print("The total value cannot be zero or negative.")
else:
print(F"""Following is minimal change for {value}: """)
UpperCAmelCase_ = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=" ")
| 664 | 1 |
import torch
from transformers import AutoModel
class UpperCAmelCase ( torch.nn.Module ):
def __init__( self , _lowerCAmelCase="sayef/fsner-bert-base-uncased" ):
super(_lowerCAmelCase , self ).__init__()
_lowerCAmelCase = AutoModel.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase )
_lowerCAmelCase = torch.nn.CosineSimilarity(3 , 1E-08 )
_lowerCAmelCase = torch.nn.Softmax(dim=1 )
def __lowerCAmelCase ( self , **_lowerCAmelCase ):
return self.bert(**_lowerCAmelCase ).last_hidden_state
def __lowerCAmelCase ( self , _lowerCAmelCase ):
return token_embeddings.sum(2 , keepdim=_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=1 ):
return self.softmax(T * self.cos(_lowerCAmelCase , _lowerCAmelCase ) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = W_supports['''sizes'''].tolist()
_lowerCAmelCase = W_supports['''start_token_id'''].item()
_lowerCAmelCase = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
_lowerCAmelCase = self.BERT(**_lowerCAmelCase )
_lowerCAmelCase = self.BERT(**_lowerCAmelCase )
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = W_supports['''input_ids'''] == start_token_id
_lowerCAmelCase = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(_lowerCAmelCase ):
if i == 0:
_lowerCAmelCase = 0
else:
_lowerCAmelCase = support_sizes[i - 1]
_lowerCAmelCase = S[s : s + size][start_token_masks[s : s + size]]
_lowerCAmelCase = S[s : s + size][end_token_masks[s : s + size]]
_lowerCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
_lowerCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
_lowerCAmelCase = torch.vstack((p_starts, p_start) )
_lowerCAmelCase = torch.vstack((p_ends, p_end) )
else:
_lowerCAmelCase = p_start
_lowerCAmelCase = p_end
return p_starts, p_ends
| 664 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict:
# Initialise PyTorch model
_lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE )
print(f'''Building PyTorch model from configuration: {config}''' )
_lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--albert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained ALBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 664 | 1 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("1.0.0a"):
raise Exception("requires fairseq >= 1.0.0a")
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = "Hello world! cécé herlolip"
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]:
_lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE )
roberta.eval() # disable dropout
_lowerCAmelCase = roberta.model.encoder.sentence_encoder
_lowerCAmelCase = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , )
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
_lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight
_lowerCAmelCase = roberta_sent_encoder.embed_positions.weight
_lowerCAmelCase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
_lowerCAmelCase = roberta_sent_encoder.layer_norm.weight
_lowerCAmelCase = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
_lowerCAmelCase = model.roberta.encoder.layer[i]
_lowerCAmelCase = roberta_sent_encoder.layers[i]
_lowerCAmelCase = layer.attention
_lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight
_lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias
# self attention
_lowerCAmelCase = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
_lowerCAmelCase = roberta_layer.self_attn.q_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.q_proj.bias
_lowerCAmelCase = roberta_layer.self_attn.k_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.k_proj.bias
_lowerCAmelCase = roberta_layer.self_attn.v_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.v_proj.bias
# self-attention output
_lowerCAmelCase = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
_lowerCAmelCase = roberta_layer.self_attn.out_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
_lowerCAmelCase = roberta_layer.final_layer_norm.weight
_lowerCAmelCase = roberta_layer.final_layer_norm.bias
# intermediate
_lowerCAmelCase = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
_lowerCAmelCase = roberta_layer.fca.weight
_lowerCAmelCase = roberta_layer.fca.bias
# output
_lowerCAmelCase = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
_lowerCAmelCase = roberta_layer.fca.weight
_lowerCAmelCase = roberta_layer.fca.bias
# end of layer
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
_lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias
_lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias
_lowerCAmelCase = roberta.model.encoder.lm_head.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
_lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
_lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0]
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) )
else:
_lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0]
print(our_output.shape , their_output.shape )
_lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
_lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
UpperCAmelCase_ = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 664 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("1.0.0a"):
raise Exception("requires fairseq >= 1.0.0a")
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = "Hello world! cécé herlolip"
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]:
_lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE )
roberta.eval() # disable dropout
_lowerCAmelCase = roberta.model.encoder.sentence_encoder
_lowerCAmelCase = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , )
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
_lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight
_lowerCAmelCase = roberta_sent_encoder.embed_positions.weight
_lowerCAmelCase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
_lowerCAmelCase = roberta_sent_encoder.layer_norm.weight
_lowerCAmelCase = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
_lowerCAmelCase = model.roberta.encoder.layer[i]
_lowerCAmelCase = roberta_sent_encoder.layers[i]
_lowerCAmelCase = layer.attention
_lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight
_lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias
# self attention
_lowerCAmelCase = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
_lowerCAmelCase = roberta_layer.self_attn.q_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.q_proj.bias
_lowerCAmelCase = roberta_layer.self_attn.k_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.k_proj.bias
_lowerCAmelCase = roberta_layer.self_attn.v_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.v_proj.bias
# self-attention output
_lowerCAmelCase = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
_lowerCAmelCase = roberta_layer.self_attn.out_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
_lowerCAmelCase = roberta_layer.final_layer_norm.weight
_lowerCAmelCase = roberta_layer.final_layer_norm.bias
# intermediate
_lowerCAmelCase = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
_lowerCAmelCase = roberta_layer.fca.weight
_lowerCAmelCase = roberta_layer.fca.bias
# output
_lowerCAmelCase = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
_lowerCAmelCase = roberta_layer.fca.weight
_lowerCAmelCase = roberta_layer.fca.bias
# end of layer
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
_lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias
_lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias
_lowerCAmelCase = roberta.model.encoder.lm_head.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
_lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
_lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0]
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) )
else:
_lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0]
print(our_output.shape , their_output.shape )
_lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
_lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
UpperCAmelCase_ = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 664 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase_ = {
"tokenizer_file": {
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json",
},
}
UpperCAmelCase_ = {
"gpt-neox-20b": 2_0_4_8,
}
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask''']
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase=False , **_lowerCAmelCase , ):
super().__init__(
_lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , )
_lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , _lowerCAmelCase ) != add_prefix_space:
_lowerCAmelCase = getattr(_lowerCAmelCase , pre_tok_state.pop('''type''' ) )
_lowerCAmelCase = add_prefix_space
_lowerCAmelCase = pre_tok_class(**_lowerCAmelCase )
_lowerCAmelCase = add_prefix_space
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowerCAmelCase = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [self.eos_token_id] )
if len(_lowerCAmelCase ) > self.model_max_length:
_lowerCAmelCase = input_ids[-self.model_max_length :]
return input_ids
| 664 |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
_lowerCAmelCase = []
for i in range(_SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = i / num_diffusion_timesteps
_lowerCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) )
return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class UpperCAmelCase ( snake_case_ ,snake_case_ ):
SCREAMING_SNAKE_CASE__ = 1
@register_to_config
def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ):
if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None:
_lowerCAmelCase = (
'''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.'''
)
deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase )
_lowerCAmelCase = kwargs['''set_alpha_to_one''']
if trained_betas is not None:
_lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
_lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_lowerCAmelCase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase )
else:
raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' )
_lowerCAmelCase = 1.0 - self.betas
_lowerCAmelCase = torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
_lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
_lowerCAmelCase = 1.0
# setable values
_lowerCAmelCase = None
_lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
return sample
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:'''
F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle'''
F''' maximal {self.config.num_train_timesteps} timesteps.''' )
_lowerCAmelCase = num_inference_steps
_lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa )
_lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase )
self.timesteps += self.config.steps_offset
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ):
# 1. get previous step value (=t+1)
_lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
_lowerCAmelCase = self.alphas_cumprod[timestep]
_lowerCAmelCase = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
_lowerCAmelCase = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
_lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
_lowerCAmelCase = model_output
elif self.config.prediction_type == "sample":
_lowerCAmelCase = model_output
_lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
_lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
_lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or'''
''' `v_prediction`''' )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
_lowerCAmelCase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase )
def __len__( self ):
return self.config.num_train_timesteps
| 664 | 1 |
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Union[str, Any]:
_lowerCAmelCase = os.path.join(args.tf_model_dir , '''parameters.json''' )
_lowerCAmelCase = json.loads(open(_SCREAMING_SNAKE_CASE ).read() )
if not params:
raise ValueError(
f'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' )
if not args.output.endswith('''.pt''' ):
_lowerCAmelCase = args.output + '''.pt'''
_lowerCAmelCase = OrderedDict()
with tf.device('''/CPU:0''' ):
_lowerCAmelCase = tf.train.load_checkpoint(args.tf_model_dir )
_lowerCAmelCase = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
_lowerCAmelCase = reader.get_tensor(_SCREAMING_SNAKE_CASE ).astype(np.floataa )
if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ):
continue
if key_name.startswith('''pasts/''' ):
if key_name.startswith('''pasts/mlp''' ):
_lowerCAmelCase = int(key_name[9] )
elif key_name.startswith('''pasts/out''' ):
_lowerCAmelCase = 8
_lowerCAmelCase = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
_lowerCAmelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.startswith('''model/moe''' ):
_lowerCAmelCase = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/switch_gating/kernel''' ):
_lowerCAmelCase = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player
_lowerCAmelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith('''/softmlp/kernel''' ):
_lowerCAmelCase = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player
_lowerCAmelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ):
_lowerCAmelCase = key_name[-9:-7]
for i in range(1_6 ):
_lowerCAmelCase = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer)
_lowerCAmelCase = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.startswith('''model/mlp''' ):
_lowerCAmelCase = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/p1/kernel''' ):
_lowerCAmelCase = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player
_lowerCAmelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith('''/p1/bias''' ):
_lowerCAmelCase = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player
_lowerCAmelCase = vnp.copy() # same because it is one dimensional
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith('''/p2/kernel''' ):
_lowerCAmelCase = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player
_lowerCAmelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith('''/p2/bias''' ):
_lowerCAmelCase = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player
_lowerCAmelCase = vnp.copy() # same because it is one dimensional
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.startswith('''model/ln''' ):
_lowerCAmelCase = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
_lowerCAmelCase = '''model.blocks.%d.feed_forward.norm.bias''' % player
_lowerCAmelCase = vnp.copy() # same because it is one dimensional
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith('''/g''' ):
_lowerCAmelCase = '''model.blocks.%d.feed_forward.norm.weight''' % player
_lowerCAmelCase = vnp.copy() # same because it is one dimensional
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.startswith('''model/att''' ):
_lowerCAmelCase = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/qkv/kernel''' ):
_lowerCAmelCase = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
_lowerCAmelCase = state[:, 0, :, :]
_lowerCAmelCase = state[:, 1, :, :]
_lowerCAmelCase = state[:, 2, :, :]
_lowerCAmelCase = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
_lowerCAmelCase = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
_lowerCAmelCase = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
_lowerCAmelCase = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith('''/o/kernel''' ):
_lowerCAmelCase = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player
_lowerCAmelCase = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.startswith('''model/an''' ):
_lowerCAmelCase = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
_lowerCAmelCase = '''model.blocks.%d.self_attn.norm.bias''' % player
_lowerCAmelCase = vnp.copy() # same because it is one dimensional
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.endswith('''/g''' ):
_lowerCAmelCase = '''model.blocks.%d.self_attn.norm.weight''' % player
_lowerCAmelCase = vnp.copy() # same because it is one dimensional
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif (
key_name.startswith('''model/wte''' )
or key_name.startswith('''model/wpe''' )
or key_name.startswith('''model/ete''' )
):
_lowerCAmelCase = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[
key_name[-3:]
]
_lowerCAmelCase = '''model.%s.weight''' % nlayer
_lowerCAmelCase = vnp.copy() # same in embedded
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
if key_name.startswith('''model/wte''' ):
_lowerCAmelCase = '''lm_head.weight'''
_lowerCAmelCase = vnp.copy() # same in embedded
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name.startswith('''model/wob''' ):
_lowerCAmelCase = '''final_logits_bias'''
_lowerCAmelCase = vnp.copy() # same in embedded
_lowerCAmelCase = state.reshape((1, -1) )
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name == "model/dense/kernel":
_lowerCAmelCase = '''model.last_project.weight'''
_lowerCAmelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
elif key_name == "model/dense_1/bias":
_lowerCAmelCase = '''model.last_project.bias'''
_lowerCAmelCase = vnp.copy() # same because it is one dimensional
_lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE )
torch.save(_SCREAMING_SNAKE_CASE , args.output )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser(
description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model")
parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model")
UpperCAmelCase_ = parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 664 |
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCAmelCase_ = {
"configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"],
"tokenization_cpmant": ["CpmAntTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST",
"CpmAntForCausalLM",
"CpmAntModel",
"CpmAntPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 1 |
from __future__ import annotations
import queue
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase ):
_lowerCAmelCase = data
_lowerCAmelCase = None
_lowerCAmelCase = None
def UpperCAmelCase__ ( )->TreeNode:
print('''\n********Press N to stop entering at any point of time********\n''' )
_lowerCAmelCase = input('''Enter the value of the root node: ''' ).strip().lower()
_lowerCAmelCase = queue.Queue()
_lowerCAmelCase = TreeNode(int(_SCREAMING_SNAKE_CASE ) )
q.put(_SCREAMING_SNAKE_CASE )
while not q.empty():
_lowerCAmelCase = q.get()
_lowerCAmelCase = f'''Enter the left node of {node_found.data}: '''
_lowerCAmelCase = input(_SCREAMING_SNAKE_CASE ).strip().lower() or '''n'''
if check == "n":
return tree_node
_lowerCAmelCase = TreeNode(int(_SCREAMING_SNAKE_CASE ) )
_lowerCAmelCase = left_node
q.put(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = f'''Enter the right node of {node_found.data}: '''
_lowerCAmelCase = input(_SCREAMING_SNAKE_CASE ).strip().lower() or '''n'''
if check == "n":
return tree_node
_lowerCAmelCase = TreeNode(int(_SCREAMING_SNAKE_CASE ) )
_lowerCAmelCase = right_node
q.put(_SCREAMING_SNAKE_CASE )
raise
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
print(node.data , end=''',''' )
pre_order(node.left )
pre_order(node.right )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
in_order(node.left )
print(node.data , end=''',''' )
in_order(node.right )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=''',''' )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
_lowerCAmelCase = queue.Queue()
q.put(_SCREAMING_SNAKE_CASE )
while not q.empty():
_lowerCAmelCase = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
_lowerCAmelCase = queue.Queue()
q.put(_SCREAMING_SNAKE_CASE )
while not q.empty():
_lowerCAmelCase = []
while not q.empty():
_lowerCAmelCase = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
_lowerCAmelCase = []
_lowerCAmelCase = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=''',''' )
stack.append(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = n.left
# end of while means current node doesn't have left child
_lowerCAmelCase = stack.pop()
# start to traverse its right child
_lowerCAmelCase = n.right
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
_lowerCAmelCase = []
_lowerCAmelCase = node
while n or stack:
while n:
stack.append(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = n.left
_lowerCAmelCase = stack.pop()
print(n.data , end=''',''' )
_lowerCAmelCase = n.right
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
_lowerCAmelCase , _lowerCAmelCase = [], []
_lowerCAmelCase = node
stacka.append(_SCREAMING_SNAKE_CASE )
while stacka: # to find the reversed order of post order, store it in stack2
_lowerCAmelCase = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(_SCREAMING_SNAKE_CASE )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=''',''' )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "" , _SCREAMING_SNAKE_CASE : Optional[Any]=5_0 , _SCREAMING_SNAKE_CASE : Optional[int]="*" )->str:
if not s:
return "\n" + width * char
_lowerCAmelCase , _lowerCAmelCase = divmod(width - len(_SCREAMING_SNAKE_CASE ) - 2 , 2 )
return f'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
UpperCAmelCase_ = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 5_0 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 664 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor'''
SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase )
if text is None and audios is None:
raise ValueError('''You have to specify either text or audios. Both cannot be none.''' )
if text is not None:
_lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if audios is not None:
_lowerCAmelCase = self.feature_extractor(
_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is not None and audios is not None:
_lowerCAmelCase = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer.model_input_names
_lowerCAmelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 664 | 1 |
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class UpperCAmelCase ( snake_case_ ):
def __lowerCAmelCase ( self , _lowerCAmelCase ):
return 0.0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : int )->tuple[int | float, int | float]:
_lowerCAmelCase = min([-2_0, np.min(fft_results[1 : samplerate // 2 - 1] )] )
_lowerCAmelCase = max([2_0, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : FilterType , _SCREAMING_SNAKE_CASE : int )->None:
_lowerCAmelCase = 5_1_2
_lowerCAmelCase = [1] + [0] * (size - 1)
_lowerCAmelCase = [filter_type.process(_SCREAMING_SNAKE_CASE ) for item in inputs]
_lowerCAmelCase = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCAmelCase = np.abs(np.fft.fft(_SCREAMING_SNAKE_CASE ) )
_lowerCAmelCase = 2_0 * np.logaa(_SCREAMING_SNAKE_CASE )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(2_4 , samplerate / 2 - 1 )
plt.xlabel('''Frequency (Hz)''' )
plt.xscale('''log''' )
# Display within reasonable bounds
_lowerCAmelCase = get_bounds(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
plt.ylim(max([-8_0, bounds[0]] ) , min([8_0, bounds[1]] ) )
plt.ylabel('''Gain (dB)''' )
plt.plot(_SCREAMING_SNAKE_CASE )
plt.show()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : FilterType , _SCREAMING_SNAKE_CASE : int )->None:
_lowerCAmelCase = 5_1_2
_lowerCAmelCase = [1] + [0] * (size - 1)
_lowerCAmelCase = [filter_type.process(_SCREAMING_SNAKE_CASE ) for item in inputs]
_lowerCAmelCase = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCAmelCase = np.angle(np.fft.fft(_SCREAMING_SNAKE_CASE ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(2_4 , samplerate / 2 - 1 )
plt.xlabel('''Frequency (Hz)''' )
plt.xscale('''log''' )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel('''Phase shift (Radians)''' )
plt.plot(np.unwrap(_SCREAMING_SNAKE_CASE , -2 * pi ) )
plt.show()
| 664 |
from __future__ import annotations
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list:
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = int(max_value - min_value ) + 1
_lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 664 | 1 |
from timeit import timeit
UpperCAmelCase_ = {
"MALAYALAM": True,
"String": False,
"rotor": True,
"level": True,
"A": True,
"BB": True,
"ABC": False,
"amanaplanacanalpanama": True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->bool:
_lowerCAmelCase = 0
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->bool:
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) // 2
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(_SCREAMING_SNAKE_CASE ) )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->bool:
if len(_SCREAMING_SNAKE_CASE ) <= 2:
return True
if s[0] == s[len(_SCREAMING_SNAKE_CASE ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->bool:
return s == s[::-1]
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->None:
_lowerCAmelCase = f'''all({name}(key) is value for key, value in test_data.items())'''
_lowerCAmelCase = f'''from __main__ import test_data, {name}'''
_lowerCAmelCase = 5_0_0_0_0_0
_lowerCAmelCase = timeit(stmt=_SCREAMING_SNAKE_CASE , setup=_SCREAMING_SNAKE_CASE , number=_SCREAMING_SNAKE_CASE )
print(f'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(F"""{key:21} {value}""")
print("a man a plan a canal panama")
# finished 500,000 runs in 0.46793 seconds
benchmark_function("is_palindrome_slice")
# finished 500,000 runs in 0.85234 seconds
benchmark_function("is_palindrome")
# finished 500,000 runs in 1.32028 seconds
benchmark_function("is_palindrome_recursive")
# finished 500,000 runs in 2.08679 seconds
benchmark_function("is_palindrome_traversal")
| 664 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
def UpperCAmelCase__ ( )->Any:
_lowerCAmelCase = _ask_options(
'''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
_lowerCAmelCase = get_sagemaker_input()
else:
_lowerCAmelCase = get_cluster_input()
return config
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str:
if subparsers is not None:
_lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE )
parser.add_argument(
'''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=_SCREAMING_SNAKE_CASE )
return parser
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str:
_lowerCAmelCase = get_user_input()
if args.config_file is not None:
_lowerCAmelCase = args.config_file
else:
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
os.makedirs(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = default_yaml_config_file
if config_file.endswith('''.json''' ):
config.to_json_file(_SCREAMING_SNAKE_CASE )
else:
config.to_yaml_file(_SCREAMING_SNAKE_CASE )
print(f'''accelerate configuration saved at {config_file}''' )
def UpperCAmelCase__ ( )->List[Any]:
_lowerCAmelCase = config_command_parser()
_lowerCAmelCase = parser.parse_args()
config_command(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 664 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {"vocab_file": "spm_char.model"}
UpperCAmelCase_ = {
"vocab_file": {
"microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model",
"microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model",
"microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model",
}
}
UpperCAmelCase_ = {
"microsoft/speecht5_asr": 1_0_2_4,
"microsoft/speecht5_tts": 1_0_2_4,
"microsoft/speecht5_vc": 1_0_2_4,
}
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask''']
def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ):
_lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
_lowerCAmelCase = vocab_file
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
@property
def __lowerCAmelCase ( self ):
return self.sp_model.get_piece_size()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
_lowerCAmelCase = self.__dict__.copy()
_lowerCAmelCase = None
return state
def __setstate__( self , _lowerCAmelCase ):
_lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_lowerCAmelCase = {}
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
return self.sp_model.piece_to_id(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = self.sp_model.IdToPiece(_lowerCAmelCase )
return token
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = []
_lowerCAmelCase = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_lowerCAmelCase ) + token
_lowerCAmelCase = []
else:
current_sub_tokens.append(_lowerCAmelCase )
out_string += self.sp_model.decode(_lowerCAmelCase )
return out_string.strip()
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=None ):
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = [1]
if token_ids_a is None:
return ([0] * len(_lowerCAmelCase )) + suffix_ones
return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase = os.path.join(
_lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase , '''wb''' ) as fi:
_lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
| 664 |
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase_ = 1_0
UpperCAmelCase_ = 2_5_6
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]:
if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS:
return None
_lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE )
for token in set(_SCREAMING_SNAKE_CASE ):
min_hash.update(token.encode() )
return min_hash
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]:
return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0}
class UpperCAmelCase :
def __init__( self , *,
_lowerCAmelCase = 0.85 , ):
_lowerCAmelCase = duplication_jaccard_threshold
_lowerCAmelCase = NUM_PERM
_lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
_lowerCAmelCase = defaultdict(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self._index.query(_lowerCAmelCase )
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''' )
return
self._index.insert(_lowerCAmelCase , _lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = []
for base, duplicates in self._duplicate_clusters.items():
_lowerCAmelCase = [base] + list(_lowerCAmelCase )
# reformat the cluster to be a list of dict
_lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster]
duplicate_clusters.append(_lowerCAmelCase )
return duplicate_clusters
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = self.get_duplicate_clusters()
with open(_lowerCAmelCase , '''w''' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = element
_lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ):
if data is not None:
yield data
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str:
_lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ):
di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float:
_lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase_ = None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]:
_lowerCAmelCase = []
for elementa in cluster:
_lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content''']
for elementa in extremes:
_lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content''']
if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
_lowerCAmelCase = 1
extremes.append(_SCREAMING_SNAKE_CASE )
return extremes
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple:
global _shared_dataset
_lowerCAmelCase = dataset
_lowerCAmelCase = []
_lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ):
extremes_list.append(_SCREAMING_SNAKE_CASE )
return extremes_list
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]:
_lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster}
_lowerCAmelCase = {}
_lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for extremes in extremes_clusters:
for element in extremes:
_lowerCAmelCase = element
_lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() )
_lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
_lowerCAmelCase = element['''base_index'''] in extreme_dict
if element["is_extreme"]:
_lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies''']
print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' )
return ds_filter, duplicate_clusters
| 664 | 1 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
UpperCAmelCase_ = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n"
UpperCAmelCase_ = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n"
UpperCAmelCase_ = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
def __lowerCAmelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] , )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="auto" , _lowerCAmelCase=-1 , _lowerCAmelCase=0.9 , _lowerCAmelCase=5 , _lowerCAmelCase=500 , _lowerCAmelCase="gpt2-large" , _lowerCAmelCase=-1 , _lowerCAmelCase=1_024 , _lowerCAmelCase=25 , _lowerCAmelCase=5 , _lowerCAmelCase=True , _lowerCAmelCase=25 , ):
_lowerCAmelCase = compute_mauve(
p_text=_lowerCAmelCase , q_text=_lowerCAmelCase , p_features=_lowerCAmelCase , q_features=_lowerCAmelCase , p_tokens=_lowerCAmelCase , q_tokens=_lowerCAmelCase , num_buckets=_lowerCAmelCase , pca_max_data=_lowerCAmelCase , kmeans_explained_var=_lowerCAmelCase , kmeans_num_redo=_lowerCAmelCase , kmeans_max_iter=_lowerCAmelCase , featurize_model_name=_lowerCAmelCase , device_id=_lowerCAmelCase , max_text_length=_lowerCAmelCase , divergence_curve_discretization_size=_lowerCAmelCase , mauve_scaling_factor=_lowerCAmelCase , verbose=_lowerCAmelCase , seed=_lowerCAmelCase , )
return out
| 664 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = process
_lowerCAmelCase = params
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
_lowerCAmelCase = self.dataset[i]
_lowerCAmelCase = self.process(_lowerCAmelCase , **self.params )
return processed
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowerCAmelCase = loader
_lowerCAmelCase = infer
_lowerCAmelCase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_lowerCAmelCase = None
_lowerCAmelCase = loader_batch_size
# Internal bookkeeping
_lowerCAmelCase = None
_lowerCAmelCase = None
def __len__( self ):
return len(self.loader )
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
return self
def __lowerCAmelCase ( self ):
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_lowerCAmelCase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_lowerCAmelCase = {}
for k, element in self._loader_batch_data.items():
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
# Convert ModelOutput to tuple first
_lowerCAmelCase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
_lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
_lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_lowerCAmelCase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_lowerCAmelCase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase )
self._loader_batch_index += 1
return result
def __lowerCAmelCase ( self ):
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_lowerCAmelCase = next(self.iterator )
_lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(_lowerCAmelCase , torch.Tensor ):
_lowerCAmelCase = processed
else:
_lowerCAmelCase = list(processed.keys() )[0]
_lowerCAmelCase = processed[key]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = len(_lowerCAmelCase )
else:
_lowerCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_lowerCAmelCase = observed_batch_size
# Setting internal index to unwrap the batch
_lowerCAmelCase = processed
_lowerCAmelCase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
_lowerCAmelCase = None
return self
def __lowerCAmelCase ( self ):
if self.subiterator is None:
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
_lowerCAmelCase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
_lowerCAmelCase = next(self.subiterator )
return processed
class UpperCAmelCase ( snake_case_ ):
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
return self
def __lowerCAmelCase ( self ):
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
_lowerCAmelCase = False
_lowerCAmelCase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_lowerCAmelCase = self.loader_batch_item()
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
if is_last:
return accumulator
while not is_last:
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(_lowerCAmelCase , torch.Tensor ):
_lowerCAmelCase = processed
else:
_lowerCAmelCase = list(processed.keys() )[0]
_lowerCAmelCase = processed[key]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = len(_lowerCAmelCase )
else:
_lowerCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_lowerCAmelCase = observed_batch_size
_lowerCAmelCase = processed
_lowerCAmelCase = 0
while self._loader_batch_index < self.loader_batch_size:
_lowerCAmelCase = self.loader_batch_item()
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
if is_last:
return accumulator
else:
_lowerCAmelCase = processed
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
return accumulator
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = key
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
return self.dataset[i][self.key]
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = keya
_lowerCAmelCase = keya
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 664 | 1 |
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str )->Union[str, Any]:
_lowerCAmelCase = s.rsplit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return new.join(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->Any:
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->Optional[Any]:
_lowerCAmelCase = {}
_lowerCAmelCase = ['''group_1''', '''group_2''', '''group_3''', '''group_4''']
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
_lowerCAmelCase = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' )
if "res_path" in key:
_lowerCAmelCase = key.replace('''res_path.''' , '''res_path.path.''' )
if key.endswith('''.w''' ):
_lowerCAmelCase = rreplace(_SCREAMING_SNAKE_CASE , '''.w''' , '''.weight''' , 1 )
if key.endswith('''.b''' ):
_lowerCAmelCase = rreplace(_SCREAMING_SNAKE_CASE , '''.b''' , '''.bias''' , 1 )
_lowerCAmelCase = value.float()
return upgrade
@torch.no_grad()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : List[str]=True )->str:
from dall_e import Encoder
_lowerCAmelCase = Encoder()
if os.path.exists(_SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = torch.load(_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE )
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = ckpt.state_dict()
encoder.load_state_dict(_SCREAMING_SNAKE_CASE )
if config_path is not None:
_lowerCAmelCase = FlavaImageCodebookConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = FlavaImageCodebookConfig()
_lowerCAmelCase = FlavaImageCodebook(_SCREAMING_SNAKE_CASE ).eval()
_lowerCAmelCase = encoder.state_dict()
_lowerCAmelCase = upgrade_state_dict(_SCREAMING_SNAKE_CASE )
hf_model.load_state_dict(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = hf_model.state_dict()
_lowerCAmelCase = count_parameters(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = count_parameters(_SCREAMING_SNAKE_CASE )
assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(_SCREAMING_SNAKE_CASE )
else:
return hf_state_dict
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
UpperCAmelCase_ = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 664 |
import numpy
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
_lowerCAmelCase = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
_lowerCAmelCase = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
_lowerCAmelCase = numpy.random.rand(3 , 1 )
# Real output values provided.
_lowerCAmelCase = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
_lowerCAmelCase = numpy.zeros(output_array.shape )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def __lowerCAmelCase ( self ):
_lowerCAmelCase = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
_lowerCAmelCase = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
_lowerCAmelCase = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
for iteration in range(1 , iterations + 1 ):
_lowerCAmelCase = self.feedforward()
self.back_propagation()
if give_loss:
_lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F'''Iteration {iteration} Loss: {loss}''' )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = input_arr
_lowerCAmelCase = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray:
return 1 / (1 + numpy.exp(-value ))
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray:
return (value) * (1 - (value))
def UpperCAmelCase__ ( )->int:
_lowerCAmelCase = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
_lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
_lowerCAmelCase = TwoHiddenLayerNeuralNetwork(
input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 664 | 1 |
import qiskit
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )->qiskit.result.counts.Counts:
_lowerCAmelCase = qiskit.Aer.get_backend('''aer_simulator''' )
# Create a Quantum Circuit acting on the q register
_lowerCAmelCase = qiskit.QuantumCircuit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Apply X (NOT) Gate to Qubits 0 & 1
circuit.x(0 )
circuit.x(1 )
# Map the quantum measurement to the classical bits
circuit.measure([0, 1] , [0, 1] )
# Execute the circuit on the qasm simulator
_lowerCAmelCase = qiskit.execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=1_0_0_0 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = single_qubit_measure(2, 2)
print(F"""Total count for various states are: {counts}""")
| 664 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["LayoutXLMTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["LayoutXLMTokenizerFast"]
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 1 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 664 |
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = list(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
_lowerCAmelCase = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool:
_lowerCAmelCase = [
'''CUDA out of memory.''', # CUDA OOM
'''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU
'''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM
]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]:
if function is None:
return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = starting_batch_size
def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
_lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() )
# Guard against user error
if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1):
_lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] )
raise TypeError(
f'''Batch size was passed into `{function.__name__}` as the first argument when called.'''
f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' )
while True:
if batch_size == 0:
raise RuntimeError('''No executable batch size found, reached zero.''' )
try:
return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
except Exception as e:
if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 664 | 1 |
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = WavaVecaPhonemeCTCTokenizer
SCREAMING_SNAKE_CASE__ = False
def __lowerCAmelCase ( self ):
super().setUp()
_lowerCAmelCase = (
'''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː '''
'''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː '''
'''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 '''
'''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ '''
'''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ '''
'''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ '''
'''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ '''
'''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ '''
'''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ '''
'''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ '''
'''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ '''
'''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ '''
'''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4'''
).split(''' ''' )
_lowerCAmelCase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
_lowerCAmelCase = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''}
_lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + '''\n''' )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=20 , _lowerCAmelCase=5 ):
_lowerCAmelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase )) for i in range(len(_lowerCAmelCase ) )]
_lowerCAmelCase = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=_lowerCAmelCase ) , _lowerCAmelCase ) )
if max_length is not None and len(_lowerCAmelCase ) > max_length:
_lowerCAmelCase = toks[:max_length]
if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0:
while len(_lowerCAmelCase ) < min_length:
_lowerCAmelCase = toks + toks
# toks_str = [t[1] for t in toks]
_lowerCAmelCase = [t[0] for t in toks]
# Ensure consistency
_lowerCAmelCase = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
if " " not in output_txt and len(_lowerCAmelCase ) > 1:
_lowerCAmelCase = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase )
)
if with_prefix_space:
_lowerCAmelCase = ''' ''' + output_txt
_lowerCAmelCase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
return output_txt, output_ids
def __lowerCAmelCase ( self , **_lowerCAmelCase ):
kwargs.update(self.special_tokens_map )
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
# check adding a single token
tokenizer.add_tokens('''xxx''' )
_lowerCAmelCase = tokenizer('''m xxx ɪ''' , do_phonemize=_lowerCAmelCase ).input_ids
self.assertEqual(_lowerCAmelCase , [13, 392, 17] ) # xxx should be last token
tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] )
_lowerCAmelCase = tokenizer('''m aaa ɪ ccc''' , do_phonemize=_lowerCAmelCase ).input_ids
self.assertEqual(_lowerCAmelCase , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa
_lowerCAmelCase = tokenizer('''maɪ c''' , do_phonemize=_lowerCAmelCase ).input_ids
self.assertEqual(_lowerCAmelCase , [3, 200] ) # mai should be <unk> (=3)
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
_lowerCAmelCase = '''Hello how are you'''
_lowerCAmelCase = tokenizer.phonemize(_lowerCAmelCase , phonemizer_lang='''en-us''' )
self.assertEqual(_lowerCAmelCase , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
_lowerCAmelCase = '''Hello how are you'''
_lowerCAmelCase = tokenizer.phonemize(_lowerCAmelCase , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(_lowerCAmelCase ).input_ids , tokenizer(_lowerCAmelCase , do_phonemize=_lowerCAmelCase ).input_ids )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
_lowerCAmelCase = '''Hello how are you'''
_lowerCAmelCase = tokenizer.phonemize(_lowerCAmelCase , phonemizer_lang='''en-us''' )
_lowerCAmelCase = tokenizer.decode(tokenizer(_lowerCAmelCase ).input_ids )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
_lowerCAmelCase = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
_lowerCAmelCase = tokenizer.decode(sample_ids[0] )
_lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , batch_tokens[0] )
self.assertEqual(_lowerCAmelCase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
_lowerCAmelCase = '''Hello how are you'''
_lowerCAmelCase = tokenizer.phonemize(_lowerCAmelCase , phonemizer_lang='''en-us''' )
self.assertEqual(_lowerCAmelCase , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
_lowerCAmelCase = '''Hello how are you'''
_lowerCAmelCase = tokenizer.phonemize(_lowerCAmelCase , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(_lowerCAmelCase ).input_ids , tokenizer(_lowerCAmelCase , do_phonemize=_lowerCAmelCase ).input_ids )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
_lowerCAmelCase = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
_lowerCAmelCase = tokenizer.decode(sample_ids[0] )
_lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , batch_tokens[0] )
self.assertEqual(_lowerCAmelCase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
# decode with no word_del_token filter
_lowerCAmelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , filter_word_delimiter_token=_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , batch_tokens[0] )
self.assertEqual(_lowerCAmelCase , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
_lowerCAmelCase = '''Hello how are you'''
_lowerCAmelCase = tokenizer.phonemize(_lowerCAmelCase , phonemizer_lang='''en-us''' )
_lowerCAmelCase = tokenizer.decode(tokenizer(_lowerCAmelCase ).input_ids , filter_word_delimiter_token=_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
_lowerCAmelCase = '''Hello how are you'''
_lowerCAmelCase = tokenizer.phonemize(_lowerCAmelCase , phonemizer_lang='''en-us''' )
_lowerCAmelCase = tokenizer.decode(tokenizer(_lowerCAmelCase ).input_ids , filter_word_delimiter_token=_lowerCAmelCase )
self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=_lowerCAmelCase )
_lowerCAmelCase = '''Hello how are you'''
_lowerCAmelCase = tokenizer(_lowerCAmelCase , phonemizer_lang='''en-us''' ).input_ids
_lowerCAmelCase = tokenizer(_lowerCAmelCase , phonemizer_lang='''fr-fr''' ).input_ids
self.assertNotEqual(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
self.assertEqual(_lowerCAmelCase , '''ɛ l o h aʊ a ʁ j u''' )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
_lowerCAmelCase = '''Hello how Are you'''
_lowerCAmelCase = '''hello how are you'''
_lowerCAmelCase = tokenizer(_lowerCAmelCase ).input_ids
_lowerCAmelCase = tokenizer(_lowerCAmelCase ).input_ids
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
tokenizer.add_tokens(['''!''', '''?'''] )
tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} )
# fmt: off
_lowerCAmelCase = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394],
]
# fmt: on
_lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] )
@staticmethod
def __lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = [d[key] for d in offsets]
return retrieved_list
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_tokenizer(word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
_lowerCAmelCase = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
_lowerCAmelCase = tokenizer.decode(_lowerCAmelCase , output_char_offsets=_lowerCAmelCase , filter_word_delimiter_token=_lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys() ) , 2 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''char_offsets''' in outputs )
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
# check that order of chars is correct and identical for both outputs
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] )
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_tokenizer(word_delimiter_token='''|''' )
def check_list_tuples_equal(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) )
self.assertTrue(isinstance(outputs_list[0] , _lowerCAmelCase ) )
# transform list to ModelOutput
_lowerCAmelCase = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]} )
self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] )
def recursive_check(_lowerCAmelCase , _lowerCAmelCase ):
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
[recursive_check(_lowerCAmelCase , _lowerCAmelCase ) for la, la in zip(_lowerCAmelCase , _lowerCAmelCase )]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] )
# fmt: off
_lowerCAmelCase = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
_lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , output_char_offsets=_lowerCAmelCase )
_lowerCAmelCase = [tokenizer.decode(_lowerCAmelCase , output_char_offsets=_lowerCAmelCase ) for ids in sample_ids]
check_list_tuples_equal(_lowerCAmelCase , _lowerCAmelCase )
@unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' )
def __lowerCAmelCase ( self ):
pass
@unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' )
def __lowerCAmelCase ( self ):
pass
@unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' )
def __lowerCAmelCase ( self ):
pass
@unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' )
def __lowerCAmelCase ( self ):
pass
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_lowerCAmelCase = tokenizer.vocab_size
_lowerCAmelCase = len(_lowerCAmelCase )
self.assertNotEqual(_lowerCAmelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_lowerCAmelCase = ['''aaaaa bbbbbb''', '''cccccccccdddddddd''']
_lowerCAmelCase = tokenizer.add_tokens(_lowerCAmelCase )
_lowerCAmelCase = tokenizer.vocab_size
_lowerCAmelCase = len(_lowerCAmelCase )
self.assertNotEqual(_lowerCAmelCase , 0 )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , len(_lowerCAmelCase ) )
self.assertEqual(_lowerCAmelCase , all_size + len(_lowerCAmelCase ) )
_lowerCAmelCase = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=_lowerCAmelCase )
self.assertGreaterEqual(len(_lowerCAmelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
_lowerCAmelCase = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''}
_lowerCAmelCase = tokenizer.add_special_tokens(_lowerCAmelCase )
_lowerCAmelCase = tokenizer.vocab_size
_lowerCAmelCase = len(_lowerCAmelCase )
self.assertNotEqual(_lowerCAmelCase , 0 )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , len(_lowerCAmelCase ) )
self.assertEqual(_lowerCAmelCase , all_size_a + len(_lowerCAmelCase ) )
_lowerCAmelCase = tokenizer.encode(
'''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=_lowerCAmelCase )
self.assertGreaterEqual(len(_lowerCAmelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def __lowerCAmelCase ( self ):
pass
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def __lowerCAmelCase ( self ):
pass
def __lowerCAmelCase ( self ):
# The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which
# is not the case for Wav2Vec2PhonemeCTCTokenizer.
_lowerCAmelCase = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_lowerCAmelCase = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t''']
_lowerCAmelCase = tokenizer.convert_tokens_to_string(_lowerCAmelCase )
self.assertIsInstance(output['''text'''] , _lowerCAmelCase )
| 664 |
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_input_mask
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = num_labels
_lowerCAmelCase = num_choices
_lowerCAmelCase = scope
def __lowerCAmelCase ( self ):
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = None
if self.use_input_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase = None
if self.use_token_type_ids:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self ):
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_config()
_lowerCAmelCase = 300
return config
def __lowerCAmelCase ( self ):
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = self.prepare_config_and_inputs()
_lowerCAmelCase = True
_lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
_lowerCAmelCase = True
_lowerCAmelCase = MraModel(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , )
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , )
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_choices
_lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = ()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 )
def __lowerCAmelCase ( self ):
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase = type
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
@slow
def __lowerCAmelCase ( self ):
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@unittest.skip(reason='''MRA does not output attentions''' )
def __lowerCAmelCase ( self ):
return
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
_lowerCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
_lowerCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = 50_265
_lowerCAmelCase = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
_lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = 50_265
_lowerCAmelCase = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
| 664 | 1 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax.numpy as jnp
from jax import random
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils_flax import FlaxSchedulerMixin
@flax.struct.dataclass
class UpperCAmelCase :
# setable values
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None # sigma(t_i)
@classmethod
def __lowerCAmelCase ( cls ):
return cls()
@dataclass
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = 42
class UpperCAmelCase ( snake_case_ ,snake_case_ ):
@property
def __lowerCAmelCase ( self ):
return True
@register_to_config
def __init__( self , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 100 , _lowerCAmelCase = 1.007 , _lowerCAmelCase = 80 , _lowerCAmelCase = 0.05 , _lowerCAmelCase = 50 , ):
pass
def __lowerCAmelCase ( self ):
return KarrasVeSchedulerState.create()
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = () ):
_lowerCAmelCase = jnp.arange(0 , _lowerCAmelCase )[::-1].copy()
_lowerCAmelCase = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=_lowerCAmelCase , schedule=jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) , timesteps=_lowerCAmelCase , )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
if self.config.s_min <= sigma <= self.config.s_max:
_lowerCAmelCase = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 )
else:
_lowerCAmelCase = 0
# sample eps ~ N(0, S_noise^2 * I)
_lowerCAmelCase = random.split(_lowerCAmelCase , num=1 )
_lowerCAmelCase = self.config.s_noise * random.normal(key=_lowerCAmelCase , shape=sample.shape )
_lowerCAmelCase = sigma + gamma * sigma
_lowerCAmelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ):
_lowerCAmelCase = sample_hat + sigma_hat * model_output
_lowerCAmelCase = (sample_hat - pred_original_sample) / sigma_hat
_lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=_lowerCAmelCase , derivative=_lowerCAmelCase , state=_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ):
_lowerCAmelCase = sample_prev + sigma_prev * model_output
_lowerCAmelCase = (sample_prev - pred_original_sample) / sigma_prev
_lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=_lowerCAmelCase , derivative=_lowerCAmelCase , state=_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
raise NotImplementedError()
| 664 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 664 | 1 |
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_input_mask
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = num_labels
_lowerCAmelCase = num_choices
_lowerCAmelCase = scope
def __lowerCAmelCase ( self ):
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = None
if self.use_input_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase = None
if self.use_token_type_ids:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self ):
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_config()
_lowerCAmelCase = 300
return config
def __lowerCAmelCase ( self ):
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = self.prepare_config_and_inputs()
_lowerCAmelCase = True
_lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
_lowerCAmelCase = True
_lowerCAmelCase = MraModel(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , )
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , )
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_choices
_lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = ()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 )
def __lowerCAmelCase ( self ):
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase = type
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
@slow
def __lowerCAmelCase ( self ):
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@unittest.skip(reason='''MRA does not output attentions''' )
def __lowerCAmelCase ( self ):
return
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
_lowerCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
_lowerCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = 50_265
_lowerCAmelCase = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
_lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = 50_265
_lowerCAmelCase = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
| 664 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ):
_lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18}
_lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = num_frames
_lowerCAmelCase = image_size
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean
_lowerCAmelCase = image_std
_lowerCAmelCase = crop_size
def __lowerCAmelCase ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self ):
_lowerCAmelCase = VivitImageProcessingTester(self )
@property
def __lowerCAmelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 664 | 1 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->List[str]:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_lowerCAmelCase = k.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if k.startswith('''encoder''' ):
_lowerCAmelCase = k.replace('''.attn''' , '''.self_attn''' )
_lowerCAmelCase = k.replace('''norm1''' , '''self_attn_layer_norm''' )
_lowerCAmelCase = k.replace('''norm2''' , '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_lowerCAmelCase = k.replace('''norm1''' , '''self_attn_layer_norm''' )
_lowerCAmelCase = k.replace('''norm2''' , '''encoder_attn_layer_norm''' )
_lowerCAmelCase = k.replace('''norm3''' , '''final_layer_norm''' )
return k
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->Optional[int]:
_lowerCAmelCase = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_lowerCAmelCase = sd.pop(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = k.replace('''layernorm_embedding''' , '''layer_norm''' )
assert new_k not in sd
_lowerCAmelCase = v
UpperCAmelCase_ = ["START"]
@torch.no_grad()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] )->Optional[int]:
_lowerCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )
_lowerCAmelCase = model['''model''']
_lowerCAmelCase = BlenderbotConfig.from_json_file(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = BlenderbotForConditionalGeneration(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = m.model.state_dict().keys()
_lowerCAmelCase = []
_lowerCAmelCase = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_lowerCAmelCase = rename_state_dict_key(_SCREAMING_SNAKE_CASE )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_lowerCAmelCase = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(_SCREAMING_SNAKE_CASE )
m.model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
m.half()
m.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
UpperCAmelCase_ = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 664 |
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n"
UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n"
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]:
def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ):
_lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE )
def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ):
return " ".join(text.split() )
def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ):
_lowerCAmelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_SCREAMING_SNAKE_CASE : Optional[int] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any:
return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int:
_lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]:
_lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams]
_lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = Counter()
for sgram, scount in sgramcounter.items():
_lowerCAmelCase = scount * numref
_lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = Counter()
for cgram, ccount in cgramcounter.items():
_lowerCAmelCase = ccount * numref
# KEEP
_lowerCAmelCase = sgramcounter_rep & cgramcounter_rep
_lowerCAmelCase = keepgramcounter_rep & rgramcounter
_lowerCAmelCase = sgramcounter_rep & rgramcounter
_lowerCAmelCase = 0
_lowerCAmelCase = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_lowerCAmelCase = 1
_lowerCAmelCase = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_lowerCAmelCase = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_lowerCAmelCase = sgramcounter_rep - cgramcounter_rep
_lowerCAmelCase = delgramcounter_rep - rgramcounter
_lowerCAmelCase = sgramcounter_rep - rgramcounter
_lowerCAmelCase = 0
_lowerCAmelCase = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_lowerCAmelCase = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE )
# ADDITION
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_lowerCAmelCase = 1
_lowerCAmelCase = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
if addscore_precision > 0 or addscore_recall > 0:
_lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]:
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = ssent.split(''' ''' )
_lowerCAmelCase = csent.split(''' ''' )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
for rsent in rsents:
_lowerCAmelCase = rsent.split(''' ''' )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
ragramslist.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4
_lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4
_lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int:
# Normalization is requried for the ASSET dataset (one of the primary
# datasets in sentence simplification) to allow using space
# to split the sentence. Even though Wiki-Auto and TURK datasets,
# do not require normalization, we do it for consistency.
# Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
# [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7
if lowercase:
_lowerCAmelCase = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE )
elif tokenizer == "moses":
_lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE )
elif tokenizer == "penn":
_lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = sentence
if not return_str:
_lowerCAmelCase = normalized_sent.split()
return normalized_sent
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str:
if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_lowerCAmelCase = 0
for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] )
_lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE )
return 1_0_0 * sari_score
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str:
_lowerCAmelCase = len(references[0] )
if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )]
_lowerCAmelCase = sacrebleu.corpus_bleu(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
def __lowerCAmelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = {}
result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} )
result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} )
return result
| 664 | 1 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class UpperCAmelCase :
@staticmethod
def __lowerCAmelCase ( *_lowerCAmelCase , **_lowerCAmelCase ):
pass
@is_pipeline_test
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
@require_torch
def __lowerCAmelCase ( self ):
_lowerCAmelCase = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , )
_lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_lowerCAmelCase = image_classifier(_lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(_lowerCAmelCase ) , [
[{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}],
[{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}],
] , )
_lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , [
[
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
],
[
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
],
[
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
],
[
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
],
[
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
],
] , )
@require_tf
def __lowerCAmelCase ( self ):
_lowerCAmelCase = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' )
_lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_lowerCAmelCase = image_classifier(_lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , )
_lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , [
[
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
],
[
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
],
[
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
],
[
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
],
[
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
{'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )},
],
] , )
@slow
@require_torch
def __lowerCAmelCase ( self ):
_lowerCAmelCase = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , )
# This is an image of 2 cats with remotes and no planes
_lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_lowerCAmelCase = image_classifier(_lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , [
{'''score''': 0.511, '''label''': '''remote'''},
{'''score''': 0.485, '''label''': '''cat'''},
{'''score''': 0.004, '''label''': '''plane'''},
] , )
_lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , [
[
{'''score''': 0.511, '''label''': '''remote'''},
{'''score''': 0.485, '''label''': '''cat'''},
{'''score''': 0.004, '''label''': '''plane'''},
],
]
* 5 , )
@slow
@require_tf
def __lowerCAmelCase ( self ):
_lowerCAmelCase = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' )
# This is an image of 2 cats with remotes and no planes
_lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_lowerCAmelCase = image_classifier(_lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , [
{'''score''': 0.511, '''label''': '''remote'''},
{'''score''': 0.485, '''label''': '''cat'''},
{'''score''': 0.004, '''label''': '''plane'''},
] , )
_lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , [
[
{'''score''': 0.511, '''label''': '''remote'''},
{'''score''': 0.485, '''label''': '''cat'''},
{'''score''': 0.004, '''label''': '''plane'''},
],
]
* 5 , )
| 664 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["DeiTFeatureExtractor"]
UpperCAmelCase_ = ["DeiTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DeiTForImageClassification",
"DeiTForImageClassificationWithTeacher",
"DeiTForMaskedImageModeling",
"DeiTModel",
"DeiTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDeiTForImageClassification",
"TFDeiTForImageClassificationWithTeacher",
"TFDeiTForMaskedImageModeling",
"TFDeiTModel",
"TFDeiTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 1 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor'''
SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase )
if text is None and audios is None:
raise ValueError('''You have to specify either text or audios. Both cannot be none.''' )
if text is not None:
_lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if audios is not None:
_lowerCAmelCase = self.feature_extractor(
_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is not None and audios is not None:
_lowerCAmelCase = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer.model_input_names
_lowerCAmelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 664 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
_lowerCAmelCase = [0] * n
_lowerCAmelCase = [False] * n
_lowerCAmelCase = [False] * n
def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ):
if parent == root:
out_edge_count += 1
_lowerCAmelCase = True
_lowerCAmelCase = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
_lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
_lowerCAmelCase = True
# AP found via cycle
if at == low[to]:
_lowerCAmelCase = True
else:
_lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE )
return out_edge_count
for i in range(_SCREAMING_SNAKE_CASE ):
if not visited[i]:
_lowerCAmelCase = 0
_lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = out_edge_count > 1
for x in range(len(_SCREAMING_SNAKE_CASE ) ):
if is_art[x] is True:
print(_SCREAMING_SNAKE_CASE )
# Adjacency list of graph
UpperCAmelCase_ = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 664 | 1 |
import numpy as np
from scipy.spatial.distance import cdist
from sklearn.metrics import fa_score
import datasets
UpperCAmelCase_ = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n"
UpperCAmelCase_ = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n"
UpperCAmelCase_ = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n"
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] )->Dict:
return float((preds == labels).mean() )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple )->Dict:
_lowerCAmelCase = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE ) )
return {
"accuracy": acc,
"f1": fa,
}
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str )->Optional[int]:
_lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = en_sentvecs.shape[0]
# mean centering
_lowerCAmelCase = en_sentvecs - np.mean(_SCREAMING_SNAKE_CASE , axis=0 )
_lowerCAmelCase = in_sentvecs - np.mean(_SCREAMING_SNAKE_CASE , axis=0 )
_lowerCAmelCase = cdist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''cosine''' )
_lowerCAmelCase = np.array(range(_SCREAMING_SNAKE_CASE ) )
_lowerCAmelCase = sim.argsort(axis=1 )[:, :1_0]
_lowerCAmelCase = np.any(preds == actual[:, None] , axis=1 )
return float(matches.mean() )
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
def __lowerCAmelCase ( self ):
if self.config_name not in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"cvit-mkb-clsr",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
"wiki-ner",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '''
'''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '''
'''"wiki-ner"]''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' )
if self.config_name != '''cvit-mkb-clsr'''
else datasets.Sequence(datasets.Value('''float32''' ) ),
'''references''': datasets.Value('''int64''' )
if self.config_name != '''cvit-mkb-clsr'''
else datasets.Sequence(datasets.Value('''float32''' ) ),
} ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
if self.config_name == "cvit-mkb-clsr":
return {"precision@10": precision_at_aa(_lowerCAmelCase , _lowerCAmelCase )}
elif self.config_name in ["wiki-ner"]:
return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase )
elif self.config_name in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
]:
return {"accuracy": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '''
'''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '''
'''"wiki-ner"]''' )
| 664 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class UpperCAmelCase ( snake_case_ ):
def __lowerCAmelCase ( self ):
_lowerCAmelCase = SMALL_MODEL_IDENTIFIER
_lowerCAmelCase = '''pt'''
_lowerCAmelCase = '''tf'''
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase )
model_tf.save_pretrained(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''mock_framework'''
# Framework provided - return whatever the user provides
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_lowerCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_lowerCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_lowerCAmelCase , self.framework_pt )
# Both not in environment -> raise error
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ):
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
| 664 | 1 |
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class UpperCAmelCase :
SCREAMING_SNAKE_CASE__ = None
@experimental
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] )->str:
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return _map_with_joblib(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->Union[str, Any]:
_lowerCAmelCase = num_proc if num_proc <= len(_SCREAMING_SNAKE_CASE ) else len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = [] # We organize the splits ourselve (contiguous splits)
for index in range(_SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) // num_proc
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) % num_proc
_lowerCAmelCase = div * index + min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(_SCREAMING_SNAKE_CASE ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
f'''Error dividing inputs iterable among processes. '''
f'''Total number of objects {len(_SCREAMING_SNAKE_CASE )}, '''
f'''length: {sum(len(i[1] ) for i in split_kwds )}''' )
logger.info(
f'''Spawning {num_proc} processes for {len(_SCREAMING_SNAKE_CASE )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' )
_lowerCAmelCase , _lowerCAmelCase = None, None
if not disable_tqdm:
_lowerCAmelCase , _lowerCAmelCase = (RLock(),), tqdm.set_lock
with Pool(_SCREAMING_SNAKE_CASE , initargs=_SCREAMING_SNAKE_CASE , initializer=_SCREAMING_SNAKE_CASE ) as pool:
_lowerCAmelCase = pool.map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
logger.info(f'''Finished {num_proc} processes''' )
_lowerCAmelCase = [obj for proc_res in mapped for obj in proc_res]
logger.info(f'''Unpacked {len(_SCREAMING_SNAKE_CASE )} objects''' )
return mapped
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]:
# progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib,
# and it requires monkey-patching joblib internal classes which is subject to change
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=_SCREAMING_SNAKE_CASE ):
return joblib.Parallel()(
joblib.delayed(_SCREAMING_SNAKE_CASE )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->List[Any]:
_lowerCAmelCase = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
_lowerCAmelCase = None
| 664 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = DiTPipeline
SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ = False
def __lowerCAmelCase ( self ):
torch.manual_seed(0 )
_lowerCAmelCase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , )
_lowerCAmelCase = AutoencoderKL()
_lowerCAmelCase = DDIMScheduler()
_lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler}
return components
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ):
if str(_lowerCAmelCase ).startswith('''mps''' ):
_lowerCAmelCase = torch.manual_seed(_lowerCAmelCase )
else:
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
_lowerCAmelCase = {
'''class_labels''': [1],
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''cpu'''
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase )
_lowerCAmelCase = pipe(**_lowerCAmelCase ).images
_lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
_lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] )
_lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowerCAmelCase , 1E-3 )
def __lowerCAmelCase ( self ):
self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class UpperCAmelCase ( unittest.TestCase ):
def __lowerCAmelCase ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' )
pipe.to('''cuda''' )
_lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf''']
_lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase )
_lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images
for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = load_numpy(
F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-2
def __lowerCAmelCase ( self ):
_lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('''cuda''' )
_lowerCAmelCase = ['''vase''', '''umbrella''']
_lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images
for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
F'''/dit/{word}_512.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-1
| 664 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ = {
"configuration_mobilebert": [
"MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MobileBertConfig",
"MobileBertOnnxConfig",
],
"tokenization_mobilebert": ["MobileBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["MobileBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileBertForMaskedLM",
"MobileBertForMultipleChoice",
"MobileBertForNextSentencePrediction",
"MobileBertForPreTraining",
"MobileBertForQuestionAnswering",
"MobileBertForSequenceClassification",
"MobileBertForTokenClassification",
"MobileBertLayer",
"MobileBertModel",
"MobileBertPreTrainedModel",
"load_tf_weights_in_mobilebert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFMobileBertForMaskedLM",
"TFMobileBertForMultipleChoice",
"TFMobileBertForNextSentencePrediction",
"TFMobileBertForPreTraining",
"TFMobileBertForQuestionAnswering",
"TFMobileBertForSequenceClassification",
"TFMobileBertForTokenClassification",
"TFMobileBertMainLayer",
"TFMobileBertModel",
"TFMobileBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mobilebert import (
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileBertConfig,
MobileBertOnnxConfig,
)
from .tokenization_mobilebert import MobileBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mobilebert_fast import MobileBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilebert import (
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilebert import (
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertMainLayer,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
UpperCAmelCase_ = {"UserAgent": UserAgent().random}
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict:
_lowerCAmelCase = script.contents[0]
_lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase ):
_lowerCAmelCase = F'''https://www.instagram.com/{username}/'''
_lowerCAmelCase = self.get_json()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text
_lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self ):
return F'''{self.__class__.__name__}(\'{self.username}\')'''
def __str__( self ):
return F'''{self.fullname} ({self.username}) is {self.biography}'''
@property
def __lowerCAmelCase ( self ):
return self.user_data["username"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["full_name"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["biography"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["business_email"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["external_url"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_followed_by"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_follow"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["profile_pic_url_hd"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["is_verified"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["is_private"]
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None:
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
_lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 1_5_0
assert instagram_user.number_of_followers > 1_2_0_0_0_0
assert instagram_user.number_of_followings > 1_5
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ = InstagramUser("github")
print(instagram_user)
print(F"""{instagram_user.number_of_posts = }""")
print(F"""{instagram_user.number_of_followers = }""")
print(F"""{instagram_user.number_of_followings = }""")
print(F"""{instagram_user.email = }""")
print(F"""{instagram_user.website = }""")
print(F"""{instagram_user.profile_picture_url = }""")
print(F"""{instagram_user.is_verified = }""")
print(F"""{instagram_user.is_private = }""")
| 664 | 1 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
UpperCAmelCase_ = namedtuple("covid_data", "cases deaths recovered")
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict = "https://www.worldometers.info/coronavirus/" )->covid_data:
_lowerCAmelCase = '''//div[@class = \"maincounter-number\"]/span/text()'''
return covid_data(*html.fromstring(requests.get(SCREAMING_SNAKE_CASE_ ).content ).xpath(SCREAMING_SNAKE_CASE_ ) )
UpperCAmelCase_ = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 700 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]:
_lowerCAmelCase = int(_SCREAMING_SNAKE_CASE )
# Initialize Result
_lowerCAmelCase = []
# Traverse through all denomination
for denomination in reversed(_SCREAMING_SNAKE_CASE ):
# Find denominations
while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ):
total_value -= int(_SCREAMING_SNAKE_CASE )
answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
UpperCAmelCase_ = []
UpperCAmelCase_ = "0"
if (
input("Do you want to enter your denominations ? (yY/n): ").strip().lower()
== "y"
):
UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip())
for i in range(0, n):
denominations.append(int(input(F"""Denomination {i}: """).strip()))
UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip()
else:
# All denominations of Indian Currency if user does not enter
UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0]
UpperCAmelCase_ = input("Enter the change you want to make: ").strip()
if int(value) == 0 or int(value) < 0:
print("The total value cannot be zero or negative.")
else:
print(F"""Following is minimal change for {value}: """)
UpperCAmelCase_ = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=" ")
| 664 | 0 |
import argparse
import json
from tqdm import tqdm
def UpperCAmelCase__ ( )->Union[str, Any]:
_lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--src_path''' , type=__A , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , )
parser.add_argument(
'''--evaluation_set''' , type=__A , help='''where to store parsed evaluation_set file''' , )
parser.add_argument(
'''--gold_data_path''' , type=__A , help='''where to store parsed gold_data_path file''' , )
_lowerCAmelCase = parser.parse_args()
with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open(
args.gold_data_path , '''w''' ) as gold_file:
_lowerCAmelCase = json.load(__A )
for dpr_record in tqdm(__A ):
_lowerCAmelCase = dpr_record['''question''']
_lowerCAmelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']]
eval_file.write(question + '''\n''' )
gold_file.write('''\t'''.join(__A ) + '''\n''' )
if __name__ == "__main__":
main()
| 701 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict:
# Initialise PyTorch model
_lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE )
print(f'''Building PyTorch model from configuration: {config}''' )
_lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--albert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained ALBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 664 | 0 |
from heapq import heappop, heappush
import numpy as np
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , )->tuple[float | int, list[tuple[int, int]]]:
_lowerCAmelCase , _lowerCAmelCase = grid.shape
_lowerCAmelCase = [-1, 1, 0, 0]
_lowerCAmelCase = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
_lowerCAmelCase , _lowerCAmelCase = [(0, source)], set()
_lowerCAmelCase = np.full((rows, cols) , np.inf )
_lowerCAmelCase = 0
_lowerCAmelCase = np.empty((rows, cols) , dtype=_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = None
while queue:
((_lowerCAmelCase) , (_lowerCAmelCase)) = heappop(_SCREAMING_SNAKE_CASE )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
_lowerCAmelCase = []
while (x, y) != source:
path.append((x, y) )
_lowerCAmelCase , _lowerCAmelCase = predecessors[x, y]
path.append(_SCREAMING_SNAKE_CASE ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
_lowerCAmelCase , _lowerCAmelCase = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
_lowerCAmelCase = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(_SCREAMING_SNAKE_CASE , (dist + 1, (nx, ny)) )
_lowerCAmelCase = dist + 1
_lowerCAmelCase = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 702 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("1.0.0a"):
raise Exception("requires fairseq >= 1.0.0a")
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = "Hello world! cécé herlolip"
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]:
_lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE )
roberta.eval() # disable dropout
_lowerCAmelCase = roberta.model.encoder.sentence_encoder
_lowerCAmelCase = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , )
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
_lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight
_lowerCAmelCase = roberta_sent_encoder.embed_positions.weight
_lowerCAmelCase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
_lowerCAmelCase = roberta_sent_encoder.layer_norm.weight
_lowerCAmelCase = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
_lowerCAmelCase = model.roberta.encoder.layer[i]
_lowerCAmelCase = roberta_sent_encoder.layers[i]
_lowerCAmelCase = layer.attention
_lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight
_lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias
# self attention
_lowerCAmelCase = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
_lowerCAmelCase = roberta_layer.self_attn.q_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.q_proj.bias
_lowerCAmelCase = roberta_layer.self_attn.k_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.k_proj.bias
_lowerCAmelCase = roberta_layer.self_attn.v_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.v_proj.bias
# self-attention output
_lowerCAmelCase = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
_lowerCAmelCase = roberta_layer.self_attn.out_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
_lowerCAmelCase = roberta_layer.final_layer_norm.weight
_lowerCAmelCase = roberta_layer.final_layer_norm.bias
# intermediate
_lowerCAmelCase = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
_lowerCAmelCase = roberta_layer.fca.weight
_lowerCAmelCase = roberta_layer.fca.bias
# output
_lowerCAmelCase = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
_lowerCAmelCase = roberta_layer.fca.weight
_lowerCAmelCase = roberta_layer.fca.bias
# end of layer
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
_lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias
_lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias
_lowerCAmelCase = roberta.model.encoder.lm_head.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
_lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
_lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0]
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) )
else:
_lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0]
print(our_output.shape , their_output.shape )
_lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
_lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
UpperCAmelCase_ = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 664 | 0 |
'''simple docstring'''
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )->float:
if principal <= 0:
raise Exception('''Principal borrowed must be > 0''' )
if rate_per_annum < 0:
raise Exception('''Rate of interest must be >= 0''' )
if years_to_repay <= 0 or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise Exception('''Years to repay must be an integer > 0''' )
# Yearly rate is divided by 12 to get monthly rate
_lowerCAmelCase = rate_per_annum / 1_2
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
_lowerCAmelCase = years_to_repay * 1_2
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 703 |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
_lowerCAmelCase = []
for i in range(_SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = i / num_diffusion_timesteps
_lowerCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) )
return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class UpperCAmelCase ( snake_case_ ,snake_case_ ):
SCREAMING_SNAKE_CASE__ = 1
@register_to_config
def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ):
if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None:
_lowerCAmelCase = (
'''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.'''
)
deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase )
_lowerCAmelCase = kwargs['''set_alpha_to_one''']
if trained_betas is not None:
_lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
_lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_lowerCAmelCase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase )
else:
raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' )
_lowerCAmelCase = 1.0 - self.betas
_lowerCAmelCase = torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
_lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
_lowerCAmelCase = 1.0
# setable values
_lowerCAmelCase = None
_lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
return sample
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:'''
F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle'''
F''' maximal {self.config.num_train_timesteps} timesteps.''' )
_lowerCAmelCase = num_inference_steps
_lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa )
_lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase )
self.timesteps += self.config.steps_offset
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ):
# 1. get previous step value (=t+1)
_lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
_lowerCAmelCase = self.alphas_cumprod[timestep]
_lowerCAmelCase = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
_lowerCAmelCase = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
_lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
_lowerCAmelCase = model_output
elif self.config.prediction_type == "sample":
_lowerCAmelCase = model_output
_lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
_lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
_lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or'''
''' `v_prediction`''' )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
_lowerCAmelCase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase )
def __len__( self ):
return self.config.num_train_timesteps
| 664 | 0 |
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
UpperCAmelCase_ = 1.054571817E-34 # unit of ℏ : J * s
UpperCAmelCase_ = 3E8 # unit of c : m * s^-1
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] )->dict[str, float]:
if (force, area, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if force < 0:
raise ValueError('''Magnitude of force can not be negative''' )
if distance < 0:
raise ValueError('''Distance can not be negative''' )
if area < 0:
raise ValueError('''Area can not be negative''' )
if force == 0:
_lowerCAmelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
2_4_0 * (distance) ** 4
)
return {"force": force}
elif area == 0:
_lowerCAmelCase = (2_4_0 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
_lowerCAmelCase = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('''One and only one argument must be 0''' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 704 |
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCAmelCase_ = {
"configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"],
"tokenization_cpmant": ["CpmAntTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST",
"CpmAntForCausalLM",
"CpmAntModel",
"CpmAntPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 0 |
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class UpperCAmelCase ( lowercase__ ,lowercase__ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = IFInpaintingSuperResolutionPipeline
SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} )
SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def __lowerCAmelCase ( self ):
return self._get_superresolution_dummy_components()
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ):
if str(__lowerCamelCase ).startswith('''mps''' ):
_lowerCAmelCase = torch.manual_seed(__lowerCamelCase )
else:
_lowerCAmelCase = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
_lowerCAmelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
_lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
_lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
_lowerCAmelCase = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def __lowerCAmelCase ( self ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def __lowerCAmelCase ( self ):
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __lowerCAmelCase ( self ):
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __lowerCAmelCase ( self ):
self._test_save_load_local()
def __lowerCAmelCase ( self ):
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 705 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor'''
SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase )
if text is None and audios is None:
raise ValueError('''You have to specify either text or audios. Both cannot be none.''' )
if text is not None:
_lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if audios is not None:
_lowerCAmelCase = self.feature_extractor(
_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is not None and audios is not None:
_lowerCAmelCase = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer.model_input_names
_lowerCAmelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 664 | 0 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCAmelCase ( __lowerCamelCase ):
SCREAMING_SNAKE_CASE__ = ['''image_processor''', '''tokenizer''']
SCREAMING_SNAKE_CASE__ = '''AutoImageProcessor'''
SCREAMING_SNAKE_CASE__ = '''AutoTokenizer'''
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
super().__init__(UpperCAmelCase_ , UpperCAmelCase_ )
_lowerCAmelCase = self.image_processor
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
_lowerCAmelCase = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )
if images is not None:
_lowerCAmelCase = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )
if text is not None and images is not None:
_lowerCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ )
@property
def __lowerCAmelCase ( self ):
return ["input_ids", "attention_mask", "pixel_values"]
| 706 |
from __future__ import annotations
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list:
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = int(max_value - min_value ) + 1
_lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 664 | 0 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
UpperCAmelCase_ = pytest.mark.integration
UpperCAmelCase_ = {"comet"}
UpperCAmelCase_ = importlib.util.find_spec("fairseq") is not None
UpperCAmelCase_ = {"code_eval"}
UpperCAmelCase_ = os.name == "nt"
UpperCAmelCase_ = {"bertscore", "frugalscore", "perplexity"}
UpperCAmelCase_ = importlib.util.find_spec("transformers") is not None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->Tuple:
@wraps(_SCREAMING_SNAKE_CASE )
def wrapper(self : Optional[Any] , _SCREAMING_SNAKE_CASE : Any ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('''"test requires Fairseq"''' )
else:
test_case(self , _SCREAMING_SNAKE_CASE )
return wrapper
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->Dict:
@wraps(_SCREAMING_SNAKE_CASE )
def wrapper(self : Dict , _SCREAMING_SNAKE_CASE : List[Any] ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('''"test requires transformers"''' )
else:
test_case(self , _SCREAMING_SNAKE_CASE )
return wrapper
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->Tuple:
@wraps(_SCREAMING_SNAKE_CASE )
def wrapper(self : Optional[int] , _SCREAMING_SNAKE_CASE : str ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('''"test not supported on Windows"''' )
else:
test_case(self , _SCREAMING_SNAKE_CASE )
return wrapper
def UpperCAmelCase__ ( )->List[str]:
_lowerCAmelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ )
@local
class UpperCAmelCase ( parameterized.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = {}
SCREAMING_SNAKE_CASE__ = None
@pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' )
@pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = '[...]'
_lowerCAmelCase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('''metrics''' , _lowercase ) ).module_path )
_lowerCAmelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=_lowercase )
# check parameters
_lowerCAmelCase = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(_lowercase , metric_module.__name__ ):
with self.use_local_metrics():
try:
_lowerCAmelCase = doctest.testmod(_lowercase , verbose=_lowercase , raise_on_error=_lowercase )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = '[...]'
_lowerCAmelCase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('''metrics''' , _lowercase ) ).module_path )
# run doctest
with self.use_local_metrics():
_lowerCAmelCase = doctest.testmod(_lowercase , verbose=_lowercase , raise_on_error=_lowercase )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](_lowercase ):
yield
else:
yield
@contextmanager
def __lowerCAmelCase ( self ):
def load_local_metric(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ):
return load_metric(os.path.join('''metrics''' , _lowercase ) , *_lowercase , **_lowercase )
with patch('''datasets.load_metric''' ) as mock_load_metric:
_lowerCAmelCase = load_local_metric
yield
@classmethod
def __lowerCAmelCase ( cls , _lowerCAmelCase ):
def wrapper(_lowerCAmelCase ):
_lowerCAmelCase = contextmanager(_lowercase )
_lowerCAmelCase = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('''bleurt''' )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->Any:
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags
class UpperCAmelCase ( UpperCAmelCase_ ):
'''simple docstring'''
def __lowerCAmelCase ( self , _lowerCAmelCase ):
assert len(input_dict['''input_ids'''] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor:
_lowerCAmelCase = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('''bertscore''' )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] )->Tuple:
import torch
def bert_cos_score_idf(_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , *_SCREAMING_SNAKE_CASE : Tuple , **_SCREAMING_SNAKE_CASE : int ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(_SCREAMING_SNAKE_CASE ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('''bert_score.scorer.get_model''' ), patch(
'''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf:
_lowerCAmelCase = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('''comet''' )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->Any:
def load_from_checkpoint(_SCREAMING_SNAKE_CASE : Any ):
class UpperCAmelCase :
'''simple docstring'''
def __lowerCAmelCase ( self , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ):
assert len(_lowercase ) == 2
_lowerCAmelCase = [0.19, 0.92]
return scores, sum(_lowercase ) / len(_lowercase )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('''comet.download_model''' ) as mock_download_model:
_lowerCAmelCase = None
with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint:
_lowerCAmelCase = load_from_checkpoint
yield
def UpperCAmelCase__ ( )->Optional[Any]:
_lowerCAmelCase = load_metric(os.path.join('''metrics''' , '''seqeval''' ) )
_lowerCAmelCase = 'ERROR'
_lowerCAmelCase = f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'''
with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(_SCREAMING_SNAKE_CASE ) ):
metric.compute(predictions=[] , references=[] , scheme=_SCREAMING_SNAKE_CASE )
| 707 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
def UpperCAmelCase__ ( )->Any:
_lowerCAmelCase = _ask_options(
'''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
_lowerCAmelCase = get_sagemaker_input()
else:
_lowerCAmelCase = get_cluster_input()
return config
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str:
if subparsers is not None:
_lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE )
parser.add_argument(
'''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=_SCREAMING_SNAKE_CASE )
return parser
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str:
_lowerCAmelCase = get_user_input()
if args.config_file is not None:
_lowerCAmelCase = args.config_file
else:
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
os.makedirs(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = default_yaml_config_file
if config_file.endswith('''.json''' ):
config.to_json_file(_SCREAMING_SNAKE_CASE )
else:
config.to_yaml_file(_SCREAMING_SNAKE_CASE )
print(f'''accelerate configuration saved at {config_file}''' )
def UpperCAmelCase__ ( )->List[Any]:
_lowerCAmelCase = config_command_parser()
_lowerCAmelCase = parser.parse_args()
config_command(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 664 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"microsoft/table-transformer-detection": (
"https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json"
),
}
class UpperCAmelCase ( __A ):
SCREAMING_SNAKE_CASE__ = '''table-transformer'''
SCREAMING_SNAKE_CASE__ = ['''past_key_values''']
SCREAMING_SNAKE_CASE__ = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=3 , _lowerCAmelCase=100 , _lowerCAmelCase=6 , _lowerCAmelCase=2_048 , _lowerCAmelCase=8 , _lowerCAmelCase=6 , _lowerCAmelCase=2_048 , _lowerCAmelCase=8 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=256 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1.0 , _lowerCAmelCase=False , _lowerCAmelCase="sine" , _lowerCAmelCase="resnet50" , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=1 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=1 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=0.1 , **_lowerCAmelCase , ):
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_lowerCAmelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = backbone_config.get('''model_type''' )
_lowerCAmelCase = CONFIG_MAPPING[backbone_model_type]
_lowerCAmelCase = config_class.from_dict(_lowerCAmelCase )
# set timm attributes to None
_lowerCAmelCase = None, None, None
_lowerCAmelCase = use_timm_backbone
_lowerCAmelCase = backbone_config
_lowerCAmelCase = num_channels
_lowerCAmelCase = num_queries
_lowerCAmelCase = d_model
_lowerCAmelCase = encoder_ffn_dim
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = encoder_attention_heads
_lowerCAmelCase = decoder_ffn_dim
_lowerCAmelCase = decoder_layers
_lowerCAmelCase = decoder_attention_heads
_lowerCAmelCase = dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = activation_function
_lowerCAmelCase = init_std
_lowerCAmelCase = init_xavier_std
_lowerCAmelCase = encoder_layerdrop
_lowerCAmelCase = decoder_layerdrop
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = auxiliary_loss
_lowerCAmelCase = position_embedding_type
_lowerCAmelCase = backbone
_lowerCAmelCase = use_pretrained_backbone
_lowerCAmelCase = dilation
# Hungarian matcher
_lowerCAmelCase = class_cost
_lowerCAmelCase = bbox_cost
_lowerCAmelCase = giou_cost
# Loss coefficients
_lowerCAmelCase = mask_loss_coefficient
_lowerCAmelCase = dice_loss_coefficient
_lowerCAmelCase = bbox_loss_coefficient
_lowerCAmelCase = giou_loss_coefficient
_lowerCAmelCase = eos_coefficient
super().__init__(is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase )
@property
def __lowerCAmelCase ( self ):
return self.encoder_attention_heads
@property
def __lowerCAmelCase ( self ):
return self.d_model
class UpperCAmelCase ( __A ):
SCREAMING_SNAKE_CASE__ = version.parse('''1.11''' )
@property
def __lowerCAmelCase ( self ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def __lowerCAmelCase ( self ):
return 1E-5
@property
def __lowerCAmelCase ( self ):
return 12
| 708 |
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase_ = 1_0
UpperCAmelCase_ = 2_5_6
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]:
if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS:
return None
_lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE )
for token in set(_SCREAMING_SNAKE_CASE ):
min_hash.update(token.encode() )
return min_hash
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]:
return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0}
class UpperCAmelCase :
def __init__( self , *,
_lowerCAmelCase = 0.85 , ):
_lowerCAmelCase = duplication_jaccard_threshold
_lowerCAmelCase = NUM_PERM
_lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
_lowerCAmelCase = defaultdict(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self._index.query(_lowerCAmelCase )
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''' )
return
self._index.insert(_lowerCAmelCase , _lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = []
for base, duplicates in self._duplicate_clusters.items():
_lowerCAmelCase = [base] + list(_lowerCAmelCase )
# reformat the cluster to be a list of dict
_lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster]
duplicate_clusters.append(_lowerCAmelCase )
return duplicate_clusters
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = self.get_duplicate_clusters()
with open(_lowerCAmelCase , '''w''' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = element
_lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ):
if data is not None:
yield data
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str:
_lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ):
di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float:
_lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase_ = None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]:
_lowerCAmelCase = []
for elementa in cluster:
_lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content''']
for elementa in extremes:
_lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content''']
if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
_lowerCAmelCase = 1
extremes.append(_SCREAMING_SNAKE_CASE )
return extremes
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple:
global _shared_dataset
_lowerCAmelCase = dataset
_lowerCAmelCase = []
_lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ):
extremes_list.append(_SCREAMING_SNAKE_CASE )
return extremes_list
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]:
_lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster}
_lowerCAmelCase = {}
_lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for extremes in extremes_clusters:
for element in extremes:
_lowerCAmelCase = element
_lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() )
_lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
_lowerCAmelCase = element['''base_index'''] in extreme_dict
if element["is_extreme"]:
_lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies''']
print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' )
return ds_filter, duplicate_clusters
| 664 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase_ = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST',
'ViTMAEForPreTraining',
'ViTMAELayer',
'ViTMAEModel',
'ViTMAEPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'TFViTMAEForPreTraining',
'TFViTMAEModel',
'TFViTMAEPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 709 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = process
_lowerCAmelCase = params
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
_lowerCAmelCase = self.dataset[i]
_lowerCAmelCase = self.process(_lowerCAmelCase , **self.params )
return processed
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowerCAmelCase = loader
_lowerCAmelCase = infer
_lowerCAmelCase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_lowerCAmelCase = None
_lowerCAmelCase = loader_batch_size
# Internal bookkeeping
_lowerCAmelCase = None
_lowerCAmelCase = None
def __len__( self ):
return len(self.loader )
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
return self
def __lowerCAmelCase ( self ):
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_lowerCAmelCase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_lowerCAmelCase = {}
for k, element in self._loader_batch_data.items():
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
# Convert ModelOutput to tuple first
_lowerCAmelCase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
_lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
_lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_lowerCAmelCase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_lowerCAmelCase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase )
self._loader_batch_index += 1
return result
def __lowerCAmelCase ( self ):
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_lowerCAmelCase = next(self.iterator )
_lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(_lowerCAmelCase , torch.Tensor ):
_lowerCAmelCase = processed
else:
_lowerCAmelCase = list(processed.keys() )[0]
_lowerCAmelCase = processed[key]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = len(_lowerCAmelCase )
else:
_lowerCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_lowerCAmelCase = observed_batch_size
# Setting internal index to unwrap the batch
_lowerCAmelCase = processed
_lowerCAmelCase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
_lowerCAmelCase = None
return self
def __lowerCAmelCase ( self ):
if self.subiterator is None:
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
_lowerCAmelCase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
_lowerCAmelCase = next(self.subiterator )
return processed
class UpperCAmelCase ( snake_case_ ):
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
return self
def __lowerCAmelCase ( self ):
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
_lowerCAmelCase = False
_lowerCAmelCase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_lowerCAmelCase = self.loader_batch_item()
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
if is_last:
return accumulator
while not is_last:
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(_lowerCAmelCase , torch.Tensor ):
_lowerCAmelCase = processed
else:
_lowerCAmelCase = list(processed.keys() )[0]
_lowerCAmelCase = processed[key]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = len(_lowerCAmelCase )
else:
_lowerCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_lowerCAmelCase = observed_batch_size
_lowerCAmelCase = processed
_lowerCAmelCase = 0
while self._loader_batch_index < self.loader_batch_size:
_lowerCAmelCase = self.loader_batch_item()
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
if is_last:
return accumulator
else:
_lowerCAmelCase = processed
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
return accumulator
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = key
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
return self.dataset[i][self.key]
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = keya
_lowerCAmelCase = keya
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 664 | 0 |
from string import ascii_lowercase, ascii_uppercase
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] )->str:
if not sentence:
return ""
_lowerCAmelCase = dict(zip(lowerCamelCase__ , lowerCamelCase__ ) )
return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 710 |
import numpy
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
_lowerCAmelCase = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
_lowerCAmelCase = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
_lowerCAmelCase = numpy.random.rand(3 , 1 )
# Real output values provided.
_lowerCAmelCase = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
_lowerCAmelCase = numpy.zeros(output_array.shape )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def __lowerCAmelCase ( self ):
_lowerCAmelCase = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
_lowerCAmelCase = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
_lowerCAmelCase = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
for iteration in range(1 , iterations + 1 ):
_lowerCAmelCase = self.feedforward()
self.back_propagation()
if give_loss:
_lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F'''Iteration {iteration} Loss: {loss}''' )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = input_arr
_lowerCAmelCase = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
_lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray:
return 1 / (1 + numpy.exp(-value ))
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray:
return (value) * (1 - (value))
def UpperCAmelCase__ ( )->int:
_lowerCAmelCase = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
_lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
_lowerCAmelCase = TwoHiddenLayerNeuralNetwork(
input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 664 | 0 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float )->Optional[int]:
return 1_0 - x * x
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float )->Any:
if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0:
raise ValueError('''Wrong space!''' )
_lowerCAmelCase = a
while (b - a) >= 0.01:
# Find middle point
_lowerCAmelCase = (a + b) / 2
# Check if middle point is root
if equation(_lowerCAmelCase ) == 0.0:
break
# Decide the side to repeat the steps
if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0:
_lowerCAmelCase = c
else:
_lowerCAmelCase = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 711 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["LayoutXLMTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["LayoutXLMTokenizerFast"]
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 0 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=True , _lowerCAmelCase=1 / 255 , _lowerCAmelCase=True , ):
_lowerCAmelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean
_lowerCAmelCase = image_std
_lowerCAmelCase = do_rescale
_lowerCAmelCase = rescale_factor
_lowerCAmelCase = do_pad
def __lowerCAmelCase ( self ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=False ):
if not batched:
_lowerCAmelCase = image_inputs[0]
if isinstance(_a , Image.Image ):
_lowerCAmelCase = image.size
else:
_lowerCAmelCase = image.shape[1], image.shape[2]
if w < h:
_lowerCAmelCase = int(self.size['''shortest_edge'''] * h / w )
_lowerCAmelCase = self.size["""shortest_edge"""]
elif w > h:
_lowerCAmelCase = self.size["""shortest_edge"""]
_lowerCAmelCase = int(self.size['''shortest_edge'''] * w / h )
else:
_lowerCAmelCase = self.size["""shortest_edge"""]
_lowerCAmelCase = self.size["""shortest_edge"""]
else:
_lowerCAmelCase = []
for image in image_inputs:
_lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_lowerCAmelCase = max(_a , key=lambda _lowerCAmelCase : item[0] )[0]
_lowerCAmelCase = max(_a , key=lambda _lowerCAmelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCAmelCase ( UpperCamelCase_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = ConditionalDetrImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self ):
_lowerCAmelCase = ConditionalDetrImageProcessingTester(self )
@property
def __lowerCAmelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , '''image_mean''' ) )
self.assertTrue(hasattr(_a , '''image_std''' ) )
self.assertTrue(hasattr(_a , '''do_normalize''' ) )
self.assertTrue(hasattr(_a , '''do_resize''' ) )
self.assertTrue(hasattr(_a , '''size''' ) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} )
self.assertEqual(image_processor.do_pad , _a )
_lowerCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_a )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , _a )
def __lowerCAmelCase ( self ):
pass
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_lowerCAmelCase = self.image_processor_tester.get_expected_values(_a )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase = self.image_processor_tester.get_expected_values(_a , batched=_a )
_lowerCAmelCase = image_processing(_a , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_lowerCAmelCase = self.image_processor_tester.get_expected_values(_a )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase = image_processing(_a , return_tensors='''pt''' ).pixel_values
_lowerCAmelCase = self.image_processor_tester.get_expected_values(_a , batched=_a )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_lowerCAmelCase = self.image_processor_tester.get_expected_values(_a )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase = image_processing(_a , return_tensors='''pt''' ).pixel_values
_lowerCAmelCase = self.image_processor_tester.get_expected_values(_a , batched=_a )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_lowerCAmelCase = json.loads(f.read() )
_lowerCAmelCase = {"""image_id""": 39_769, """annotations""": target}
# encode them
_lowerCAmelCase = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' )
_lowerCAmelCase = image_processing(images=_a , annotations=_a , return_tensors='''pt''' )
# verify pixel values
_lowerCAmelCase = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['''pixel_values'''].shape , _a )
_lowerCAmelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _a , atol=1E-4 ) )
# verify area
_lowerCAmelCase = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _a ) )
# verify boxes
_lowerCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _a )
_lowerCAmelCase = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _a , atol=1E-3 ) )
# verify image_id
_lowerCAmelCase = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _a ) )
# verify is_crowd
_lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _a ) )
# verify class_labels
_lowerCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _a ) )
# verify orig_size
_lowerCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _a ) )
# verify size
_lowerCAmelCase = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _a ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_lowerCAmelCase = json.loads(f.read() )
_lowerCAmelCase = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target}
_lowerCAmelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_lowerCAmelCase = ConditionalDetrImageProcessor(format='''coco_panoptic''' )
_lowerCAmelCase = image_processing(images=_a , annotations=_a , masks_path=_a , return_tensors='''pt''' )
# verify pixel values
_lowerCAmelCase = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['''pixel_values'''].shape , _a )
_lowerCAmelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _a , atol=1E-4 ) )
# verify area
_lowerCAmelCase = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _a ) )
# verify boxes
_lowerCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _a )
_lowerCAmelCase = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _a , atol=1E-3 ) )
# verify image_id
_lowerCAmelCase = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _a ) )
# verify is_crowd
_lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _a ) )
# verify class_labels
_lowerCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _a ) )
# verify masks
_lowerCAmelCase = 822_873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _a )
# verify orig_size
_lowerCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _a ) )
# verify size
_lowerCAmelCase = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _a ) )
| 712 |
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = list(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
_lowerCAmelCase = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool:
_lowerCAmelCase = [
'''CUDA out of memory.''', # CUDA OOM
'''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU
'''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM
]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]:
if function is None:
return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = starting_batch_size
def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
_lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() )
# Guard against user error
if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1):
_lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] )
raise TypeError(
f'''Batch size was passed into `{function.__name__}` as the first argument when called.'''
f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' )
while True:
if batch_size == 0:
raise RuntimeError('''No executable batch size found, reached zero.''' )
try:
return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
except Exception as e:
if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 664 | 0 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
UpperCAmelCase_ = {
"n_samples": 6_4,
"horizon": 3_2,
"num_inference_steps": 2_0,
"n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network
"scale_grad_by_std": True,
"scale": 0.1,
"eta": 0.0,
"t_grad_cutoff": 2,
"device": "cpu",
}
if __name__ == "__main__":
UpperCAmelCase_ = "hopper-medium-v2"
UpperCAmelCase_ = gym.make(env_name)
UpperCAmelCase_ = ValueGuidedRLPipeline.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32",
env=env,
)
env.seed(0)
UpperCAmelCase_ = env.reset()
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 1_0_0_0
UpperCAmelCase_ = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
UpperCAmelCase_ = pipeline(obs, planning_horizon=3_2)
# execute action in environment
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = env.step(denorm_actions)
UpperCAmelCase_ = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"""
F""" {total_score}"""
)
# save observations for rendering
rollout.append(next_observation.copy())
UpperCAmelCase_ = next_observation
except KeyboardInterrupt:
pass
print(F"""Total reward: {total_reward}""")
| 713 |
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_input_mask
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = num_labels
_lowerCAmelCase = num_choices
_lowerCAmelCase = scope
def __lowerCAmelCase ( self ):
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = None
if self.use_input_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase = None
if self.use_token_type_ids:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self ):
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_config()
_lowerCAmelCase = 300
return config
def __lowerCAmelCase ( self ):
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = self.prepare_config_and_inputs()
_lowerCAmelCase = True
_lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
_lowerCAmelCase = True
_lowerCAmelCase = MraModel(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , )
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , )
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_choices
_lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = ()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 )
def __lowerCAmelCase ( self ):
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase = type
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
@slow
def __lowerCAmelCase ( self ):
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@unittest.skip(reason='''MRA does not output attentions''' )
def __lowerCAmelCase ( self ):
return
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
_lowerCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
_lowerCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = 50_265
_lowerCAmelCase = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
_lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = 50_265
_lowerCAmelCase = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
| 664 | 0 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json",
}
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = '''xlnet'''
SCREAMING_SNAKE_CASE__ = ['''mems''']
SCREAMING_SNAKE_CASE__ = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , _lowerCAmelCase=32_000 , _lowerCAmelCase=1_024 , _lowerCAmelCase=24 , _lowerCAmelCase=16 , _lowerCAmelCase=4_096 , _lowerCAmelCase="gelu" , _lowerCAmelCase=True , _lowerCAmelCase="bi" , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=-1 , _lowerCAmelCase=False , _lowerCAmelCase="last" , _lowerCAmelCase=True , _lowerCAmelCase="tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=5 , _lowerCAmelCase=5 , _lowerCAmelCase=5 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , **_lowerCAmelCase , ):
_lowerCAmelCase = vocab_size
_lowerCAmelCase = d_model
_lowerCAmelCase = n_layer
_lowerCAmelCase = n_head
if d_model % n_head != 0:
raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
_lowerCAmelCase = d_model // n_head
_lowerCAmelCase = ff_activation
_lowerCAmelCase = d_inner
_lowerCAmelCase = untie_r
_lowerCAmelCase = attn_type
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = dropout
_lowerCAmelCase = mem_len
_lowerCAmelCase = reuse_len
_lowerCAmelCase = bi_data
_lowerCAmelCase = clamp_len
_lowerCAmelCase = same_length
_lowerCAmelCase = summary_type
_lowerCAmelCase = summary_use_proj
_lowerCAmelCase = summary_activation
_lowerCAmelCase = summary_last_dropout
_lowerCAmelCase = start_n_top
_lowerCAmelCase = end_n_top
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = pad_token_id
_lowerCAmelCase = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'''
''' instead.''' , _UpperCAmelCase , )
_lowerCAmelCase = kwargs['''use_cache''']
_lowerCAmelCase = use_mems_eval
_lowerCAmelCase = use_mems_train
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def __lowerCAmelCase ( self ):
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def __lowerCAmelCase ( self , _lowerCAmelCase ):
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 714 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 664 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
UpperCAmelCase_ = None
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase_ = {
"vocab_file": {
"google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model",
},
"tokenizer_file": {
"google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json",
},
}
UpperCAmelCase_ = {
"google/rembert": 2_5_6,
}
UpperCAmelCase_ = "▁"
class UpperCAmelCase ( __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ = RemBertTokenizer
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , **_lowerCAmelCase , ):
_lowerCAmelCase = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token
super().__init__(
_UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , remove_space=_UpperCamelCase , keep_accents=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , **_UpperCamelCase , )
_lowerCAmelCase = do_lower_case
_lowerCAmelCase = remove_space
_lowerCAmelCase = keep_accents
_lowerCAmelCase = vocab_file
_lowerCAmelCase = False if not self.vocab_file else True
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1]
return [1] + ([0] * len(_UpperCamelCase )) + [1]
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if not os.path.isdir(_UpperCamelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_UpperCamelCase ) )
return
_lowerCAmelCase = os.path.join(
_UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ):
copyfile(self.vocab_file , _UpperCamelCase )
return (out_vocab_file,)
| 715 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ):
_lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18}
_lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = num_frames
_lowerCAmelCase = image_size
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean
_lowerCAmelCase = image_std
_lowerCAmelCase = crop_size
def __lowerCAmelCase ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self ):
_lowerCAmelCase = VivitImageProcessingTester(self )
@property
def __lowerCAmelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) )
self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase )
for video in video_inputs:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 664 | 0 |
from math import isclose, sqrt
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str )->Tuple:
_lowerCAmelCase = point_y / 4 / point_x
_lowerCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
_lowerCAmelCase = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
_lowerCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
_lowerCAmelCase = outgoing_gradient**2 + 4
_lowerCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
_lowerCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0
_lowerCAmelCase = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
_lowerCAmelCase = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
_lowerCAmelCase = x_minus if isclose(_lowerCamelCase , _lowerCamelCase ) else x_plus
_lowerCAmelCase = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : str = 1.4 , _SCREAMING_SNAKE_CASE : Optional[Any] = -9.6 )->Optional[Any]:
_lowerCAmelCase = 0
_lowerCAmelCase = first_x_coord
_lowerCAmelCase = first_y_coord
_lowerCAmelCase = (10.1 - point_y) / (0.0 - point_x)
while not (-0.01 <= point_x <= 0.01 and point_y > 0):
_lowerCAmelCase = next_point(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F"""{solution() = }""")
| 716 |
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n"
UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n"
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]:
def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ):
_lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE )
def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ):
return " ".join(text.split() )
def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ):
_lowerCAmelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_SCREAMING_SNAKE_CASE : Optional[int] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any:
return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int:
_lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]:
_lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams]
_lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = Counter()
for sgram, scount in sgramcounter.items():
_lowerCAmelCase = scount * numref
_lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = Counter()
for cgram, ccount in cgramcounter.items():
_lowerCAmelCase = ccount * numref
# KEEP
_lowerCAmelCase = sgramcounter_rep & cgramcounter_rep
_lowerCAmelCase = keepgramcounter_rep & rgramcounter
_lowerCAmelCase = sgramcounter_rep & rgramcounter
_lowerCAmelCase = 0
_lowerCAmelCase = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_lowerCAmelCase = 1
_lowerCAmelCase = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_lowerCAmelCase = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_lowerCAmelCase = sgramcounter_rep - cgramcounter_rep
_lowerCAmelCase = delgramcounter_rep - rgramcounter
_lowerCAmelCase = sgramcounter_rep - rgramcounter
_lowerCAmelCase = 0
_lowerCAmelCase = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_lowerCAmelCase = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE )
# ADDITION
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_lowerCAmelCase = 1
_lowerCAmelCase = 1
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
_lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
if addscore_precision > 0 or addscore_recall > 0:
_lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]:
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = ssent.split(''' ''' )
_lowerCAmelCase = csent.split(''' ''' )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
for rsent in rsents:
_lowerCAmelCase = rsent.split(''' ''' )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = []
ragramslist.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
ragramslist.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_SCREAMING_SNAKE_CASE )
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(_SCREAMING_SNAKE_CASE ) - 1:
_lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 2:
_lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_SCREAMING_SNAKE_CASE )
if i < len(_SCREAMING_SNAKE_CASE ) - 3:
_lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4
_lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4
_lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int:
# Normalization is requried for the ASSET dataset (one of the primary
# datasets in sentence simplification) to allow using space
# to split the sentence. Even though Wiki-Auto and TURK datasets,
# do not require normalization, we do it for consistency.
# Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
# [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7
if lowercase:
_lowerCAmelCase = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE )
elif tokenizer == "moses":
_lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE )
elif tokenizer == "penn":
_lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = sentence
if not return_str:
_lowerCAmelCase = normalized_sent.split()
return normalized_sent
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str:
if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_lowerCAmelCase = 0
for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] )
_lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE )
return 1_0_0 * sari_score
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str:
_lowerCAmelCase = len(references[0] )
if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )]
_lowerCAmelCase = sacrebleu.corpus_bleu(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
def __lowerCAmelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = {}
result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} )
result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} )
return result
| 664 | 0 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class UpperCAmelCase :
@property
def __lowerCAmelCase ( self ):
return self.get_dummy_input()
@property
def __lowerCAmelCase ( self ):
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' )
def __lowerCAmelCase ( self , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ):
_lowerCAmelCase = 4
_lowerCAmelCase = 32
_lowerCAmelCase = (32, 32)
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = torch.device(__lowerCamelCase )
_lowerCAmelCase = (batch_size, num_channels) + sizes
_lowerCAmelCase = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase )
_lowerCAmelCase = {"hidden_states": hidden_states}
if include_temb:
_lowerCAmelCase = 128
_lowerCAmelCase = randn_tensor((batch_size, temb_channels) , generator=__lowerCamelCase , device=__lowerCamelCase )
if include_res_hidden_states_tuple:
_lowerCAmelCase = torch.manual_seed(1 )
_lowerCAmelCase = (randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase ),)
if include_encoder_hidden_states:
_lowerCAmelCase = floats_tensor((batch_size, 32, 32) ).to(__lowerCamelCase )
if include_skip_sample:
_lowerCAmelCase = randn_tensor(((batch_size, 3) + sizes) , generator=__lowerCamelCase , device=__lowerCamelCase )
return dummy_input
def __lowerCAmelCase ( self ):
_lowerCAmelCase = {
"in_channels": 32,
"out_channels": 32,
"temb_channels": 128,
}
if self.block_type == "up":
_lowerCAmelCase = 32
if self.block_type == "mid":
init_dict.pop('''out_channels''' )
_lowerCAmelCase = self.dummy_input
return init_dict, inputs_dict
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = self.prepare_init_args_and_inputs_for_common()
_lowerCAmelCase = self.block_class(**__lowerCamelCase )
unet_block.to(__lowerCamelCase )
unet_block.eval()
with torch.no_grad():
_lowerCAmelCase = unet_block(**__lowerCamelCase )
if isinstance(__lowerCamelCase , __lowerCamelCase ):
_lowerCAmelCase = output[0]
self.assertEqual(output.shape , self.output_shape )
_lowerCAmelCase = output[0, -1, -3:, -3:]
_lowerCAmelCase = torch.tensor(__lowerCamelCase ).to(__lowerCamelCase )
assert torch_all_close(output_slice.flatten() , __lowerCamelCase , atol=5E-3 )
@unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''' )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.prepare_init_args_and_inputs_for_common()
_lowerCAmelCase = self.block_class(**__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
_lowerCAmelCase = model(**__lowerCamelCase )
if isinstance(__lowerCamelCase , __lowerCamelCase ):
_lowerCAmelCase = output[0]
_lowerCAmelCase = torch.device(__lowerCamelCase )
_lowerCAmelCase = randn_tensor(output.shape , device=__lowerCamelCase )
_lowerCAmelCase = torch.nn.functional.mse_loss(__lowerCamelCase , __lowerCamelCase )
loss.backward()
| 717 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["DeiTFeatureExtractor"]
UpperCAmelCase_ = ["DeiTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DeiTForImageClassification",
"DeiTForImageClassificationWithTeacher",
"DeiTForMaskedImageModeling",
"DeiTModel",
"DeiTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDeiTForImageClassification",
"TFDeiTForImageClassificationWithTeacher",
"TFDeiTForMaskedImageModeling",
"TFDeiTModel",
"TFDeiTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 0 |
import math
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase=0 ): # a graph with Node 0,1,...,N-1
_lowerCAmelCase = n
_lowerCAmelCase = [
[math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ )
] # adjacency matrix for weight
_lowerCAmelCase = [
[math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ )
] # dp[i][j] stores minimum distance from i to j
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = w
def __lowerCAmelCase ( self ):
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
_lowerCAmelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
return self.dp[u][v]
if __name__ == "__main__":
UpperCAmelCase_ = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 1_0)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 1_0)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 718 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741
_lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = 0
_lowerCAmelCase = [0] * n
_lowerCAmelCase = [False] * n
_lowerCAmelCase = [False] * n
def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ):
if parent == root:
out_edge_count += 1
_lowerCAmelCase = True
_lowerCAmelCase = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
_lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
_lowerCAmelCase = True
# AP found via cycle
if at == low[to]:
_lowerCAmelCase = True
else:
_lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE )
return out_edge_count
for i in range(_SCREAMING_SNAKE_CASE ):
if not visited[i]:
_lowerCAmelCase = 0
_lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = out_edge_count > 1
for x in range(len(_SCREAMING_SNAKE_CASE ) ):
if is_art[x] is True:
print(_SCREAMING_SNAKE_CASE )
# Adjacency list of graph
UpperCAmelCase_ = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 664 | 0 |
import math
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->bool:
_lowerCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(_A )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 1 / 1_2_3_4_5 )->int:
_lowerCAmelCase = 0
_lowerCAmelCase = 0
_lowerCAmelCase = 3
while True:
_lowerCAmelCase = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(_A ):
_lowerCAmelCase = int(_A )
total_partitions += 1
if check_partition_perfect(_A ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(_A )
integer += 1
if __name__ == "__main__":
print(F"""{solution() = }""")
| 719 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class UpperCAmelCase ( snake_case_ ):
def __lowerCAmelCase ( self ):
_lowerCAmelCase = SMALL_MODEL_IDENTIFIER
_lowerCAmelCase = '''pt'''
_lowerCAmelCase = '''tf'''
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase )
model_tf.save_pretrained(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''mock_framework'''
# Framework provided - return whatever the user provides
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def __lowerCAmelCase ( self ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_lowerCAmelCase )
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_lowerCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_lowerCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_lowerCAmelCase , self.framework_pt )
# Both not in environment -> raise error
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
_lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ):
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
| 664 | 0 |
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
UpperCAmelCase_ = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: ")))
print("Googling.....")
UpperCAmelCase_ = F"""https://www.google.com/search?q={query}&num=100"""
UpperCAmelCase_ = requests.get(
url,
headers={"User-Agent": str(UserAgent().random)},
)
try:
UpperCAmelCase_ = (
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "yuRUbf"})
.find("a")
.get("href")
)
except AttributeError:
UpperCAmelCase_ = parse_qs(
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "kCrYT"})
.find("a")
.get("href")
)["""url"""][0]
webbrowser.open(link)
| 720 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase ( snake_case_ ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = DiTPipeline
SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ = False
def __lowerCAmelCase ( self ):
torch.manual_seed(0 )
_lowerCAmelCase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , )
_lowerCAmelCase = AutoencoderKL()
_lowerCAmelCase = DDIMScheduler()
_lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler}
return components
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ):
if str(_lowerCAmelCase ).startswith('''mps''' ):
_lowerCAmelCase = torch.manual_seed(_lowerCAmelCase )
else:
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
_lowerCAmelCase = {
'''class_labels''': [1],
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ):
_lowerCAmelCase = '''cpu'''
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase )
_lowerCAmelCase = pipe(**_lowerCAmelCase ).images
_lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
_lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] )
_lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowerCAmelCase , 1E-3 )
def __lowerCAmelCase ( self ):
self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class UpperCAmelCase ( unittest.TestCase ):
def __lowerCAmelCase ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' )
pipe.to('''cuda''' )
_lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf''']
_lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase )
_lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images
for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = load_numpy(
F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-2
def __lowerCAmelCase ( self ):
_lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('''cuda''' )
_lowerCAmelCase = ['''vase''', '''umbrella''']
_lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images
for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
F'''/dit/{word}_512.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-1
| 664 | 0 |
from __future__ import annotations
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[float] , _SCREAMING_SNAKE_CASE : Any )->Tuple:
print(f'''Vertex\tShortest Distance from vertex {src}''' )
for i, d in enumerate(__UpperCamelCase ):
print(f'''{i}\t\t{d}''' )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[dict[str, int]] , _SCREAMING_SNAKE_CASE : list[float] , _SCREAMING_SNAKE_CASE : int )->int:
for j in range(__UpperCamelCase ):
_lowerCAmelCase = (graph[j][k] for k in ["""src""", """dst""", """weight"""])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
return True
return False
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[dict[str, int]] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )->Dict:
_lowerCAmelCase = [float('''inf''' )] * vertex_count
_lowerCAmelCase = 0.0
for _ in range(vertex_count - 1 ):
for j in range(__UpperCamelCase ):
_lowerCAmelCase = (graph[j][k] for k in ["""src""", """dst""", """weight"""])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
_lowerCAmelCase = distance[u] + w
_lowerCAmelCase = check_negative_cycle(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
if negative_cycle_exists:
raise Exception('''Negative cycle found''' )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ = int(input("Enter number of vertices: ").strip())
UpperCAmelCase_ = int(input("Enter number of edges: ").strip())
UpperCAmelCase_ = [{} for _ in range(E)]
for i in range(E):
print("Edge ", i + 1)
UpperCAmelCase_ = (
int(x)
for x in input("Enter source, destination, weight: ").strip().split(" ")
)
UpperCAmelCase_ = {'''src''': src, '''dst''': dest, '''weight''': weight}
UpperCAmelCase_ = int(input("\nEnter shortest path source:").strip())
UpperCAmelCase_ = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 721 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
UpperCAmelCase_ = {"UserAgent": UserAgent().random}
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict:
_lowerCAmelCase = script.contents[0]
_lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase ):
_lowerCAmelCase = F'''https://www.instagram.com/{username}/'''
_lowerCAmelCase = self.get_json()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text
_lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self ):
return F'''{self.__class__.__name__}(\'{self.username}\')'''
def __str__( self ):
return F'''{self.fullname} ({self.username}) is {self.biography}'''
@property
def __lowerCAmelCase ( self ):
return self.user_data["username"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["full_name"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["biography"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["business_email"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["external_url"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_followed_by"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_follow"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["profile_pic_url_hd"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["is_verified"]
@property
def __lowerCAmelCase ( self ):
return self.user_data["is_private"]
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None:
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
_lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 1_5_0
assert instagram_user.number_of_followers > 1_2_0_0_0_0
assert instagram_user.number_of_followings > 1_5
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ = InstagramUser("github")
print(instagram_user)
print(F"""{instagram_user.number_of_posts = }""")
print(F"""{instagram_user.number_of_followers = }""")
print(F"""{instagram_user.number_of_followings = }""")
print(F"""{instagram_user.email = }""")
print(F"""{instagram_user.website = }""")
print(F"""{instagram_user.profile_picture_url = }""")
print(F"""{instagram_user.is_verified = }""")
print(F"""{instagram_user.is_private = }""")
| 664 | 0 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] )->str:
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
_lowerCAmelCase = (boundary[1] - boundary[0]) / steps
_lowerCAmelCase = boundary[0]
_lowerCAmelCase = boundary[1]
_lowerCAmelCase = make_points(snake_case__ , snake_case__ , snake_case__ )
_lowerCAmelCase = 0.0
y += (h / 2.0) * f(snake_case__ )
for i in x_i:
# print(i)
y += h * f(snake_case__ )
y += (h / 2.0) * f(snake_case__ )
return y
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Tuple:
_lowerCAmelCase = a + h
while x < (b - h):
yield x
_lowerCAmelCase = x + h
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->str: # enter your function here
_lowerCAmelCase = (x - 0) * (x - 0)
return y
def UpperCAmelCase__ ( )->Any:
_lowerCAmelCase = 0.0 # Lower bound of integration
_lowerCAmelCase = 1.0 # Upper bound of integration
_lowerCAmelCase = 10.0 # define number of steps or resolution
_lowerCAmelCase = [a, b] # define boundary of integration
_lowerCAmelCase = method_a(snake_case__ , snake_case__ )
print(f'''y = {y}''' )
if __name__ == "__main__":
main()
| 700 |
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]:
_lowerCAmelCase = int(_SCREAMING_SNAKE_CASE )
# Initialize Result
_lowerCAmelCase = []
# Traverse through all denomination
for denomination in reversed(_SCREAMING_SNAKE_CASE ):
# Find denominations
while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ):
total_value -= int(_SCREAMING_SNAKE_CASE )
answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
UpperCAmelCase_ = []
UpperCAmelCase_ = "0"
if (
input("Do you want to enter your denominations ? (yY/n): ").strip().lower()
== "y"
):
UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip())
for i in range(0, n):
denominations.append(int(input(F"""Denomination {i}: """).strip()))
UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip()
else:
# All denominations of Indian Currency if user does not enter
UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0]
UpperCAmelCase_ = input("Enter the change you want to make: ").strip()
if int(value) == 0 or int(value) < 0:
print("The total value cannot be zero or negative.")
else:
print(F"""Following is minimal change for {value}: """)
UpperCAmelCase_ = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=" ")
| 664 | 0 |
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class UpperCAmelCase ( lowercase__ ):
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ):
warnings.warn(
'''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use LayoutLMv2ImageProcessor instead.''' , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 701 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict:
# Initialise PyTorch model
_lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE )
print(f'''Building PyTorch model from configuration: {config}''' )
_lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--albert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained ALBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 664 | 0 |
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
UpperCAmelCase_ = logging.getLogger(__name__)
def UpperCAmelCase__ ( )->Dict:
_lowerCAmelCase = argparse.ArgumentParser(
description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' )
parser.add_argument(
'''--dataset_name''' , type=_SCREAMING_SNAKE_CASE , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , )
parser.add_argument(
'''--dataset_config''' , type=_SCREAMING_SNAKE_CASE , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' )
parser.add_argument(
'''--tokenizer_name_or_path''' , type=_SCREAMING_SNAKE_CASE , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , )
parser.add_argument(
'''--shard_size''' , type=_SCREAMING_SNAKE_CASE , default=1_0_0_0 , help='''Number of entries to go in a single shard.''' , )
parser.add_argument('''--split''' , type=_SCREAMING_SNAKE_CASE , default='''train''' , choices=['''train''', '''test''', '''validation'''] )
parser.add_argument(
'''--limit''' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help='''Limit the number of shards (used for debugging).''' , )
parser.add_argument(
'''--max_length''' , type=_SCREAMING_SNAKE_CASE , default=5_1_2 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum'''
''' sequence length that is a multiple of 8.''' , )
parser.add_argument(
'''--output_dir''' , default='''tf-tpu''' , type=_SCREAMING_SNAKE_CASE , help='''Output directory where the TFRecord shards will be saved. If the'''
''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord'''
''' shards will be directly saved to a Google Cloud Storage bucket.''' , )
_lowerCAmelCase = parser.parse_args()
return args
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->Optional[Any]:
def fn(_SCREAMING_SNAKE_CASE : int ):
return tokenizer(examples['''text'''] )
return fn
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->int:
_lowerCAmelCase = []
for i in range(len(tokenized_data['''input_ids'''] ) ):
_lowerCAmelCase = {
'''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ),
'''attention_mask''': tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ),
}
_lowerCAmelCase = tf.train.Features(feature=_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = tf.train.Example(features=_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = example.SerializeToString()
records.append(_SCREAMING_SNAKE_CASE )
return records
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] )->List[Any]:
_lowerCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
_lowerCAmelCase = min(len(_SCREAMING_SNAKE_CASE ) , args.limit )
_lowerCAmelCase = dataset.select(range(_SCREAMING_SNAKE_CASE ) )
print(f'''Limiting the dataset to {args.limit} entries.''' )
_lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
_lowerCAmelCase = os.path.join(args.output_dir , args.split )
if not os.path.exists(_SCREAMING_SNAKE_CASE ):
os.makedirs(_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
_lowerCAmelCase = tokenize_function(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = dataset.map(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , num_proc=4 , remove_columns=['''text'''] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(_SCREAMING_SNAKE_CASE : Any ):
# Concatenate all texts.
_lowerCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()}
_lowerCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
_lowerCAmelCase = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
_lowerCAmelCase = {
k: [t[i : i + args.max_length] for i in range(0 , _SCREAMING_SNAKE_CASE , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
_lowerCAmelCase = dataset_tokenized.map(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , batch_size=1_0_0_0 , num_proc=4 )
_lowerCAmelCase = 0
_lowerCAmelCase = 0
for shard in range(0 , len(_SCREAMING_SNAKE_CASE ) , args.shard_size ):
_lowerCAmelCase = grouped_dataset[shard : shard + args.shard_size]
_lowerCAmelCase = len(dataset_snapshot['''input_ids'''] )
_lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , f'''dataset-{shard_count}-{records_containing}.tfrecord''' )
_lowerCAmelCase = get_serialized_examples(_SCREAMING_SNAKE_CASE )
with tf.io.TFRecordWriter(_SCREAMING_SNAKE_CASE ) as out_file:
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
_lowerCAmelCase = serialized_examples[i]
out_file.write(_SCREAMING_SNAKE_CASE )
print('''Wrote file {} containing {} records'''.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
shard_count += 1
total_records += records_containing
with open(f'''split-{args.split}-records-count.txt''' , '''w''' ) as f:
print(f'''Total {args.split} records: {total_records}''' , file=_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
main(args)
| 702 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("1.0.0a"):
raise Exception("requires fairseq >= 1.0.0a")
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = "Hello world! cécé herlolip"
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]:
_lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE )
roberta.eval() # disable dropout
_lowerCAmelCase = roberta.model.encoder.sentence_encoder
_lowerCAmelCase = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , )
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
_lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight
_lowerCAmelCase = roberta_sent_encoder.embed_positions.weight
_lowerCAmelCase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
_lowerCAmelCase = roberta_sent_encoder.layer_norm.weight
_lowerCAmelCase = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
_lowerCAmelCase = model.roberta.encoder.layer[i]
_lowerCAmelCase = roberta_sent_encoder.layers[i]
_lowerCAmelCase = layer.attention
_lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight
_lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias
# self attention
_lowerCAmelCase = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
_lowerCAmelCase = roberta_layer.self_attn.q_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.q_proj.bias
_lowerCAmelCase = roberta_layer.self_attn.k_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.k_proj.bias
_lowerCAmelCase = roberta_layer.self_attn.v_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.v_proj.bias
# self-attention output
_lowerCAmelCase = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
_lowerCAmelCase = roberta_layer.self_attn.out_proj.weight
_lowerCAmelCase = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
_lowerCAmelCase = roberta_layer.final_layer_norm.weight
_lowerCAmelCase = roberta_layer.final_layer_norm.bias
# intermediate
_lowerCAmelCase = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
_lowerCAmelCase = roberta_layer.fca.weight
_lowerCAmelCase = roberta_layer.fca.bias
# output
_lowerCAmelCase = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
_lowerCAmelCase = roberta_layer.fca.weight
_lowerCAmelCase = roberta_layer.fca.bias
# end of layer
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
_lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias
_lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias
_lowerCAmelCase = roberta.model.encoder.lm_head.weight
_lowerCAmelCase = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
_lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
_lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0]
if classification_head:
_lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) )
else:
_lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0]
print(our_output.shape , their_output.shape )
_lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
_lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
UpperCAmelCase_ = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 664 | 0 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class UpperCAmelCase ( unittest.TestCase ):
def __lowerCAmelCase ( self ):
_lowerCAmelCase = 10
def __lowerCAmelCase ( self ):
_lowerCAmelCase = [1, 2, 3, 4]
_lowerCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(__A , self.block_size , 0 ) , __A )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
_lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(__A , self.block_size , 0 ) , __A )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
_lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(__A , self.block_size , 0 ) , __A )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this."
_lowerCAmelCase = process_story(__A )
self.assertEqual(__A , [] )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = ""
_lowerCAmelCase = process_story(__A )
self.assertEqual(__A , [] )
self.assertEqual(__A , [] )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = (
"It was the year of Our Lord one thousand seven hundred and "
"seventy-five\n\nSpiritual revelations were conceded to England "
"at that favoured period, as at this.\n@highlight\n\nIt was the best of times"
)
_lowerCAmelCase = process_story(__A )
_lowerCAmelCase = [
"It was the year of Our Lord one thousand seven hundred and seventy-five.",
"Spiritual revelations were conceded to England at that favoured period, as at this.",
]
self.assertEqual(__A , __A )
_lowerCAmelCase = ["It was the best of times."]
self.assertEqual(__A , __A )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = torch.tensor([1, 2, 3, 4] )
_lowerCAmelCase = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(__A , 0 ).numpy() , expected.numpy() )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
_lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(__A , 23 ).numpy() , expected.numpy() )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
_lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(__A , 1 ).numpy() , expected.numpy() )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = 101
_lowerCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
_lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
_lowerCAmelCase = compute_token_type_ids(__A , __A )
np.testing.assert_array_equal(__A , __A )
| 703 |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
_lowerCAmelCase = []
for i in range(_SCREAMING_SNAKE_CASE ):
_lowerCAmelCase = i / num_diffusion_timesteps
_lowerCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) )
return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class UpperCAmelCase ( snake_case_ ,snake_case_ ):
SCREAMING_SNAKE_CASE__ = 1
@register_to_config
def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ):
if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None:
_lowerCAmelCase = (
'''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.'''
)
deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase )
_lowerCAmelCase = kwargs['''set_alpha_to_one''']
if trained_betas is not None:
_lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
_lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_lowerCAmelCase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase )
else:
raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' )
_lowerCAmelCase = 1.0 - self.betas
_lowerCAmelCase = torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
_lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
_lowerCAmelCase = 1.0
# setable values
_lowerCAmelCase = None
_lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
return sample
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:'''
F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle'''
F''' maximal {self.config.num_train_timesteps} timesteps.''' )
_lowerCAmelCase = num_inference_steps
_lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa )
_lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase )
self.timesteps += self.config.steps_offset
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ):
# 1. get previous step value (=t+1)
_lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
_lowerCAmelCase = self.alphas_cumprod[timestep]
_lowerCAmelCase = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
_lowerCAmelCase = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
_lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
_lowerCAmelCase = model_output
elif self.config.prediction_type == "sample":
_lowerCAmelCase = model_output
_lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
_lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
_lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or'''
''' `v_prediction`''' )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
_lowerCAmelCase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase )
def __len__( self ):
return self.config.num_train_timesteps
| 664 | 0 |
import functools
from typing import Any
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : list[str] )->str:
if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0:
raise ValueError('''the string should be not empty string''' )
if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not all(
isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0 for item in words ):
raise ValueError('''the words should be a list of non-empty strings''' )
# Build trie
_lowerCAmelCase = {}
_lowerCAmelCase = "WORD_KEEPER"
for word in words:
_lowerCAmelCase = trie
for c in word:
if c not in trie_node:
_lowerCAmelCase = {}
_lowerCAmelCase = trie_node[c]
_lowerCAmelCase = True
_lowerCAmelCase = len(_lowerCamelCase )
# Dynamic programming method
@functools.cache
def is_breakable(_SCREAMING_SNAKE_CASE : int ) -> bool:
if index == len_string:
return True
_lowerCAmelCase = trie
for i in range(_lowerCamelCase , _lowerCamelCase ):
_lowerCAmelCase = trie_node.get(string[i] , _lowerCamelCase )
if trie_node is None:
return False
if trie_node.get(_lowerCamelCase , _lowerCamelCase ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 704 |
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCAmelCase_ = {
"configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"],
"tokenization_cpmant": ["CpmAntTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST",
"CpmAntForCausalLM",
"CpmAntModel",
"CpmAntPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 664 | 0 |
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_input_mask
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = num_labels
_lowerCAmelCase = num_choices
_lowerCAmelCase = scope
def __lowerCAmelCase ( self ):
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = None
if self.use_input_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase = None
if self.use_token_type_ids:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self ):
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.get_config()
_lowerCAmelCase = 300
return config
def __lowerCAmelCase ( self ):
(
_lowerCAmelCase
) = self.prepare_config_and_inputs()
_lowerCAmelCase = True
_lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraModel(config=_a )
model.to(_a )
model.eval()
_lowerCAmelCase = model(_a , attention_mask=_a , token_type_ids=_a )
_lowerCAmelCase = model(_a , token_type_ids=_a )
_lowerCAmelCase = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
_lowerCAmelCase = True
_lowerCAmelCase = MraModel(_a )
model.to(_a )
model.eval()
_lowerCAmelCase = model(
_a , attention_mask=_a , token_type_ids=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , )
_lowerCAmelCase = model(
_a , attention_mask=_a , token_type_ids=_a , encoder_hidden_states=_a , )
_lowerCAmelCase = model(_a , attention_mask=_a , token_type_ids=_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraForMaskedLM(config=_a )
model.to(_a )
model.eval()
_lowerCAmelCase = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = MraForQuestionAnswering(config=_a )
model.to(_a )
model.eval()
_lowerCAmelCase = model(
_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = MraForSequenceClassification(_a )
model.to(_a )
model.eval()
_lowerCAmelCase = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = MraForTokenClassification(config=_a )
model.to(_a )
model.eval()
_lowerCAmelCase = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self.num_choices
_lowerCAmelCase = MraForMultipleChoice(config=_a )
model.to(_a )
model.eval()
_lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = model(
_a , attention_mask=_a , token_type_ids=_a , labels=_a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.prepare_config_and_inputs()
(
_lowerCAmelCase
) = config_and_inputs
_lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ,unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = ()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_a , hidden_size=37 )
def __lowerCAmelCase ( self ):
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase = type
self.model_tester.create_and_check_model(*_a )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_a )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_a )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_a )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_a )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_a )
@slow
def __lowerCAmelCase ( self ):
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = MraModel.from_pretrained(_a )
self.assertIsNotNone(_a )
@unittest.skip(reason='''MRA does not output attentions''' )
def __lowerCAmelCase ( self ):
return
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
_lowerCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_a )[0]
_lowerCAmelCase = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , _a )
_lowerCAmelCase = torch.tensor(
[[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
_lowerCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_a )[0]
_lowerCAmelCase = 50_265
_lowerCAmelCase = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , _a )
_lowerCAmelCase = torch.tensor(
[[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
@slow
def __lowerCAmelCase ( self ):
_lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
_lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 )
with torch.no_grad():
_lowerCAmelCase = model(_a )[0]
_lowerCAmelCase = 50_265
_lowerCAmelCase = torch.Size((1, 4_096, vocab_size) )
self.assertEqual(output.shape , _a )
_lowerCAmelCase = torch.tensor(
[[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
| 705 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCAmelCase ( snake_case_ ):
SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor'''
SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase )
if text is None and audios is None:
raise ValueError('''You have to specify either text or audios. Both cannot be none.''' )
if text is not None:
_lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if audios is not None:
_lowerCAmelCase = self.feature_extractor(
_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is not None and audios is not None:
_lowerCAmelCase = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
def __lowerCAmelCase ( self ):
_lowerCAmelCase = self.tokenizer.model_input_names
_lowerCAmelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 664 | 0 |
import numpy as np
import datasets
UpperCAmelCase_ = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n"
UpperCAmelCase_ = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n"
UpperCAmelCase_ = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
def __lowerCAmelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ),
} ) , )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = np.array(a_ )
_lowerCAmelCase = np.array(a_ )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError('''Expected `X` to be a 2D vector''' )
if len(reference_distribution.shape ) != 2:
raise ValueError('''Expected `reference_distribution` to be a 2D vector''' )
if reference_distribution.shape[0] < 2:
raise ValueError(
'''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' )
# Get mahalanobis distance for each prediction
_lowerCAmelCase = X - np.mean(a_ )
_lowerCAmelCase = np.cov(reference_distribution.T )
try:
_lowerCAmelCase = np.linalg.inv(a_ )
except np.linalg.LinAlgError:
_lowerCAmelCase = np.linalg.pinv(a_ )
_lowerCAmelCase = np.dot(a_ , a_ )
_lowerCAmelCase = np.dot(a_ , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 706 |
from __future__ import annotations
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list:
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = int(max_value - min_value ) + 1
_lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 664 | 0 |
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class UpperCAmelCase :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = None
@experimental
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple )->Tuple:
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
return _map_with_joblib(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] )->int:
_lowerCAmelCase = num_proc if num_proc <= len(__snake_case ) else len(__snake_case )
_lowerCAmelCase = [] # We organize the splits ourselve (contiguous splits)
for index in range(__snake_case ):
_lowerCAmelCase = len(__snake_case ) // num_proc
_lowerCAmelCase = len(__snake_case ) % num_proc
_lowerCAmelCase = div * index + min(__snake_case , __snake_case )
_lowerCAmelCase = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(__snake_case ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
f'''Error dividing inputs iterable among processes. '''
f'''Total number of objects {len(__snake_case )}, '''
f'''length: {sum(len(i[1] ) for i in split_kwds )}''' )
logger.info(
f'''Spawning {num_proc} processes for {len(__snake_case )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' )
_lowerCAmelCase , _lowerCAmelCase = None, None
if not disable_tqdm:
_lowerCAmelCase , _lowerCAmelCase = (RLock(),), tqdm.set_lock
with Pool(__snake_case , initargs=__snake_case , initializer=__snake_case ) as pool:
_lowerCAmelCase = pool.map(__snake_case , __snake_case )
logger.info(f'''Finished {num_proc} processes''' )
_lowerCAmelCase = [obj for proc_res in mapped for obj in proc_res]
logger.info(f'''Unpacked {len(__snake_case )} objects''' )
return mapped
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int )->List[str]:
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__snake_case ):
return joblib.Parallel()(
joblib.delayed(__snake_case )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->int:
_lowerCAmelCase = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
_lowerCAmelCase = None
| 707 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
def UpperCAmelCase__ ( )->Any:
_lowerCAmelCase = _ask_options(
'''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
_lowerCAmelCase = get_sagemaker_input()
else:
_lowerCAmelCase = get_cluster_input()
return config
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str:
if subparsers is not None:
_lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE )
else:
_lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE )
parser.add_argument(
'''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=_SCREAMING_SNAKE_CASE )
return parser
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str:
_lowerCAmelCase = get_user_input()
if args.config_file is not None:
_lowerCAmelCase = args.config_file
else:
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
os.makedirs(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = default_yaml_config_file
if config_file.endswith('''.json''' ):
config.to_json_file(_SCREAMING_SNAKE_CASE )
else:
config.to_yaml_file(_SCREAMING_SNAKE_CASE )
print(f'''accelerate configuration saved at {config_file}''' )
def UpperCAmelCase__ ( )->List[Any]:
_lowerCAmelCase = config_command_parser()
_lowerCAmelCase = parser.parse_args()
config_command(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 664 | 0 |
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
UpperCAmelCase_ = ["text", "image", "audio"]
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->List[Any]:
_lowerCAmelCase = []
for input_type in input_types:
if input_type == "text":
inputs.append('''Text input''' )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((5_1_2, 5_1_2) ) )
elif input_type == "audio":
inputs.append(torch.ones(3_0_0_0 ) )
elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
inputs.append(create_inputs(UpperCAmelCase__ ) )
else:
raise ValueError(f'''Invalid type requested: {input_type}''' )
return inputs
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List )->List[Any]:
_lowerCAmelCase = []
for output in outputs:
if isinstance(UpperCAmelCase__ , (str, AgentText) ):
output_types.append('''text''' )
elif isinstance(UpperCAmelCase__ , (Image.Image, AgentImage) ):
output_types.append('''image''' )
elif isinstance(UpperCAmelCase__ , (torch.Tensor, AgentAudio) ):
output_types.append('''audio''' )
else:
raise ValueError(f'''Invalid output: {output}''' )
return output_types
@is_tool_test
class UpperCAmelCase :
def __lowerCAmelCase ( self ):
self.assertTrue(hasattr(self.tool , '''inputs''' ) )
self.assertTrue(hasattr(self.tool , '''outputs''' ) )
_lowerCAmelCase = self.tool.inputs
for _input in inputs:
if isinstance(_input , lowercase_ ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
_lowerCAmelCase = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = create_inputs(self.tool.inputs )
_lowerCAmelCase = self.tool(*lowercase_ )
# There is a single output
if len(self.tool.outputs ) == 1:
_lowerCAmelCase = [outputs]
self.assertListEqual(output_types(lowercase_ ) , self.tool.outputs )
def __lowerCAmelCase ( self ):
self.assertTrue(hasattr(self.tool , '''description''' ) )
self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) )
self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = create_inputs(self.tool.inputs )
_lowerCAmelCase = self.tool(*lowercase_ )
if not isinstance(lowercase_ , lowercase_ ):
_lowerCAmelCase = [outputs]
self.assertEqual(len(lowercase_ ) , len(self.tool.outputs ) )
for output, output_type in zip(lowercase_ , self.tool.outputs ):
_lowerCAmelCase = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(lowercase_ , lowercase_ ) )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = create_inputs(self.tool.inputs )
_lowerCAmelCase = []
for _input, input_type in zip(lowercase_ , self.tool.inputs ):
if isinstance(lowercase_ , lowercase_ ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
_lowerCAmelCase = self.tool(*lowercase_ )
if not isinstance(lowercase_ , lowercase_ ):
_lowerCAmelCase = [outputs]
self.assertEqual(len(lowercase_ ) , len(self.tool.outputs ) )
| 708 |
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase_ = 1_0
UpperCAmelCase_ = 2_5_6
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]:
if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS:
return None
_lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE )
for token in set(_SCREAMING_SNAKE_CASE ):
min_hash.update(token.encode() )
return min_hash
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]:
return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0}
class UpperCAmelCase :
def __init__( self , *,
_lowerCAmelCase = 0.85 , ):
_lowerCAmelCase = duplication_jaccard_threshold
_lowerCAmelCase = NUM_PERM
_lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
_lowerCAmelCase = defaultdict(_lowerCAmelCase )
def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = self._index.query(_lowerCAmelCase )
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''' )
return
self._index.insert(_lowerCAmelCase , _lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase )
def __lowerCAmelCase ( self ):
_lowerCAmelCase = []
for base, duplicates in self._duplicate_clusters.items():
_lowerCAmelCase = [base] + list(_lowerCAmelCase )
# reformat the cluster to be a list of dict
_lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster]
duplicate_clusters.append(_lowerCAmelCase )
return duplicate_clusters
def __lowerCAmelCase ( self , _lowerCAmelCase ):
_lowerCAmelCase = self.get_duplicate_clusters()
with open(_lowerCAmelCase , '''w''' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = element
_lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ):
if data is not None:
yield data
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str:
_lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ):
di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float:
_lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE )
_lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase_ = None
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]:
_lowerCAmelCase = []
for elementa in cluster:
_lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content''']
for elementa in extremes:
_lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content''']
if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
_lowerCAmelCase = 1
extremes.append(_SCREAMING_SNAKE_CASE )
return extremes
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple:
global _shared_dataset
_lowerCAmelCase = dataset
_lowerCAmelCase = []
_lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ):
extremes_list.append(_SCREAMING_SNAKE_CASE )
return extremes_list
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]:
_lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster}
_lowerCAmelCase = {}
_lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for extremes in extremes_clusters:
for element in extremes:
_lowerCAmelCase = element
_lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() )
_lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
_lowerCAmelCase = element['''base_index'''] in extreme_dict
if element["is_extreme"]:
_lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies''']
print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' )
print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' )
return ds_filter, duplicate_clusters
| 664 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
)
import transformers
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForImageClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
UpperCAmelCase_ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
UpperCAmelCase_ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
UpperCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->str:
with open(_lowercase , '''rb''' ) as f:
_lowerCAmelCase = Image.open(_lowercase )
return im.convert('''RGB''' )
@dataclass
class UpperCAmelCase :
SCREAMING_SNAKE_CASE__ = field(
default=a__ ,metadata={
'''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).'''
} ,)
SCREAMING_SNAKE_CASE__ = field(
default=a__ ,metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
SCREAMING_SNAKE_CASE__ = field(default=a__ ,metadata={'''help''': '''A folder containing the training data.'''} )
SCREAMING_SNAKE_CASE__ = field(default=a__ ,metadata={'''help''': '''A folder containing the validation data.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=0.15 ,metadata={'''help''': '''Percent to split off of train for validation.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=a__ ,metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} ,)
SCREAMING_SNAKE_CASE__ = field(
default=a__ ,metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} ,)
def __lowerCAmelCase ( self ):
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
raise ValueError(
'''You must specify either a dataset name from the hub or a train and/or validation directory.''' )
@dataclass
class UpperCAmelCase :
SCREAMING_SNAKE_CASE__ = field(
default='''google/vit-base-patch16-224-in21k''' ,metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ,)
SCREAMING_SNAKE_CASE__ = field(
default=a__ ,metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(a__ )} ,)
SCREAMING_SNAKE_CASE__ = field(
default=a__ ,metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
SCREAMING_SNAKE_CASE__ = field(
default=a__ ,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''main''' ,metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} ,)
SCREAMING_SNAKE_CASE__ = field(default=a__ ,metadata={'''help''': '''Name or path of preprocessor config.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=a__ ,metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} ,)
SCREAMING_SNAKE_CASE__ = field(
default=a__ ,metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} ,)
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->Dict:
_lowerCAmelCase = torch.stack([example['''pixel_values'''] for example in examples] )
_lowerCAmelCase = torch.tensor([example['''labels'''] for example in examples] )
return {"pixel_values": pixel_values, "labels": labels}
def UpperCAmelCase__ ( )->Any:
_lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_lowerCAmelCase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_image_classification''' , _lowercase , _lowercase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_lowerCAmelCase = training_args.get_process_log_level()
logger.setLevel(_lowercase )
transformers.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(f'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_lowerCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_lowerCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Initialize our dataset and prepare it for the 'image-classification' task.
if data_args.dataset_name is not None:
_lowerCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , )
else:
_lowerCAmelCase = {}
if data_args.train_dir is not None:
_lowerCAmelCase = os.path.join(data_args.train_dir , '''**''' )
if data_args.validation_dir is not None:
_lowerCAmelCase = os.path.join(data_args.validation_dir , '''**''' )
_lowerCAmelCase = load_dataset(
'''imagefolder''' , data_files=_lowercase , cache_dir=model_args.cache_dir , task='''image-classification''' , )
# If we don't have a validation split, split off a percentage of train as validation.
_lowerCAmelCase = None if "validation" in dataset.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , _lowercase ) and data_args.train_val_split > 0.0:
_lowerCAmelCase = dataset["train"].train_test_split(data_args.train_val_split )
_lowerCAmelCase = split["train"]
_lowerCAmelCase = split["test"]
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
_lowerCAmelCase = dataset["train"].features["labels"].names
_lowerCAmelCase = {}, {}
for i, label in enumerate(_lowercase ):
_lowerCAmelCase = str(_lowercase )
_lowerCAmelCase = label
# Load the accuracy metric from the datasets package
_lowerCAmelCase = evaluate.load('''accuracy''' )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(_SCREAMING_SNAKE_CASE : Optional[int] ):
return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids )
_lowerCAmelCase = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowercase ) , labelaid=_lowercase , idalabel=_lowercase , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_lowerCAmelCase = AutoModelForImageClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
_lowerCAmelCase = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
_lowerCAmelCase = image_processor.size["shortest_edge"]
else:
_lowerCAmelCase = (image_processor.size["height"], image_processor.size["width"])
_lowerCAmelCase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std )
_lowerCAmelCase = Compose(
[
RandomResizedCrop(_lowercase ),
RandomHorizontalFlip(),
ToTensor(),
normalize,
] )
_lowerCAmelCase = Compose(
[
Resize(_lowercase ),
CenterCrop(_lowercase ),
ToTensor(),
normalize,
] )
def train_transforms(_SCREAMING_SNAKE_CASE : List[str] ):
_lowerCAmelCase = [
_train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch["image"]
]
return example_batch
def val_transforms(_SCREAMING_SNAKE_CASE : List[Any] ):
_lowerCAmelCase = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch["image"]]
return example_batch
if training_args.do_train:
if "train" not in dataset:
raise ValueError('''--do_train requires a train dataset''' )
if data_args.max_train_samples is not None:
_lowerCAmelCase = (
dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
dataset["train"].set_transform(_lowercase )
if training_args.do_eval:
if "validation" not in dataset:
raise ValueError('''--do_eval requires a validation dataset''' )
if data_args.max_eval_samples is not None:
_lowerCAmelCase = (
dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
dataset["validation"].set_transform(_lowercase )
# Initalize our trainer
_lowerCAmelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=_lowercase , tokenizer=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
_lowerCAmelCase = None
if training_args.resume_from_checkpoint is not None:
_lowerCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_lowerCAmelCase = last_checkpoint
_lowerCAmelCase = trainer.train(resume_from_checkpoint=_lowercase )
trainer.save_model()
trainer.log_metrics('''train''' , train_result.metrics )
trainer.save_metrics('''train''' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_lowerCAmelCase = trainer.evaluate()
trainer.log_metrics('''eval''' , _lowercase )
trainer.save_metrics('''eval''' , _lowercase )
# Write model card and (optionally) push to hub
_lowerCAmelCase = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "image-classification",
"dataset": data_args.dataset_name,
"tags": ["image-classification", "vision"],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_lowercase )
else:
trainer.create_model_card(**_lowercase )
if __name__ == "__main__":
main()
| 709 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = process
_lowerCAmelCase = params
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
_lowerCAmelCase = self.dataset[i]
_lowerCAmelCase = self.process(_lowerCAmelCase , **self.params )
return processed
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowerCAmelCase = loader
_lowerCAmelCase = infer
_lowerCAmelCase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_lowerCAmelCase = None
_lowerCAmelCase = loader_batch_size
# Internal bookkeeping
_lowerCAmelCase = None
_lowerCAmelCase = None
def __len__( self ):
return len(self.loader )
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
return self
def __lowerCAmelCase ( self ):
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_lowerCAmelCase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_lowerCAmelCase = {}
for k, element in self._loader_batch_data.items():
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
# Convert ModelOutput to tuple first
_lowerCAmelCase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
_lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
_lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_lowerCAmelCase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_lowerCAmelCase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase )
self._loader_batch_index += 1
return result
def __lowerCAmelCase ( self ):
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_lowerCAmelCase = next(self.iterator )
_lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(_lowerCAmelCase , torch.Tensor ):
_lowerCAmelCase = processed
else:
_lowerCAmelCase = list(processed.keys() )[0]
_lowerCAmelCase = processed[key]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = len(_lowerCAmelCase )
else:
_lowerCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_lowerCAmelCase = observed_batch_size
# Setting internal index to unwrap the batch
_lowerCAmelCase = processed
_lowerCAmelCase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
_lowerCAmelCase = None
return self
def __lowerCAmelCase ( self ):
if self.subiterator is None:
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
_lowerCAmelCase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
_lowerCAmelCase = next(self.subiterator )
return processed
class UpperCAmelCase ( snake_case_ ):
def __iter__( self ):
_lowerCAmelCase = iter(self.loader )
return self
def __lowerCAmelCase ( self ):
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
_lowerCAmelCase = False
_lowerCAmelCase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_lowerCAmelCase = self.loader_batch_item()
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
if is_last:
return accumulator
while not is_last:
_lowerCAmelCase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(_lowerCAmelCase , torch.Tensor ):
_lowerCAmelCase = processed
else:
_lowerCAmelCase = list(processed.keys() )[0]
_lowerCAmelCase = processed[key]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = len(_lowerCAmelCase )
else:
_lowerCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_lowerCAmelCase = observed_batch_size
_lowerCAmelCase = processed
_lowerCAmelCase = 0
while self._loader_batch_index < self.loader_batch_size:
_lowerCAmelCase = self.loader_batch_item()
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
if is_last:
return accumulator
else:
_lowerCAmelCase = processed
_lowerCAmelCase = item.pop('''is_last''' )
accumulator.append(_lowerCAmelCase )
return accumulator
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = key
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
return self.dataset[i][self.key]
class UpperCAmelCase ( snake_case_ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = dataset
_lowerCAmelCase = keya
_lowerCAmelCase = keya
def __len__( self ):
return len(self.dataset )
def __getitem__( self , _lowerCAmelCase ):
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 664 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.