code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): UpperCAmelCase_ = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: UpperCAmelCase_ = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->Tuple: _lowerCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCAmelCase = numpy_to_pil(_SCREAMING_SNAKE_CASE ) return images def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->List[Any]: if images.ndim == 3: _lowerCAmelCase = images[None, ...] _lowerCAmelCase = (images * 2_5_5).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _lowerCAmelCase = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: _lowerCAmelCase = [Image.fromarray(_SCREAMING_SNAKE_CASE ) for image in images] return pil_images
700
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ = [] UpperCAmelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
664
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''visual_bert''' def __init__( self , _lowerCAmelCase=30_522 , _lowerCAmelCase=768 , _lowerCAmelCase=512 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3_072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = visual_embedding_dim _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = type_vocab_size _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = bypass_transformer _lowerCAmelCase = special_visual_initialize
701
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: # Initialise PyTorch model _lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
664
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline UpperCAmelCase_ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = '''utf-8''' SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True # deprecated SCREAMING_SNAKE_CASE__ = None # deprecated SCREAMING_SNAKE_CASE__ = 1_0 << 2_0 # 10MB SCREAMING_SNAKE_CASE__ = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): SCREAMING_SNAKE_CASE__ = JsonConfig def __lowerCAmelCase ( self ): if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) _lowerCAmelCase = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , _lowerCAmelCase ): if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): _lowerCAmelCase = data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = [files] _lowerCAmelCase = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = [files] _lowerCAmelCase = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def __lowerCAmelCase ( self , _lowerCAmelCase ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _lowerCAmelCase = self.config.features.arrow_schema.field(_lowerCAmelCase ).type _lowerCAmelCase = pa_table.append_column(_lowerCAmelCase , pa.array([None] * len(_lowerCAmelCase ) , type=_lowerCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase = table_cast(_lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def __lowerCAmelCase ( self , _lowerCAmelCase ): for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _lowerCAmelCase = json.load(_lowerCAmelCase ) # We keep only the field we are interested in _lowerCAmelCase = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCAmelCase , (list, tuple) ): _lowerCAmelCase = set().union(*[row.keys() for row in dataset] ) _lowerCAmelCase = {col: [row.get(_lowerCAmelCase ) for row in dataset] for col in keys} else: _lowerCAmelCase = dataset _lowerCAmelCase = pa.Table.from_pydict(_lowerCAmelCase ) yield file_idx, self._cast_table(_lowerCAmelCase ) # If the file has one json object per line else: with open(_lowerCAmelCase , '''rb''' ) as f: _lowerCAmelCase = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _lowerCAmelCase = max(self.config.chunksize // 32 , 16 << 10 ) _lowerCAmelCase = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: _lowerCAmelCase = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _lowerCAmelCase = batch.decode(self.config.encoding , errors=_lowerCAmelCase ).encode('''utf-8''' ) try: while True: try: _lowerCAmelCase = paj.read_json( io.BytesIO(_lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=_lowerCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCAmelCase ) or block_size > len(_lowerCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(_lowerCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _lowerCAmelCase = json.load(_lowerCAmelCase ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # list is the only sequence type supported in JSON try: _lowerCAmelCase = set().union(*[row.keys() for row in dataset] ) _lowerCAmelCase = {col: [row.get(_lowerCAmelCase ) for row in dataset] for col in keys} _lowerCAmelCase = pa.Table.from_pydict(_lowerCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(_lowerCAmelCase ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCAmelCase ) batch_idx += 1
702
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "Hello world! cécé herlolip" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]: _lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout _lowerCAmelCase = roberta.model.encoder.sentence_encoder _lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase = model.roberta.encoder.layer[i] _lowerCAmelCase = roberta_sent_encoder.layers[i] _lowerCAmelCase = layer.attention _lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase = roberta_layer.final_layer_norm.weight _lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # output _lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase = roberta.model.encoder.lm_head.weight _lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
664
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = '''focalnet''' def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=False , _lowerCAmelCase=[192, 384, 768, 768] , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[2, 2, 2, 2] , _lowerCAmelCase=[3, 3, 3, 3] , _lowerCAmelCase="gelu" , _lowerCAmelCase=4.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=False , _lowerCAmelCase=1E-4 , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = use_conv_embed _lowerCAmelCase = hidden_sizes _lowerCAmelCase = depths _lowerCAmelCase = focal_levels _lowerCAmelCase = focal_windows _lowerCAmelCase = hidden_act _lowerCAmelCase = mlp_ratio _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = use_layerscale _lowerCAmelCase = layerscale_value _lowerCAmelCase = use_post_layernorm _lowerCAmelCase = use_post_layernorm_in_modulation _lowerCAmelCase = normalize_modulator _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = encoder_stride _lowerCAmelCase = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] _lowerCAmelCase , _lowerCAmelCase = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
703
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
664
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase ( snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE__ = frozenset([] ) def __lowerCAmelCase ( self ): _lowerCAmelCase = 32 _lowerCAmelCase = embedder_hidden_size # image encoding components _lowerCAmelCase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCAmelCase , projection_dim=_lowerCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) _lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowerCAmelCase ) _lowerCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCAmelCase , layers_per_block=1 , upcast_attention=_lowerCAmelCase , use_linear_projection=_lowerCAmelCase , ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 , _lowerCAmelCase=True ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) if pil_image: _lowerCAmelCase = input_image * 0.5 + 0.5 _lowerCAmelCase = input_image.clamp(0 , 1 ) _lowerCAmelCase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCAmelCase = DiffusionPipeline.numpy_to_pil(_lowerCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = StableUnCLIPImgaImgPipeline(**_lowerCAmelCase ) _lowerCAmelCase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) inputs.update({'''image_embeds''': None} ) _lowerCAmelCase = sd_pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCAmelCase ( self ): _lowerCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCAmelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCAmelCase ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) _lowerCAmelCase = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , '''anime turle''' , generator=_lowerCAmelCase , output_type='''np''' ) _lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) _lowerCAmelCase = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , '''anime turle''' , generator=_lowerCAmelCase , output_type='''np''' ) _lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) _lowerCAmelCase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase = pipe( _lowerCAmelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) _lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
704
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCAmelCase : # setable values SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None # sigma(t_i) @classmethod def __lowerCAmelCase ( cls ): return cls() @dataclass class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 4_2 SCREAMING_SNAKE_CASE__ = 4_2 SCREAMING_SNAKE_CASE__ = 4_2 class UpperCAmelCase ( snake_case_ ,snake_case_ ): @property def __lowerCAmelCase ( self ): return True @register_to_config def __init__( self , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 100 , _lowerCAmelCase = 1.007 , _lowerCAmelCase = 80 , _lowerCAmelCase = 0.05 , _lowerCAmelCase = 50 , ): pass def __lowerCAmelCase ( self ): return KarrasVeSchedulerState.create() def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = () ): _lowerCAmelCase = jnp.arange(0 , _lowerCAmelCase )[::-1].copy() _lowerCAmelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_lowerCAmelCase , schedule=jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) , timesteps=_lowerCAmelCase , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if self.config.s_min <= sigma <= self.config.s_max: _lowerCAmelCase = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: _lowerCAmelCase = 0 # sample eps ~ N(0, S_noise^2 * I) _lowerCAmelCase = random.split(_lowerCAmelCase , num=1 ) _lowerCAmelCase = self.config.s_noise * random.normal(key=_lowerCAmelCase , shape=sample.shape ) _lowerCAmelCase = sigma + gamma * sigma _lowerCAmelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ): _lowerCAmelCase = sample_hat + sigma_hat * model_output _lowerCAmelCase = (sample_hat - pred_original_sample) / sigma_hat _lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_lowerCAmelCase , derivative=_lowerCAmelCase , state=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ): _lowerCAmelCase = sample_prev + sigma_prev * model_output _lowerCAmelCase = (sample_prev - pred_original_sample) / sigma_prev _lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_lowerCAmelCase , derivative=_lowerCAmelCase , state=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): raise NotImplementedError()
705
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
0
from collections import namedtuple UpperCAmelCase_ = namedtuple("from_to", "from_ to") UpperCAmelCase_ = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1_0_0_0), "kilolitre": from_to(1, 1), "gallon": from_to(0.0_0454, 264.172), "cubicyard": from_to(0.7_6455, 1.3_0795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.0_0023_6588, 4226.75), } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: if from_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ''', '''.join(_SCREAMING_SNAKE_CASE ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ''', '''.join(_SCREAMING_SNAKE_CASE ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
706
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
0
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCAmelCase ( snake_case_ ): '''simple docstring''' def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
707
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''bert''' def __init__( self , _lowerCAmelCase=30_522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3_072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class UpperCAmelCase ( snake_case_ ): @property def __lowerCAmelCase ( self ): if self.task == "multiple-choice": _lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
708
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase_ = 1_0 UpperCAmelCase_ = 2_5_6 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]: if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE ) for token in set(_SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]: return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self , *, _lowerCAmelCase = 0.85 , ): _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self._index.query(_lowerCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(_lowerCAmelCase ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.get_duplicate_clusters() with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str: _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ): di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(_SCREAMING_SNAKE_CASE ) return extremes def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple: global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ): extremes_list.append(_SCREAMING_SNAKE_CASE ) return extremes_list def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) return ds_filter, duplicate_clusters
664
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
709
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = process _lowerCAmelCase = params def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): _lowerCAmelCase = self.dataset[i] _lowerCAmelCase = self.process(_lowerCAmelCase , **self.params ) return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): _lowerCAmelCase = loader _lowerCAmelCase = infer _lowerCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowerCAmelCase = None _lowerCAmelCase = loader_batch_size # Internal bookkeeping _lowerCAmelCase = None _lowerCAmelCase = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowerCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowerCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first _lowerCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowerCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowerCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowerCAmelCase = next(self.iterator ) _lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _lowerCAmelCase = processed _lowerCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) _lowerCAmelCase = None return self def __lowerCAmelCase ( self ): if self.subiterator is None: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _lowerCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) _lowerCAmelCase = next(self.subiterator ) return processed class UpperCAmelCase ( snake_case_ ): def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowerCAmelCase = False _lowerCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size _lowerCAmelCase = processed _lowerCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: _lowerCAmelCase = processed _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) return accumulator class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = key def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return self.dataset[i][self.key] class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = keya _lowerCAmelCase = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
664
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCAmelCase_ = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" UpperCAmelCase_ = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" UpperCAmelCase_ = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] )->Dict: return float((preds == labels).mean() ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple )->Dict: _lowerCAmelCase = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str )->Optional[int]: _lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = en_sentvecs.shape[0] # mean centering _lowerCAmelCase = en_sentvecs - np.mean(_SCREAMING_SNAKE_CASE , axis=0 ) _lowerCAmelCase = in_sentvecs - np.mean(_SCREAMING_SNAKE_CASE , axis=0 ) _lowerCAmelCase = cdist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''cosine''' ) _lowerCAmelCase = np.array(range(_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = sim.argsort(axis=1 )[:, :1_0] _lowerCAmelCase = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_lowerCAmelCase , _lowerCAmelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
710
import numpy class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ): _lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ): _lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = input_arr _lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return (value) * (1 - (value)) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->List[str]: _lowerCAmelCase = 1.5 _lowerCAmelCase = int(factor * num_class_images ) _lowerCAmelCase = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(f'''{class_data_dir}/images''' , exist_ok=_SCREAMING_SNAKE_CASE ) if len(list(Path(f'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: _lowerCAmelCase = client.query(text=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1e4: break else: _lowerCAmelCase = int(factor * num_images ) _lowerCAmelCase = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = tqdm(desc='''downloading real regularization images''' , total=_SCREAMING_SNAKE_CASE ) with open(f'''{class_data_dir}/caption.txt''' , '''w''' ) as fa, open(f'''{class_data_dir}/urls.txt''' , '''w''' ) as fa, open( f'''{class_data_dir}/images.txt''' , '''w''' ) as fa: while total < num_class_images: _lowerCAmelCase = class_images[count] count += 1 try: _lowerCAmelCase = requests.get(images['''url'''] ) if img.status_code == 2_0_0: _lowerCAmelCase = Image.open(BytesIO(img.content ) ) with open(f'''{class_data_dir}/images/{total}.jpg''' , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(f'''{class_data_dir}/images/{total}.jpg''' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase__ ( )->List[str]: _lowerCAmelCase = argparse.ArgumentParser('''''' , add_help=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_0_0 , type=_SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Optional[int]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str]=0 )->List[Any]: return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x[column] ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str=float('''inf''' ) )->Dict: for i in range(points_counts - 1 ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCAmelCase = current_dis return min_dis def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str]=float('''inf''' ) )->Union[str, Any]: for i in range(min(6 , points_counts - 1 ) , _SCREAMING_SNAKE_CASE ): for j in range(max(0 , i - 6 ) , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCAmelCase = current_dis return min_dis def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->Optional[int]: # base case if points_counts <= 3: return dis_between_closest_pair(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # recursion _lowerCAmelCase = points_counts // 2 _lowerCAmelCase = closest_pair_of_points_sqr( _SCREAMING_SNAKE_CASE , points_sorted_on_y[:mid] , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = closest_pair_of_points_sqr( _SCREAMING_SNAKE_CASE , points_sorted_on_y[mid:] , points_counts - mid ) _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = dis_between_closest_in_strip( _SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) return min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] )->str: _lowerCAmelCase = column_based_sort(_SCREAMING_SNAKE_CASE , column=0 ) _lowerCAmelCase = column_based_sort(_SCREAMING_SNAKE_CASE , column=1 ) return ( closest_pair_of_points_sqr( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase_ = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
712
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
664
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
713
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = 300 return config def __lowerCAmelCase ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = True _lowerCAmelCase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = () def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ): return @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
664
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=True , _lowerCAmelCase=1 / 255 , _lowerCAmelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_pad def __lowerCAmelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=False ): if not batched: _lowerCAmelCase = image_inputs[0] if isinstance(_lowerCAmelCase , Image.Image ): _lowerCAmelCase , _lowerCAmelCase = image.size else: _lowerCAmelCase , _lowerCAmelCase = image.shape[1], image.shape[2] if w < h: _lowerCAmelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCAmelCase = self.size['''shortest_edge'''] elif w > h: _lowerCAmelCase = self.size['''shortest_edge'''] _lowerCAmelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCAmelCase = self.size['''shortest_edge'''] _lowerCAmelCase = self.size['''shortest_edge'''] else: _lowerCAmelCase = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCAmelCase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[0] )[0] _lowerCAmelCase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DetaImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = DetaImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _lowerCAmelCase ) def __lowerCAmelCase ( self ): pass def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCAmelCase ( self ): # prepare image and target _lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCAmelCase = json.loads(f.read() ) _lowerCAmelCase = {'''image_id''': 39_769, '''annotations''': target} # encode them _lowerCAmelCase = DetaImageProcessor() _lowerCAmelCase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _lowerCAmelCase = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) ) # verify area _lowerCAmelCase = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCAmelCase ) ) # verify boxes _lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCAmelCase , atol=1E-3 ) ) # verify image_id _lowerCAmelCase = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCAmelCase ) ) # verify is_crowd _lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCAmelCase ) ) # verify class_labels _lowerCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCAmelCase ) ) # verify orig_size _lowerCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCAmelCase ) ) # verify size _lowerCAmelCase = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCAmelCase ) ) @slow def __lowerCAmelCase ( self ): # prepare image, target and masks_path _lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCAmelCase = json.loads(f.read() ) _lowerCAmelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} _lowerCAmelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCAmelCase = DetaImageProcessor(format='''coco_panoptic''' ) _lowerCAmelCase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , masks_path=_lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _lowerCAmelCase = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) ) # verify area _lowerCAmelCase = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCAmelCase ) ) # verify boxes _lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCAmelCase , atol=1E-3 ) ) # verify image_id _lowerCAmelCase = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCAmelCase ) ) # verify is_crowd _lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCAmelCase ) ) # verify class_labels _lowerCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCAmelCase ) ) # verify masks _lowerCAmelCase = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _lowerCAmelCase ) # verify orig_size _lowerCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCAmelCase ) ) # verify size _lowerCAmelCase = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCAmelCase ) )
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ = 1_6 UpperCAmelCase_ = 3_2 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 1_6 )->Tuple: _lowerCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowerCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_SCREAMING_SNAKE_CASE : List[Any] ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_SCREAMING_SNAKE_CASE : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase = 1_6 elif accelerator.mixed_precision != "no": _lowerCAmelCase = 8 else: _lowerCAmelCase = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. _lowerCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase_ = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] )->Optional[Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _SCREAMING_SNAKE_CASE ) == "1": _lowerCAmelCase = 2 # Initialize accelerator _lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase = config['''lr'''] _lowerCAmelCase = int(config['''num_epochs'''] ) _lowerCAmelCase = int(config['''seed'''] ) _lowerCAmelCase = int(config['''batch_size'''] ) _lowerCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_SCREAMING_SNAKE_CASE ) def inner_training_loop(_SCREAMING_SNAKE_CASE : int ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate scheduler _lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=1_0_0 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = outputs.loss accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) _lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _SCREAMING_SNAKE_CASE ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCAmelCase__ ( )->int: _lowerCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
0
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : int )->list[int]: if num <= 0: raise ValueError('''Input must be a positive integer''' ) _lowerCAmelCase = [True] * (num + 1) _lowerCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
716
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
664
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): _lowerCAmelCase = logging.get_logger() # the current default level is logging.WARNING _lowerCAmelCase = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = logging.get_verbosity() _lowerCAmelCase = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) _lowerCAmelCase = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def __lowerCAmelCase ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowerCAmelCase = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) _lowerCAmelCase = os.getenv('''TRANSFORMERS_VERBOSITY''' , _lowerCAmelCase ) _lowerCAmelCase = logging.log_levels[env_level_str] _lowerCAmelCase = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level _lowerCAmelCase = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def __lowerCAmelCase ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowerCAmelCase = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def __lowerCAmelCase ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowerCAmelCase = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) _lowerCAmelCase = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '''\n''' ) def UpperCAmelCase__ ( )->Union[str, Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''MCTCTFeatureExtractor''' SCREAMING_SNAKE_CASE__ = '''AutoTokenizer''' def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self.feature_extractor _lowerCAmelCase = False def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCAmelCase , **_lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) _lowerCAmelCase = kwargs.pop('''raw_speech''' ) else: _lowerCAmelCase = kwargs.pop('''audio''' , _lowerCAmelCase ) _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) _lowerCAmelCase = kwargs.pop('''text''' , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _lowerCAmelCase = args[0] _lowerCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _lowerCAmelCase = self.feature_extractor(_lowerCAmelCase , *_lowerCAmelCase , sampling_rate=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: _lowerCAmelCase = encodings['''input_ids'''] return inputs def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = kwargs.pop('''input_features''' , _lowerCAmelCase ) _lowerCAmelCase = kwargs.pop('''labels''' , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _lowerCAmelCase = args[0] _lowerCAmelCase = args[1:] if input_features is not None: _lowerCAmelCase = self.feature_extractor.pad(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) if labels is not None: _lowerCAmelCase = self.tokenizer.pad(_lowerCAmelCase , **_lowerCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: _lowerCAmelCase = labels['''input_ids'''] return input_features def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @contextmanager def __lowerCAmelCase ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) _lowerCAmelCase = True _lowerCAmelCase = self.tokenizer yield _lowerCAmelCase = self.feature_extractor _lowerCAmelCase = False
718
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
0
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )->Optional[Any]: assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] )->Any: _lowerCAmelCase = tmp_path / '''cache''' _lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCAmelCase = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str )->List[str]: _lowerCAmelCase = tmp_path / '''cache''' _lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowerCAmelCase = features.copy() if features else default_expected_features _lowerCAmelCase = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->int: with contextlib.closing(sqlitea.connect(_SCREAMING_SNAKE_CASE ) ) as con: _lowerCAmelCase = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict )->Dict: _lowerCAmelCase = tmp_path / '''cache''' _lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''tmp.sql''' ) _lowerCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(_SCREAMING_SNAKE_CASE , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() _lowerCAmelCase = iter_sql_file(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = iter_sql_file(_SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] )->str: _lowerCAmelCase = tmp_path / '''cache''' _lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''tmp.sql''' ) _lowerCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(_SCREAMING_SNAKE_CASE , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() _lowerCAmelCase = iter_sql_file(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = iter_sql_file(_SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] )->Optional[Any]: _lowerCAmelCase = tmp_path / '''cache''' _lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''tmp.sql''' ) _lowerCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_SCREAMING_SNAKE_CASE ).read() with pytest.raises(_SCREAMING_SNAKE_CASE ): SqlDatasetWriter(_SCREAMING_SNAKE_CASE , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
719
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
0
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging UpperCAmelCase_ = logging.get_logger(__name__) class UpperCAmelCase : SCREAMING_SNAKE_CASE__ = None @experimental def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] )->str: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return _map_with_joblib(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->Union[str, Any]: _lowerCAmelCase = num_proc if num_proc <= len(_SCREAMING_SNAKE_CASE ) else len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) // num_proc _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) % num_proc _lowerCAmelCase = div * index + min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(_SCREAMING_SNAKE_CASE ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f'''Error dividing inputs iterable among processes. ''' f'''Total number of objects {len(_SCREAMING_SNAKE_CASE )}, ''' f'''length: {sum(len(i[1] ) for i in split_kwds )}''' ) logger.info( f'''Spawning {num_proc} processes for {len(_SCREAMING_SNAKE_CASE )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' ) _lowerCAmelCase , _lowerCAmelCase = None, None if not disable_tqdm: _lowerCAmelCase , _lowerCAmelCase = (RLock(),), tqdm.set_lock with Pool(_SCREAMING_SNAKE_CASE , initargs=_SCREAMING_SNAKE_CASE , initializer=_SCREAMING_SNAKE_CASE ) as pool: _lowerCAmelCase = pool.map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info(f'''Finished {num_proc} processes''' ) _lowerCAmelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(f'''Unpacked {len(_SCREAMING_SNAKE_CASE )} objects''' ) return mapped def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=_SCREAMING_SNAKE_CASE ): return joblib.Parallel()( joblib.delayed(_SCREAMING_SNAKE_CASE )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _lowerCAmelCase = None
720
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
0
import glob import os import random from string import ascii_lowercase, digits import cva UpperCAmelCase_ = "" UpperCAmelCase_ = "" UpperCAmelCase_ = "" UpperCAmelCase_ = 1 # (0 is vertical, 1 is horizontal) def UpperCAmelCase__ ( )->None: _lowerCAmelCase , _lowerCAmelCase = get_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print('''Processing...''' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for index, image in enumerate(_SCREAMING_SNAKE_CASE ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(3_2 ) _lowerCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] _lowerCAmelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , _SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f'''Success {index+1}/{len(_SCREAMING_SNAKE_CASE )} with {file_name}''' ) _lowerCAmelCase = [] for anno in new_annos[index]: _lowerCAmelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(_SCREAMING_SNAKE_CASE ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->tuple[list, list]: _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(_SCREAMING_SNAKE_CASE , '''*.txt''' ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(_SCREAMING_SNAKE_CASE ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , f'''{label_name}.jpg''' ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_SCREAMING_SNAKE_CASE ) labels.append(_SCREAMING_SNAKE_CASE ) return img_paths, labels def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 1 )->tuple[list, list, list]: _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for idx in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = [] _lowerCAmelCase = img_list[idx] path_list.append(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = anno_list[idx] _lowerCAmelCase = cva.imread(_SCREAMING_SNAKE_CASE ) if flip_type == 1: _lowerCAmelCase = cva.flip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for bbox in img_annos: _lowerCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase = cva.flip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for bbox in img_annos: _lowerCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_SCREAMING_SNAKE_CASE ) new_imgs_list.append(_SCREAMING_SNAKE_CASE ) return new_imgs_list, new_annos_lists, path_list def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 3_2 )->str: assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print("DONE ✅")
721
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ = [] UpperCAmelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
664
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VQModel SCREAMING_SNAKE_CASE__ = '''sample''' @property def __lowerCAmelCase ( self , _lowerCAmelCase=(32, 32) ): _lowerCAmelCase = 4 _lowerCAmelCase = 3 _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) return {"sample": image} @property def __lowerCAmelCase ( self ): return (3, 32, 32) @property def __lowerCAmelCase ( self ): return (3, 32, 32) def __lowerCAmelCase ( self ): _lowerCAmelCase = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self ): pass def __lowerCAmelCase ( self ): pass def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_lowerCAmelCase ) _lowerCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __lowerCAmelCase ( self ): _lowerCAmelCase = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(_lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _lowerCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _lowerCAmelCase = image.to(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase ).sample _lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _lowerCAmelCase = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
701
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: # Initialise PyTorch model _lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
664
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCAmelCase : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None def __lowerCAmelCase ( self ): return self.__class__(**{k: copy.deepcopy(_lowerCAmelCase ) for k, v in self.__dict__.items()} )
702
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "Hello world! cécé herlolip" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]: _lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout _lowerCAmelCase = roberta.model.encoder.sentence_encoder _lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase = model.roberta.encoder.layer[i] _lowerCAmelCase = roberta_sent_encoder.layers[i] _lowerCAmelCase = layer.attention _lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase = roberta_layer.final_layer_norm.weight _lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # output _lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase = roberta.model.encoder.lm_head.weight _lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
664
0
'''simple docstring''' UpperCAmelCase_ = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
703
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
664
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase_ = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" UpperCAmelCase_ = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" UpperCAmelCase_ = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=4 , _lowerCAmelCase=False ): _lowerCAmelCase = compute_bleu( reference_corpus=_lowerCAmelCase , translation_corpus=_lowerCAmelCase , max_order=_lowerCAmelCase , smooth=_lowerCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
704
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCAmelCase ( self ): _lowerCAmelCase = 1 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_lowerCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.dummy_cond_unet_upscale _lowerCAmelCase = DDPMScheduler() _lowerCAmelCase = DDIMScheduler(prediction_type='''v_prediction''' ) _lowerCAmelCase = self.dummy_vae _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase = StableDiffusionUpscalePipeline( unet=_lowerCAmelCase , low_res_scheduler=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , max_noise_level=350 , ) _lowerCAmelCase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = '''A painting of a squirrel eating a burger''' _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) _lowerCAmelCase = sd_pipe( [prompt] , image=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _lowerCAmelCase = output.images _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) _lowerCAmelCase = sd_pipe( [prompt] , image=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=_lowerCAmelCase , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] _lowerCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCAmelCase = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.dummy_cond_unet_upscale _lowerCAmelCase = DDPMScheduler() _lowerCAmelCase = DDIMScheduler(prediction_type='''v_prediction''' ) _lowerCAmelCase = self.dummy_vae _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase = StableDiffusionUpscalePipeline( unet=_lowerCAmelCase , low_res_scheduler=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , max_noise_level=350 , ) _lowerCAmelCase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = '''A painting of a squirrel eating a burger''' _lowerCAmelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _lowerCAmelCase = output.images assert image.shape[0] == 2 _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) _lowerCAmelCase = sd_pipe( [prompt] , image=_lowerCAmelCase , generator=_lowerCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _lowerCAmelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.dummy_cond_unet_upscale _lowerCAmelCase = DDPMScheduler() _lowerCAmelCase = DDIMScheduler(prediction_type='''v_prediction''' ) _lowerCAmelCase = self.dummy_vae _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _lowerCAmelCase = unet.half() _lowerCAmelCase = text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase = StableDiffusionUpscalePipeline( unet=_lowerCAmelCase , low_res_scheduler=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , max_noise_level=350 , ) _lowerCAmelCase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = '''A painting of a squirrel eating a burger''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = sd_pipe( [prompt] , image=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , ).images _lowerCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) _lowerCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' _lowerCAmelCase = StableDiffusionUpscalePipeline.from_pretrained(_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase = '''a cat sitting on a park bench''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , generator=_lowerCAmelCase , output_type='''np''' , ) _lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def __lowerCAmelCase ( self ): _lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) _lowerCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' _lowerCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( _lowerCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase = '''a cat sitting on a park bench''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , generator=_lowerCAmelCase , output_type='''np''' , ) _lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __lowerCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _lowerCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' _lowerCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( _lowerCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase = '''a cat sitting on a park bench''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , output_type='''np''' , ) _lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
706
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCAmelCase_ = numpy.array([0, 0]) UpperCAmelCase_ = numpy.array([0.5, 0.866_0254]) UpperCAmelCase_ = numpy.array([1, 0]) UpperCAmelCase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[numpy.ndarray] , _SCREAMING_SNAKE_CASE : int )->list[numpy.ndarray]: _lowerCAmelCase = initial_vectors for _ in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = iteration_step(_SCREAMING_SNAKE_CASE ) return vectors def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[numpy.ndarray] )->list[numpy.ndarray]: _lowerCAmelCase = [] for i, start_vector in enumerate(vectors[:-1] ): _lowerCAmelCase = vectors[i + 1] new_vectors.append(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray , _SCREAMING_SNAKE_CASE : float )->numpy.ndarray: _lowerCAmelCase = numpy.radians(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = numpy.cos(_SCREAMING_SNAKE_CASE ), numpy.sin(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[numpy.ndarray] )->None: _lowerCAmelCase = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _lowerCAmelCase , _lowerCAmelCase = zip(*_SCREAMING_SNAKE_CASE ) plt.plot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
707
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase : @staticmethod def __lowerCAmelCase ( *_lowerCAmelCase , **_lowerCAmelCase ): pass @is_pipeline_test @require_vision class UpperCAmelCase ( unittest.TestCase ): @require_torch def __lowerCAmelCase ( self ): _lowerCAmelCase = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowerCAmelCase = image_classifier(_lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_lowerCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) _lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, ], ] , ) @require_tf def __lowerCAmelCase ( self ): _lowerCAmelCase = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowerCAmelCase = image_classifier(_lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) _lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(_lowerCAmelCase )}, ], ] , ) @slow @require_torch def __lowerCAmelCase ( self ): _lowerCAmelCase = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowerCAmelCase = image_classifier(_lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __lowerCAmelCase ( self ): _lowerCAmelCase = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowerCAmelCase = image_classifier(_lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) _lowerCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
708
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase_ = 1_0 UpperCAmelCase_ = 2_5_6 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]: if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE ) for token in set(_SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]: return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self , *, _lowerCAmelCase = 0.85 , ): _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self._index.query(_lowerCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(_lowerCAmelCase ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.get_duplicate_clusters() with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str: _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ): di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(_SCREAMING_SNAKE_CASE ) return extremes def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple: global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ): extremes_list.append(_SCREAMING_SNAKE_CASE ) return extremes_list def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) return ds_filter, duplicate_clusters
664
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self , _lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): _lowerCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sgugger/tiny-distilbert-classification''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , only_pretrain_model=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , torchscript=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , fpaa=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) # set architectures equal to `None` _lowerCAmelCase = None _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowerCAmelCase , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tinier_bart''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tinier_bart''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , save_to_csv=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCAmelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowerCAmelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowerCAmelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowerCAmelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowerCAmelCase , '''env.csv''' ) , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''env.csv''' ) ).exists() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase , '''sequential''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''current''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCAmelCase , '''log.txt''' ) , log_print=_lowerCAmelCase , trace_memory_line_by_line=_lowerCAmelCase , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''log.txt''' ) ).exists() )
709
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = process _lowerCAmelCase = params def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): _lowerCAmelCase = self.dataset[i] _lowerCAmelCase = self.process(_lowerCAmelCase , **self.params ) return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): _lowerCAmelCase = loader _lowerCAmelCase = infer _lowerCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowerCAmelCase = None _lowerCAmelCase = loader_batch_size # Internal bookkeeping _lowerCAmelCase = None _lowerCAmelCase = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowerCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowerCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first _lowerCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowerCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowerCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowerCAmelCase = next(self.iterator ) _lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _lowerCAmelCase = processed _lowerCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) _lowerCAmelCase = None return self def __lowerCAmelCase ( self ): if self.subiterator is None: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _lowerCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) _lowerCAmelCase = next(self.subiterator ) return processed class UpperCAmelCase ( snake_case_ ): def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowerCAmelCase = False _lowerCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size _lowerCAmelCase = processed _lowerCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: _lowerCAmelCase = processed _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) return accumulator class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = key def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return self.dataset[i][self.key] class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = keya _lowerCAmelCase = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
664
0
UpperCAmelCase_ = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 1_0: "a", 1_1: "b", 1_2: "c", 1_3: "d", 1_4: "e", 1_5: "f", } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float )->str: assert type(_SCREAMING_SNAKE_CASE ) in (int, float) and decimal == int(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = '''''' _lowerCAmelCase = False if decimal < 0: _lowerCAmelCase = True decimal *= -1 while decimal > 0: _lowerCAmelCase , _lowerCAmelCase = divmod(_SCREAMING_SNAKE_CASE , 1_6 ) _lowerCAmelCase = values[remainder] + hexadecimal _lowerCAmelCase = '''0x''' + hexadecimal if negative: _lowerCAmelCase = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
710
import numpy class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ): _lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ): _lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = input_arr _lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return (value) * (1 - (value)) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
0
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCAmelCase_ = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) UpperCAmelCase_ = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} UpperCAmelCase_ = "zero2" UpperCAmelCase_ = "zero3" UpperCAmelCase_ = [ZEROa, ZEROa] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] )->Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCAmelCase = parameterized.to_safe_name('''_'''.join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test UpperCAmelCase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class UpperCAmelCase ( snake_case_ ): @parameterized.expand(_lowerCAmelCase , name_func=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): self.run_and_check( stage=_lowerCAmelCase , model=_lowerCAmelCase , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCAmelCase , name_func=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): self.run_and_check( stage=_lowerCAmelCase , model=_lowerCAmelCase , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) @parameterized.expand(_lowerCAmelCase , name_func=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): self.run_and_check( stage=_lowerCAmelCase , model=_lowerCAmelCase , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCAmelCase , name_func=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): self.run_and_check( stage=_lowerCAmelCase , model=_lowerCAmelCase , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) def __lowerCAmelCase ( self , _lowerCAmelCase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 10 , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = True , ): _lowerCAmelCase = models[model] _lowerCAmelCase = self.run_trainer( stage=_lowerCAmelCase , model_name=_lowerCAmelCase , eval_steps=_lowerCAmelCase , num_train_epochs=1 , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) self.do_checks(_lowerCAmelCase ) return output_dir def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 10 , _lowerCAmelCase = 1 , _lowerCAmelCase = True , _lowerCAmelCase = True , ): _lowerCAmelCase = self.get_auto_remove_tmp_dir('''./xxx''' , after=_lowerCAmelCase ) _lowerCAmelCase = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_lowerCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCAmelCase = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCAmelCase = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCAmelCase = self.get_launcher(_lowerCAmelCase ) _lowerCAmelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) return output_dir def __lowerCAmelCase ( self , _lowerCAmelCase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCAmelCase = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
import math import random from typing import Any from .hill_climbing import SearchProblem def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : float = math.inf , _SCREAMING_SNAKE_CASE : float = -math.inf , _SCREAMING_SNAKE_CASE : float = math.inf , _SCREAMING_SNAKE_CASE : float = -math.inf , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : float = 1_0_0 , _SCREAMING_SNAKE_CASE : float = 0.01 , _SCREAMING_SNAKE_CASE : float = 1 , )->Any: _lowerCAmelCase = False _lowerCAmelCase = search_prob _lowerCAmelCase = start_temperate _lowerCAmelCase = [] _lowerCAmelCase = 0 _lowerCAmelCase = None while not search_end: _lowerCAmelCase = current_state.score() if best_state is None or current_score > best_state.score(): _lowerCAmelCase = current_state scores.append(_SCREAMING_SNAKE_CASE ) iterations += 1 _lowerCAmelCase = None _lowerCAmelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _lowerCAmelCase = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) # picking a random neighbor _lowerCAmelCase = neighbors.pop(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _lowerCAmelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution _lowerCAmelCase = picked_neighbor else: _lowerCAmelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _lowerCAmelCase = picked_neighbor _lowerCAmelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _lowerCAmelCase = True else: _lowerCAmelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict )->Any: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase_ = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase_ = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: return (3 * x**2) - (6 * y) UpperCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" ) UpperCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" )
712
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
664
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
713
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = 300 return config def __lowerCAmelCase ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = True _lowerCAmelCase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = () def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ): return @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
664
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCAmelCase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->Any: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: return max(metric_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for gt in ground_truths ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] )->str: _lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , '''r''' ).readlines()] _lowerCAmelCase = [] if args.gold_data_mode == "qa": _lowerCAmelCase = pd.read_csv(_SCREAMING_SNAKE_CASE , sep='''\t''' , header=_SCREAMING_SNAKE_CASE ) for answer_list in data[1]: _lowerCAmelCase = ast.literal_eval(_SCREAMING_SNAKE_CASE ) answers.append(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , '''r''' ).readlines()] _lowerCAmelCase = [[reference] for reference in references] _lowerCAmelCase = _lowerCAmelCase = _lowerCAmelCase = 0 for prediction, ground_truths in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): total += 1 em += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) fa += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 100.0 * em / total _lowerCAmelCase = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict )->Tuple: _lowerCAmelCase = args.k _lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , '''r''' ).readlines()] _lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , '''r''' ).readlines()] _lowerCAmelCase = _lowerCAmelCase = 0 for hypo, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = set(hypo.split('''\t''' )[:k] ) _lowerCAmelCase = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCAmelCase = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any )->List[str]: def strip_title(_SCREAMING_SNAKE_CASE : Union[str, Any] ): if title.startswith('''"''' ): _lowerCAmelCase = title[1:] if title.endswith('''"''' ): _lowerCAmelCase = title[:-1] return title _lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , )['''input_ids'''].to(args.device ) _lowerCAmelCase = rag_model.rag.question_encoder(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = question_enc_outputs[0] _lowerCAmelCase = rag_model.retriever( _SCREAMING_SNAKE_CASE , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) _lowerCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCAmelCase = [] for docs in all_docs: _lowerCAmelCase = [strip_title(_SCREAMING_SNAKE_CASE ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_SCREAMING_SNAKE_CASE ) ) return provenance_strings def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: with torch.no_grad(): _lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = inputs_dict.input_ids.to(args.device ) _lowerCAmelCase = inputs_dict.attention_mask.to(args.device ) _lowerCAmelCase = rag_model.generate( # rag_model overwrites generate _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_SCREAMING_SNAKE_CASE , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) if args.print_predictions: for q, a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info('''Q: {} - A: {}'''.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return answers def UpperCAmelCase__ ( )->str: _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_SCREAMING_SNAKE_CASE , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_SCREAMING_SNAKE_CASE , choices=['''exact''', '''compressed''', '''legacy'''] , type=_SCREAMING_SNAKE_CASE , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_SCREAMING_SNAKE_CASE , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_SCREAMING_SNAKE_CASE , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_SCREAMING_SNAKE_CASE , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_SCREAMING_SNAKE_CASE , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_SCREAMING_SNAKE_CASE , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_SCREAMING_SNAKE_CASE , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_SCREAMING_SNAKE_CASE , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_SCREAMING_SNAKE_CASE , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=5_0 , type=_SCREAMING_SNAKE_CASE , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Dict: _lowerCAmelCase = {} if args.model_type is None: _lowerCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): _lowerCAmelCase = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration _lowerCAmelCase = args.n_docs if args.index_name is not None: _lowerCAmelCase = args.index_name if args.index_path is not None: _lowerCAmelCase = args.index_path else: _lowerCAmelCase = BartForConditionalGeneration _lowerCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k _lowerCAmelCase = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_SCREAMING_SNAKE_CASE ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): _lowerCAmelCase = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , retriever=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.retriever.init_retrieval() else: _lowerCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: _lowerCAmelCase = [] for line in tqdm(_SCREAMING_SNAKE_CASE ): questions.append(line.strip() ) if len(_SCREAMING_SNAKE_CASE ) == args.eval_batch_size: _lowerCAmelCase = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write('''\n'''.join(_SCREAMING_SNAKE_CASE ) + '''\n''' ) preds_file.flush() _lowerCAmelCase = [] if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write('''\n'''.join(_SCREAMING_SNAKE_CASE ) ) preds_file.flush() score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCAmelCase_ = get_args() main(args)
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
0
import string import numpy def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )->int: return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE ) class UpperCAmelCase : SCREAMING_SNAKE_CASE__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) SCREAMING_SNAKE_CASE__ = numpy.vectorize(lambda snake_case_ : x % 3_6 ) SCREAMING_SNAKE_CASE__ = numpy.vectorize(snake_case_ ) def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = self.modulus(_lowerCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _lowerCAmelCase = encrypt_key.shape[0] def __lowerCAmelCase ( self , _lowerCAmelCase ): return self.key_string.index(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): return self.key_string[round(_lowerCAmelCase )] def __lowerCAmelCase ( self ): _lowerCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCAmelCase = det % len(self.key_string ) _lowerCAmelCase = len(self.key_string ) if greatest_common_divisor(_lowerCAmelCase , len(self.key_string ) ) != 1: _lowerCAmelCase = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = [char for char in text.upper() if char in self.key_string] _lowerCAmelCase = chars[-1] while len(_lowerCAmelCase ) % self.break_key != 0: chars.append(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.process_text(text.upper() ) _lowerCAmelCase = '''''' for i in range(0 , len(_lowerCAmelCase ) - self.break_key + 1 , self.break_key ): _lowerCAmelCase = text[i : i + self.break_key] _lowerCAmelCase = [self.replace_letters(_lowerCAmelCase ) for char in batch] _lowerCAmelCase = numpy.array([vec] ).T _lowerCAmelCase = self.modulus(self.encrypt_key.dot(_lowerCAmelCase ) ).T.tolist()[ 0 ] _lowerCAmelCase = ''''''.join( self.replace_digits(_lowerCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __lowerCAmelCase ( self ): _lowerCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCAmelCase = det % len(self.key_string ) _lowerCAmelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _lowerCAmelCase = i break _lowerCAmelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_lowerCAmelCase ) ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.make_decrypt_key() _lowerCAmelCase = self.process_text(text.upper() ) _lowerCAmelCase = '''''' for i in range(0 , len(_lowerCAmelCase ) - self.break_key + 1 , self.break_key ): _lowerCAmelCase = text[i : i + self.break_key] _lowerCAmelCase = [self.replace_letters(_lowerCAmelCase ) for char in batch] _lowerCAmelCase = numpy.array([vec] ).T _lowerCAmelCase = self.modulus(decrypt_key.dot(_lowerCAmelCase ) ).T.tolist()[0] _lowerCAmelCase = ''''''.join( self.replace_digits(_lowerCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def UpperCAmelCase__ ( )->None: _lowerCAmelCase = int(input('''Enter the order of the encryption key: ''' ) ) _lowerCAmelCase = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) _lowerCAmelCase = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": _lowerCAmelCase = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(_SCREAMING_SNAKE_CASE ) ) elif option == "2": _lowerCAmelCase = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: # Initialise PyTorch model _lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
716
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
664
0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )->Union[str, Any]: _lowerCAmelCase = 0 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _lowerCAmelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_SCREAMING_SNAKE_CASE ): return None _lowerCAmelCase = sorted_collection[point] if current_item == item: return point else: if point < left: _lowerCAmelCase = left _lowerCAmelCase = point elif point > right: _lowerCAmelCase = right _lowerCAmelCase = point else: if item < current_item: _lowerCAmelCase = point - 1 else: _lowerCAmelCase = point + 1 return None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str )->List[str]: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _lowerCAmelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_SCREAMING_SNAKE_CASE ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif point > right: return interpolation_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , point - 1 ) else: return interpolation_search_by_recursion( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , point + 1 , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->Tuple: if collection != sorted(_SCREAMING_SNAKE_CASE ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys UpperCAmelCase_ = 0 if debug == 1: UpperCAmelCase_ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") UpperCAmelCase_ = 6_7 UpperCAmelCase_ = interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print("Not found")
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
UpperCAmelCase_ = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )->list[str]: _lowerCAmelCase = set() # keep track of all the paths to be checked _lowerCAmelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _lowerCAmelCase = queue.pop(0 ) # get the last node from the path _lowerCAmelCase = path[-1] if node not in explored: _lowerCAmelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) new_path.append(_SCREAMING_SNAKE_CASE ) queue.append(_SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] )->int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _lowerCAmelCase = [start] _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. _lowerCAmelCase = {start: 0, target: -1} while queue: _lowerCAmelCase = queue.pop(0 ) if node == target: _lowerCAmelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_SCREAMING_SNAKE_CASE ) queue.append(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
718
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( snake_case_ ): def __lt__( self , _lowerCAmelCase ): return self[-1] < other[-1] def __eq__( self , _lowerCAmelCase ): return self[-1] == other[-1] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: _lowerCAmelCase = [] # sort into stacks for element in collection: _lowerCAmelCase = Stack([element] ) _lowerCAmelCase = bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if i != len(_SCREAMING_SNAKE_CASE ): stacks[i].append(_SCREAMING_SNAKE_CASE ) else: stacks.append(_SCREAMING_SNAKE_CASE ) # use a heap-based merge to merge stack efficiently _lowerCAmelCase = merge(*(reversed(_SCREAMING_SNAKE_CASE ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase_ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase_ = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
719
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[list[int | float]] )->int: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = len(matrix[0] ) _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for row in range(_SCREAMING_SNAKE_CASE ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = matrix[col][row] / matrix[row][row] for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows _lowerCAmelCase = True for i in range(row + 1 , _SCREAMING_SNAKE_CASE ): if matrix[i][row] != 0: _lowerCAmelCase , _lowerCAmelCase = matrix[i], matrix[row] _lowerCAmelCase = False break if reduce: rank -= 1 for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
720
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
721
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
0
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , )->tuple[str, float]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
700
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ = [] UpperCAmelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
664
0
import heapq import sys import numpy as np UpperCAmelCase_ = tuple[int, int] class UpperCAmelCase : def __init__( self ): _lowerCAmelCase = [] _lowerCAmelCase = set() def __lowerCAmelCase ( self ): if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def __lowerCAmelCase ( self ): return len(self.elements ) == 0 def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) _lowerCAmelCase = [] ((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def __lowerCAmelCase ( self , _lowerCAmelCase ): if item in self.set: self.set.remove(_lowerCAmelCase ) _lowerCAmelCase = [] ((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def __lowerCAmelCase ( self ): return self.elements[0][1] def __lowerCAmelCase ( self ): ((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : TPos )->List[str]: # euclidean distance _lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE ) return np.linalg.norm(a - b ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : TPos )->List[str]: # integer division by time variable return consistent_heuristic(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) // t def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : TPos )->List[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : dict[TPos, float] )->List[Any]: _lowerCAmelCase = g_function[start] + Wa * heuristics[i](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return ans def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = np.chararray((n, n) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = '''*''' for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if (j, (n - 1) - i) in blocks: _lowerCAmelCase = '''#''' _lowerCAmelCase = '''-''' _lowerCAmelCase = back_pointer[goal] while x != start: ((_lowerCAmelCase) , (_lowerCAmelCase)) = x # print(x) _lowerCAmelCase = '''-''' _lowerCAmelCase = back_pointer[x] _lowerCAmelCase = '''-''' for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) _lowerCAmelCase = back_pointer[goal] while x != start: print(_SCREAMING_SNAKE_CASE , end=''' ''' ) _lowerCAmelCase = back_pointer[x] print(_SCREAMING_SNAKE_CASE ) sys.exit() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TPos )->Optional[int]: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , )->str: for itera in range(_SCREAMING_SNAKE_CASE ): open_list[itera].remove_element(_SCREAMING_SNAKE_CASE ) # print("s", s) # print("j", j) ((_lowerCAmelCase) , (_lowerCAmelCase)) = s _lowerCAmelCase = (x - 1, y) _lowerCAmelCase = (x + 1, y) _lowerCAmelCase = (x, y + 1) _lowerCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_SCREAMING_SNAKE_CASE ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = -1 _lowerCAmelCase = float('''inf''' ) if valid(_SCREAMING_SNAKE_CASE ) and g_function[neighbours] > g_function[s] + 1: _lowerCAmelCase = g_function[s] + 1 _lowerCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if neighbours not in close_list_inad: for var in range(1 , _SCREAMING_SNAKE_CASE ): if key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) <= Wa * key( _SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): open_list[j].put( _SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( )->Optional[Any]: _lowerCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list UpperCAmelCase_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCAmelCase_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] UpperCAmelCase_ = make_common_ground() UpperCAmelCase_ = blocks_blk # hyper parameters UpperCAmelCase_ = 1 UpperCAmelCase_ = 1 UpperCAmelCase_ = 2_0 UpperCAmelCase_ = 3 # one consistent and two other inconsistent # start and end destination UpperCAmelCase_ = (0, 0) UpperCAmelCase_ = (n - 1, n - 1) UpperCAmelCase_ = 1 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : TPos , _SCREAMING_SNAKE_CASE : int )->List[Any]: _lowerCAmelCase = {start: 0, goal: float('''inf''' )} _lowerCAmelCase = {start: -1, goal: -1} _lowerCAmelCase = [] _lowerCAmelCase = set() for i in range(_SCREAMING_SNAKE_CASE ): open_list.append(PriorityQueue() ) open_list[i].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = [] _lowerCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , _SCREAMING_SNAKE_CASE ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase , _lowerCAmelCase = open_list[i].top_show() visited.add(_SCREAMING_SNAKE_CASE ) expand_state( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) close_list_inad.append(_SCREAMING_SNAKE_CASE ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = open_list[0].top_show() visited.add(_SCREAMING_SNAKE_CASE ) expand_state( _SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) close_list_anchor.append(_SCREAMING_SNAKE_CASE ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_SCREAMING_SNAKE_CASE ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
701
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: # Initialise PyTorch model _lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
664
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 4_2 class UpperCAmelCase ( snake_case_ ,snake_case_ ): @register_to_config def __init__( self , _lowerCAmelCase = 3 , _lowerCAmelCase = 3 , _lowerCAmelCase = ("DownEncoderBlock2D",) , _lowerCAmelCase = ("UpDecoderBlock2D",) , _lowerCAmelCase = (64,) , _lowerCAmelCase = 1 , _lowerCAmelCase = "silu" , _lowerCAmelCase = 3 , _lowerCAmelCase = 32 , _lowerCAmelCase = 256 , _lowerCAmelCase = 32 , _lowerCAmelCase = None , _lowerCAmelCase = 0.18_215 , _lowerCAmelCase = "group" , ): super().__init__() # pass init params to Encoder _lowerCAmelCase = Encoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , down_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , double_z=_lowerCAmelCase , ) _lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowerCAmelCase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) _lowerCAmelCase = VectorQuantizer(_lowerCAmelCase , _lowerCAmelCase , beta=0.25 , remap=_lowerCAmelCase , sane_index_shape=_lowerCAmelCase ) _lowerCAmelCase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) # pass init params to Decoder _lowerCAmelCase = Decoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , up_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , norm_type=_lowerCAmelCase , ) @apply_forward_hook def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = True ): _lowerCAmelCase = self.encoder(_lowerCAmelCase ) _lowerCAmelCase = self.quant_conv(_lowerCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCAmelCase ) @apply_forward_hook def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = True ): # also go through quantization layer if not force_not_quantize: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.quantize(_lowerCAmelCase ) else: _lowerCAmelCase = h _lowerCAmelCase = self.post_quant_conv(_lowerCAmelCase ) _lowerCAmelCase = self.decoder(_lowerCAmelCase , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = True ): _lowerCAmelCase = sample _lowerCAmelCase = self.encode(_lowerCAmelCase ).latents _lowerCAmelCase = self.decode(_lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase )
702
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "Hello world! cécé herlolip" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]: _lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout _lowerCAmelCase = roberta.model.encoder.sentence_encoder _lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase = model.roberta.encoder.layer[i] _lowerCAmelCase = roberta_sent_encoder.layers[i] _lowerCAmelCase = layer.attention _lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase = roberta_layer.final_layer_norm.weight _lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # output _lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase = roberta.model.encoder.lm_head.weight _lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
664
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->bool: _lowerCAmelCase = get_failure_array(_SCREAMING_SNAKE_CASE ) # 2) Step through text searching for pattern _lowerCAmelCase , _lowerCAmelCase = 0, 0 # index into text, pattern while i < len(_SCREAMING_SNAKE_CASE ): if pattern[j] == text[i]: if j == (len(_SCREAMING_SNAKE_CASE ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _lowerCAmelCase = failure[j - 1] continue i += 1 return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = [0] _lowerCAmelCase = 0 _lowerCAmelCase = 1 while j < len(_SCREAMING_SNAKE_CASE ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _lowerCAmelCase = failure[i - 1] continue j += 1 failure.append(_SCREAMING_SNAKE_CASE ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase_ = "abc1abc12" UpperCAmelCase_ = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCAmelCase_ = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase_ = "ABABX" UpperCAmelCase_ = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCAmelCase_ = "AAAB" UpperCAmelCase_ = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCAmelCase_ = "abcdabcy" UpperCAmelCase_ = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCAmelCase_ = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
703
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
664
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
704
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
from jiwer import compute_measures import datasets UpperCAmelCase_ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" UpperCAmelCase_ = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" UpperCAmelCase_ = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False ): if concatenate_texts: return compute_measures(_lowerCAmelCase , _lowerCAmelCase )["wer"] else: _lowerCAmelCase = 0 _lowerCAmelCase = 0 for prediction, reference in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = compute_measures(_lowerCAmelCase , _lowerCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
705
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase_ = threading.Lock() UpperCAmelCase_ = None UpperCAmelCase_ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } UpperCAmelCase_ = logging.WARNING UpperCAmelCase_ = True def UpperCAmelCase__ ( )->str: _lowerCAmelCase = os.getenv('''TRANSFORMERS_VERBOSITY''' , _SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def UpperCAmelCase__ ( )->str: return __name__.split('''.''' )[0] def UpperCAmelCase__ ( )->logging.Logger: return logging.getLogger(_get_library_name() ) def UpperCAmelCase__ ( )->None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowerCAmelCase = logging.StreamHandler() # Set sys.stderr as stream. _lowerCAmelCase = sys.stderr.flush # Apply our default configuration to the library root logger. _lowerCAmelCase = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowerCAmelCase = False def UpperCAmelCase__ ( )->None: global _default_handler with _lock: if not _default_handler: return _lowerCAmelCase = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowerCAmelCase = None def UpperCAmelCase__ ( )->Optional[Any]: return log_levels def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[str] = None )->logging.Logger: if name is None: _lowerCAmelCase = _get_library_name() _configure_library_root_logger() return logging.getLogger(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->None: _configure_library_root_logger() _get_library_root_logger().setLevel(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->Optional[int]: return set_verbosity(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->Union[str, Any]: return set_verbosity(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->Dict: return set_verbosity(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->Optional[Any]: return set_verbosity(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase__ ( )->None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : logging.Handler )->None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : logging.Handler )->None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->None: _configure_library_root_logger() _lowerCAmelCase = False def UpperCAmelCase__ ( )->None: _configure_library_root_logger() _lowerCAmelCase = True def UpperCAmelCase__ ( )->None: _lowerCAmelCase = _get_library_root_logger().handlers for handler in handlers: _lowerCAmelCase = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->None: _lowerCAmelCase = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any , *_SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : Union[str, Any] )->Optional[Any]: _lowerCAmelCase = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , _SCREAMING_SNAKE_CASE ) if no_advisory_warnings: return self.warning(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = warning_advice @functools.lru_cache(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , *_SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : Optional[int] )->Dict: self.warning(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = warning_once class UpperCAmelCase : def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): # pylint: disable=unused-argument _lowerCAmelCase = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , _lowerCAmelCase ): def empty_fn(*_lowerCAmelCase , **_lowerCAmelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return class UpperCAmelCase : def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ): if _tqdm_active: return tqdm_lib.tqdm(*_lowerCAmelCase , **_lowerCAmelCase ) else: return EmptyTqdm(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): _lowerCAmelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase_ = _tqdm_cls() def UpperCAmelCase__ ( )->bool: global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase__ ( )->List[Any]: global _tqdm_active _lowerCAmelCase = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase__ ( )->Optional[int]: global _tqdm_active _lowerCAmelCase = False hf_hub_utils.disable_progress_bars()
706
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class UpperCAmelCase ( snake_case_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''poolformer''' def __init__( self , _lowerCAmelCase=3 , _lowerCAmelCase=16 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=4.0 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[64, 128, 320, 512] , _lowerCAmelCase=[7, 3, 3, 3] , _lowerCAmelCase=[4, 2, 2, 2] , _lowerCAmelCase=[2, 1, 1, 1] , _lowerCAmelCase=4 , _lowerCAmelCase=0.0 , _lowerCAmelCase="gelu" , _lowerCAmelCase=True , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , **_lowerCAmelCase , ): _lowerCAmelCase = num_channels _lowerCAmelCase = patch_size _lowerCAmelCase = stride _lowerCAmelCase = padding _lowerCAmelCase = pool_size _lowerCAmelCase = hidden_sizes _lowerCAmelCase = mlp_ratio _lowerCAmelCase = depths _lowerCAmelCase = patch_sizes _lowerCAmelCase = strides _lowerCAmelCase = num_encoder_blocks _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_layer_scale _lowerCAmelCase = layer_scale_init_value _lowerCAmelCase = initializer_range super().__init__(**_lowerCAmelCase ) class UpperCAmelCase ( snake_case_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = version.parse('''1.11''' ) @property def __lowerCAmelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self ): return 2E-3
707
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "▁" UpperCAmelCase_ = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } UpperCAmelCase_ = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } UpperCAmelCase_ = { "facebook/s2t-small-librispeech-asr": 1_0_2_4, } UpperCAmelCase_ = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] UpperCAmelCase_ = {"mustc": MUSTC_LANGS} class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = MAX_MODEL_INPUT_SIZES SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ = [] def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , do_upper_case=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , tgt_lang=_lowerCAmelCase , lang_codes=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = do_upper_case _lowerCAmelCase = do_lower_case _lowerCAmelCase = load_json(_lowerCAmelCase ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} _lowerCAmelCase = spm_file _lowerCAmelCase = load_spm(_lowerCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: _lowerCAmelCase = lang_codes _lowerCAmelCase = LANGUAGES[lang_codes] _lowerCAmelCase = [F'''<lang:{lang}>''' for lang in self.langs] _lowerCAmelCase = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} _lowerCAmelCase = self.lang_tokens _lowerCAmelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _lowerCAmelCase = {} @property def __lowerCAmelCase ( self ): return len(self.encoder ) @property def __lowerCAmelCase ( self ): return self._tgt_lang @tgt_lang.setter def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.lang_code_to_id[tgt_lang] _lowerCAmelCase = [lang_code_id] def __lowerCAmelCase ( self , _lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): return self.encoder.get(_lowerCAmelCase , self.encoder[self.unk_token] ) def __lowerCAmelCase ( self , _lowerCAmelCase ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = [] _lowerCAmelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _lowerCAmelCase = self.sp_model.decode(_lowerCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _lowerCAmelCase = [] else: current_sub_tokens.append(_lowerCAmelCase ) _lowerCAmelCase = self.sp_model.decode(_lowerCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = [1] * len(self.prefix_tokens ) _lowerCAmelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def __lowerCAmelCase ( self ): _lowerCAmelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowerCAmelCase ): _lowerCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCAmelCase = {} _lowerCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowerCAmelCase = Path(_lowerCAmelCase ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' _lowerCAmelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _lowerCAmelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCAmelCase , '''wb''' ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (str(_lowerCAmelCase ), str(_lowerCAmelCase )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict[str, Any] )->sentencepiece.SentencePieceProcessor: _lowerCAmelCase = sentencepiece.SentencePieceProcessor(**_SCREAMING_SNAKE_CASE ) spm.Load(str(_SCREAMING_SNAKE_CASE ) ) return spm def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Union[Dict, List]: with open(_SCREAMING_SNAKE_CASE , '''r''' ) as f: return json.load(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->None: with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=2 )
708
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase_ = 1_0 UpperCAmelCase_ = 2_5_6 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]: if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE ) for token in set(_SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]: return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self , *, _lowerCAmelCase = 0.85 , ): _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self._index.query(_lowerCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(_lowerCAmelCase ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.get_duplicate_clusters() with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str: _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ): di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(_SCREAMING_SNAKE_CASE ) return extremes def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple: global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ): extremes_list.append(_SCREAMING_SNAKE_CASE ) return extremes_list def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) return ds_filter, duplicate_clusters
664
0
class UpperCAmelCase : def __init__( self ): _lowerCAmelCase = {} # Mapping from char to TrieNode _lowerCAmelCase = False def __lowerCAmelCase ( self , _lowerCAmelCase ): for word in words: self.insert(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self for char in word: if char not in curr.nodes: _lowerCAmelCase = TrieNode() _lowerCAmelCase = curr.nodes[char] _lowerCAmelCase = True def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self for char in word: if char not in curr.nodes: return False _lowerCAmelCase = curr.nodes[char] return curr.is_leaf def __lowerCAmelCase ( self , _lowerCAmelCase ): def _delete(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> bool: if index == len(_lowerCAmelCase ): # If word does not exist if not curr.is_leaf: return False _lowerCAmelCase = False return len(curr.nodes ) == 0 _lowerCAmelCase = word[index] _lowerCAmelCase = curr.nodes.get(_lowerCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _lowerCAmelCase = _delete(_lowerCAmelCase , _lowerCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _lowerCAmelCase , 0 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TrieNode , _SCREAMING_SNAKE_CASE : str )->None: if node.is_leaf: print(_SCREAMING_SNAKE_CASE , end=''' ''' ) for key, value in node.nodes.items(): print_words(_SCREAMING_SNAKE_CASE , word + key ) def UpperCAmelCase__ ( )->bool: _lowerCAmelCase = '''banana bananas bandana band apple all beast'''.split() _lowerCAmelCase = TrieNode() root.insert_many(_SCREAMING_SNAKE_CASE ) # print_words(root, "") assert all(root.find(_SCREAMING_SNAKE_CASE ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->None: print(str(_SCREAMING_SNAKE_CASE ) , '''works!''' if passes else '''doesn\'t work :(''' ) def UpperCAmelCase__ ( )->None: assert test_trie() def UpperCAmelCase__ ( )->None: print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
709
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = process _lowerCAmelCase = params def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): _lowerCAmelCase = self.dataset[i] _lowerCAmelCase = self.process(_lowerCAmelCase , **self.params ) return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): _lowerCAmelCase = loader _lowerCAmelCase = infer _lowerCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowerCAmelCase = None _lowerCAmelCase = loader_batch_size # Internal bookkeeping _lowerCAmelCase = None _lowerCAmelCase = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowerCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowerCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first _lowerCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowerCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowerCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowerCAmelCase = next(self.iterator ) _lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _lowerCAmelCase = processed _lowerCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) _lowerCAmelCase = None return self def __lowerCAmelCase ( self ): if self.subiterator is None: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _lowerCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) _lowerCAmelCase = next(self.subiterator ) return processed class UpperCAmelCase ( snake_case_ ): def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowerCAmelCase = False _lowerCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size _lowerCAmelCase = processed _lowerCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: _lowerCAmelCase = processed _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) return accumulator class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = key def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return self.dataset[i][self.key] class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = keya _lowerCAmelCase = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
664
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
710
import numpy class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ): _lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ): _lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = input_arr _lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return (value) * (1 - (value)) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=10 , _lowerCAmelCase=3 , _lowerCAmelCase=32 * 4 , _lowerCAmelCase=32 * 6 , _lowerCAmelCase=4 , _lowerCAmelCase=32 , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = is_training _lowerCAmelCase = use_auxiliary_loss _lowerCAmelCase = num_queries _lowerCAmelCase = num_channels _lowerCAmelCase = min_size _lowerCAmelCase = max_size _lowerCAmelCase = num_labels _lowerCAmelCase = mask_feature_size def __lowerCAmelCase ( self ): _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCAmelCase ) _lowerCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase ) _lowerCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5 ).float() _lowerCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long() _lowerCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __lowerCAmelCase ( self ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = output.encoder_hidden_states _lowerCAmelCase = output.pixel_decoder_hidden_states _lowerCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_config.decoder_layers ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): with torch.no_grad(): _lowerCAmelCase = MaskFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MaskFormerForInstanceSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() def comm_check_on_output(_lowerCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _lowerCAmelCase = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) _lowerCAmelCase = model( pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class UpperCAmelCase ( snake_case_ ,snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): _lowerCAmelCase = MaskFormerModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_lowerCAmelCase ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def __lowerCAmelCase ( self ): pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def __lowerCAmelCase ( self ): pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def __lowerCAmelCase ( self ): pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def __lowerCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ): pass def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in ["facebook/maskformer-swin-small-coco"]: _lowerCAmelCase = MaskFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = (self.model_tester.min_size,) * 2 _lowerCAmelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCAmelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCAmelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(), } _lowerCAmelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_lowerCAmelCase ) _lowerCAmelCase = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) _lowerCAmelCase = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def __lowerCAmelCase ( self ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _lowerCAmelCase = self.all_model_classes[1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() _lowerCAmelCase = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss loss.backward() def __lowerCAmelCase ( self ): # only MaskFormerForInstanceSegmentation has the loss _lowerCAmelCase = self.all_model_classes[1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() _lowerCAmelCase = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) _lowerCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _lowerCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ = 1E-4 def UpperCAmelCase__ ( )->Union[str, Any]: _lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class UpperCAmelCase ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ): return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(_lowerCAmelCase ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) _lowerCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1_088) ) with torch.no_grad(): _lowerCAmelCase = model(**_lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) _lowerCAmelCase = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) _lowerCAmelCase = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_lowerCAmelCase ) .eval() ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) _lowerCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1_088) ) with torch.no_grad(): _lowerCAmelCase = model(**_lowerCAmelCase ) # masks_queries_logits _lowerCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCAmelCase = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] _lowerCAmelCase = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits _lowerCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCAmelCase = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(_lowerCAmelCase ) .eval() ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) _lowerCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1_088) ) with torch.no_grad(): _lowerCAmelCase = model(**_lowerCAmelCase ) # masks_queries_logits _lowerCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCAmelCase = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] _lowerCAmelCase = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits _lowerCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCAmelCase = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_lowerCAmelCase ) .eval() ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _lowerCAmelCase = inputs['''pixel_values'''].to(_lowerCAmelCase ) _lowerCAmelCase = [el.to(_lowerCAmelCase ) for el in inputs['''mask_labels''']] _lowerCAmelCase = [el.to(_lowerCAmelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _lowerCAmelCase = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''imagegpt''' SCREAMING_SNAKE_CASE__ = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=512 + 1 , _lowerCAmelCase=32 * 32 , _lowerCAmelCase=512 , _lowerCAmelCase=24 , _lowerCAmelCase=8 , _lowerCAmelCase=None , _lowerCAmelCase="quick_gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , **_lowerCAmelCase , ): _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=_lowerCAmelCase , **_lowerCAmelCase ) class UpperCAmelCase ( snake_case_ ): @property def __lowerCAmelCase ( self ): return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = 1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = 3 , _lowerCAmelCase = 32 , _lowerCAmelCase = 32 , ): _lowerCAmelCase = self._generate_dummy_images(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = dict(preprocessor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return inputs
712
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
664
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self , _lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): _lowerCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_lowerCAmelCase , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sgugger/tiny-distilbert-classification''' _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , only_pretrain_model=_lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_lowerCAmelCase , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase , [config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase , [config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase , [config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''patrickvonplaten/t5-tiny-random''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_lowerCAmelCase , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_lowerCAmelCase , save_to_csv=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCAmelCase , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(_lowerCAmelCase , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(_lowerCAmelCase , '''env.csv''' ) , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''env.csv''' ) ).exists() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase , '''sequential''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''current''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCAmelCase , '''log.txt''' ) , log_print=_lowerCAmelCase , trace_memory_line_by_line=_lowerCAmelCase , eager_mode=_lowerCAmelCase , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''log.txt''' ) ).exists() )
713
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = 300 return config def __lowerCAmelCase ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = True _lowerCAmelCase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = () def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ): return @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
664
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] )->Optional[int]: if height >= 1: move_tower(height - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) move_disk(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) move_tower(height - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] )->int: print('''moving disk from''' , _SCREAMING_SNAKE_CASE , '''to''' , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->Optional[int]: _lowerCAmelCase = int(input('''Height of hanoi: ''' ).strip() ) move_tower(_SCREAMING_SNAKE_CASE , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
664
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str )->Union[str, Any]: _lowerCAmelCase = s.rsplit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return new.join(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->Any: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->Optional[Any]: _lowerCAmelCase = {} _lowerCAmelCase = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _lowerCAmelCase = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: _lowerCAmelCase = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): _lowerCAmelCase = rreplace(_SCREAMING_SNAKE_CASE , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): _lowerCAmelCase = rreplace(_SCREAMING_SNAKE_CASE , '''.b''' , '''.bias''' , 1 ) _lowerCAmelCase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : List[str]=True )->str: from dall_e import Encoder _lowerCAmelCase = Encoder() if os.path.exists(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = torch.load(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = ckpt.state_dict() encoder.load_state_dict(_SCREAMING_SNAKE_CASE ) if config_path is not None: _lowerCAmelCase = FlavaImageCodebookConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = FlavaImageCodebookConfig() _lowerCAmelCase = FlavaImageCodebook(_SCREAMING_SNAKE_CASE ).eval() _lowerCAmelCase = encoder.state_dict() _lowerCAmelCase = upgrade_state_dict(_SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = hf_model.state_dict() _lowerCAmelCase = count_parameters(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = count_parameters(_SCREAMING_SNAKE_CASE ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) else: return hf_state_dict if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCAmelCase_ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _lowerCAmelCase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _lowerCAmelCase = '''A painting of a squirrel eating a burger''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = sd_pipe([prompt] , generator=_lowerCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _lowerCAmelCase = output.images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _lowerCAmelCase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _lowerCAmelCase = '''A painting of a squirrel eating a burger''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = sd_pipe([prompt] , generator=_lowerCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _lowerCAmelCase = output.images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __lowerCAmelCase ( self ): _lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _lowerCAmelCase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) _lowerCAmelCase = '''A painting of a squirrel eating a burger''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=_lowerCAmelCase , ) _lowerCAmelCase = output.images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
718
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
0
from __future__ import annotations from typing import Any class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0 ): _lowerCAmelCase , _lowerCAmelCase = row, column _lowerCAmelCase = [[default_value for c in range(_lowerCAmelCase )] for r in range(_lowerCAmelCase )] def __str__( self ): _lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier _lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase = max(_lowerCAmelCase , len(str(_lowerCAmelCase ) ) ) _lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(_lowerCAmelCase ) -> str: nonlocal string_format_identifier _lowerCAmelCase = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_lowerCAmelCase ) for row_vector in self.array ) return s def __repr__( self ): return str(self ) def __lowerCAmelCase ( self , _lowerCAmelCase ): if not (isinstance(_lowerCAmelCase , (list, tuple) ) and len(_lowerCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , _lowerCAmelCase ): assert self.validate_indicies(_lowerCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , _lowerCAmelCase , _lowerCAmelCase ): assert self.validate_indicies(_lowerCAmelCase ) _lowerCAmelCase = value def __add__( self , _lowerCAmelCase ): assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self ): _lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _lowerCAmelCase = -self[r, c] return result def __sub__( self , _lowerCAmelCase ): return self + (-another) def __mul__( self , _lowerCAmelCase ): if isinstance(_lowerCAmelCase , (int, float) ): # Scalar multiplication _lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _lowerCAmelCase = self[r, c] * another return result elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Matrix multiplication assert self.column == another.row _lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase = F'''Unsupported type given for another ({type(_lowerCAmelCase )})''' raise TypeError(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): _lowerCAmelCase = self[r, c] return result def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase = v.transpose() _lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def UpperCAmelCase__ ( )->None: # a^(-1) _lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v _lowerCAmelCase = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1, 2, -3 _lowerCAmelCase = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}''' ) def UpperCAmelCase__ ( )->None: import doctest doctest.testmod() testa()
719
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
721
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = XLMTokenizer SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _lowerCAmelCase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowerCAmelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_lowerCAmelCase ) ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = '''lower newer''' _lowerCAmelCase = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self ): _lowerCAmelCase = XLMTokenizer(self.vocab_file , self.merges_file ) _lowerCAmelCase = '''lower''' _lowerCAmelCase = ['''low''', '''er</w>'''] _lowerCAmelCase = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = tokens + ['''<unk>'''] _lowerCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) _lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
700
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ = [] UpperCAmelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
664
0
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 4_2 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
701
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: # Initialise PyTorch model _lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
664
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] )->List[Any]: _lowerCAmelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCAmelCase ( snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = StableDiffusionLatentUpscalePipeline SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE__ = frozenset([] ) SCREAMING_SNAKE_CASE__ = True @property def __lowerCAmelCase ( self ): _lowerCAmelCase = 1 _lowerCAmelCase = 4 _lowerCAmelCase = (16, 16) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_lowerCAmelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_lowerCAmelCase , only_cross_attention=_lowerCAmelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) _lowerCAmelCase = EulerDiscreteScheduler(prediction_type='''sample''' ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) _lowerCAmelCase = CLIPTextModel(_lowerCAmelCase ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCAmelCase = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) _lowerCAmelCase = np.array( [0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __lowerCAmelCase ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __lowerCAmelCase ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = 2 _lowerCAmelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _lowerCAmelCase = getattr(_lowerCAmelCase , scheduler_enum.name ) _lowerCAmelCase = scheduler_cls.from_config(pipe.scheduler.config ) _lowerCAmelCase = pipe(**_lowerCAmelCase )[0] outputs.append(_lowerCAmelCase ) assert check_same_shape(_lowerCAmelCase ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(33 ) _lowerCAmelCase = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) _lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) _lowerCAmelCase = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , output_type='''latent''' ).images _lowerCAmelCase = upscaler( prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=_lowerCAmelCase , output_type='''np''' , ).images[0] _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(33 ) _lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) _lowerCAmelCase = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' _lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) _lowerCAmelCase = upscaler( prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=_lowerCAmelCase , output_type='''np''' , ).images[0] _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-2
702
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "Hello world! cécé herlolip" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]: _lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout _lowerCAmelCase = roberta.model.encoder.sentence_encoder _lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase = model.roberta.encoder.layer[i] _lowerCAmelCase = roberta_sent_encoder.layers[i] _lowerCAmelCase = layer.attention _lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase = roberta_layer.final_layer_norm.weight _lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # output _lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase = roberta.model.encoder.lm_head.weight _lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
664
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] )->int: if not nums: return 0 _lowerCAmelCase = nums[0] _lowerCAmelCase = 0 for num in nums[1:]: _lowerCAmelCase , _lowerCAmelCase = ( max_excluding + num, max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
703
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
664
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger() @dataclass class UpperCAmelCase : SCREAMING_SNAKE_CASE__ = 4_2 SCREAMING_SNAKE_CASE__ = field(default_factory=snake_case_ ) SCREAMING_SNAKE_CASE__ = field(default_factory=snake_case_ ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(list(m.modules() ) ) == 1 or isinstance(_lowerCAmelCase , nn.Convad ) or isinstance(_lowerCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(_lowerCAmelCase ) def __call__( self , _lowerCAmelCase ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_lowerCAmelCase ) [x.remove() for x in self.handles] return self @property def __lowerCAmelCase ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _lowerCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCAmelCase : SCREAMING_SNAKE_CASE__ = 4_2 SCREAMING_SNAKE_CASE__ = 4_2 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = field(default_factory=snake_case_ ) SCREAMING_SNAKE_CASE__ = field(default_factory=snake_case_ ) SCREAMING_SNAKE_CASE__ = True def __call__( self , _lowerCAmelCase ): _lowerCAmelCase = Tracker(self.dest )(_lowerCAmelCase ).parametrized _lowerCAmelCase = Tracker(self.src )(_lowerCAmelCase ).parametrized _lowerCAmelCase = list(filter(lambda _lowerCAmelCase : type(_lowerCAmelCase ) not in self.src_skip , _lowerCAmelCase ) ) _lowerCAmelCase = list(filter(lambda _lowerCAmelCase : type(_lowerCAmelCase ) not in self.dest_skip , _lowerCAmelCase ) ) if len(_lowerCAmelCase ) != len(_lowerCAmelCase ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(_lowerCAmelCase )} operations while''' F''' destination module has {len(_lowerCAmelCase )}.''' ) for dest_m, src_m in zip(_lowerCAmelCase , _lowerCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class UpperCAmelCase ( nn.Module ): def __init__( self , _lowerCAmelCase ): super().__init__() _lowerCAmelCase = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), F'''Unexpected layer name {k}''' _lowerCAmelCase = len(_lowerCAmelCase ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) _lowerCAmelCase = nn.ModuleDict(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): return get_trunk_forward_outputs( _lowerCAmelCase , out_feat_keys=_lowerCAmelCase , feature_blocks=self._feature_blocks , ) class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , _lowerCAmelCase ): # default to timm! if x not in self: _lowerCAmelCase = self.convert_name_to_timm(_lowerCAmelCase ) _lowerCAmelCase = partial(lambda: (timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ).eval(), None) ) else: _lowerCAmelCase = super().__getitem__(_lowerCAmelCase ) return val class UpperCAmelCase ( snake_case_ ): def __getitem__( self , _lowerCAmelCase ): if "seer" in x and "in1k" not in x: _lowerCAmelCase = RegNetModel else: _lowerCAmelCase = RegNetForImageClassification return val def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Tuple[str, str]] )->str: for from_key, to_key in keys: _lowerCAmelCase = from_state_dict[from_key].clone() print(f'''Copied key={from_key} to={to_key}''' ) return to_state_dict def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Callable[[], nn.Module] , _SCREAMING_SNAKE_CASE : Callable[[], nn.Module] , _SCREAMING_SNAKE_CASE : RegNetConfig , _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : bool = True , )->Optional[Any]: print(f'''Converting {name}...''' ) with torch.no_grad(): _lowerCAmelCase , _lowerCAmelCase = from_model_func() _lowerCAmelCase = our_model_func(_SCREAMING_SNAKE_CASE ).eval() _lowerCAmelCase = ModuleTransfer(src=_SCREAMING_SNAKE_CASE , dest=_SCREAMING_SNAKE_CASE , raise_if_mismatch=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(_SCREAMING_SNAKE_CASE ) if from_state_dict is not None: _lowerCAmelCase = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _lowerCAmelCase = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] _lowerCAmelCase = manually_copy_vissl_head(_SCREAMING_SNAKE_CASE , our_model.state_dict() , _SCREAMING_SNAKE_CASE ) our_model.load_state_dict(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = our_model(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ( our_outputs.logits if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else our_outputs.last_hidden_state ) _lowerCAmelCase = from_model(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = from_output[-1] if type(_SCREAMING_SNAKE_CASE ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _lowerCAmelCase = our_outputs.hidden_states[-1] assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=_SCREAMING_SNAKE_CASE , ) _lowerCAmelCase = 2_2_4 if '''seer''' not in name else 3_8_4 # we can use the convnext one _lowerCAmelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=_SCREAMING_SNAKE_CASE , ) print(f'''Pushed {name}''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : str = None , _SCREAMING_SNAKE_CASE : bool = True )->Any: _lowerCAmelCase = '''imagenet-1k-id2label.json''' _lowerCAmelCase = 1_0_0_0 _lowerCAmelCase = (1, num_labels) _lowerCAmelCase = '''huggingface/label-files''' _lowerCAmelCase = num_labels _lowerCAmelCase = json.load(open(cached_download(hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) ) , '''r''' ) ) _lowerCAmelCase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = partial(_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } _lowerCAmelCase = NameToOurModelFuncMap() _lowerCAmelCase = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: _lowerCAmelCase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , model_dir=str(_SCREAMING_SNAKE_CASE ) , map_location='''cpu''' ) _lowerCAmelCase = model_func() # check if we have a head, if yes add it _lowerCAmelCase = files['''classy_state_dict''']['''base_model''']['''model'''] _lowerCAmelCase = model_state_dict['''trunk'''] model.load_state_dict(_SCREAMING_SNAKE_CASE ) return model.eval(), model_state_dict["heads"] # pretrained _lowerCAmelCase = partial( _SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase = partial( _SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase = partial( _SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _lowerCAmelCase = partial( _SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned _lowerCAmelCase = partial( _SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase = partial( _SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase = partial( _SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _lowerCAmelCase = partial( _SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) return config, expected_shape if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
704
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase_ = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCAmelCase_ = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode("utf-8").split() UpperCAmelCase_ = "|".join(sys.argv[1:]) UpperCAmelCase_ = re.compile(RF"""^({joined_dirs}).*?\.py$""") UpperCAmelCase_ = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
705
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
0
from string import ascii_uppercase UpperCAmelCase_ = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase_ = dict(enumerate(ascii_uppercase)) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->str: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 while True: if x == i: _lowerCAmelCase = 0 if len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ): break key += key[i] i += 1 return key def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->str: _lowerCAmelCase = '''''' _lowerCAmelCase = 0 for letter in message: if letter == " ": cipher_text += " " else: _lowerCAmelCase = (dicta[letter] - dicta[key_new[i]]) % 2_6 i += 1 cipher_text += dicta[x] return cipher_text def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->str: _lowerCAmelCase = '''''' _lowerCAmelCase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: _lowerCAmelCase = (dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6 i += 1 or_txt += dicta[x] return or_txt def UpperCAmelCase__ ( )->None: _lowerCAmelCase = '''THE GERMAN ATTACK''' _lowerCAmelCase = '''SECRET''' _lowerCAmelCase = generate_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = cipher_text(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f'''Encrypted Text = {s}''' ) print(f'''Original Text = {original_text(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
706
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.dummy_uncond_unet _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = self.dummy_vq_model _lowerCAmelCase = LDMPipeline(unet=_lowerCAmelCase , vqvae=_lowerCAmelCase , scheduler=_lowerCAmelCase ) ldm.to(_lowerCAmelCase ) ldm.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ldm(generator=_lowerCAmelCase , num_inference_steps=2 , output_type='''numpy''' ).images _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ldm(generator=_lowerCAmelCase , num_inference_steps=2 , output_type='''numpy''' , return_dict=_lowerCAmelCase )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172] ) _lowerCAmelCase = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ): _lowerCAmelCase = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(_lowerCAmelCase ) ldm.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ldm(generator=_lowerCAmelCase , num_inference_steps=5 , output_type='''numpy''' ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCAmelCase = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447] ) _lowerCAmelCase = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
707
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("T") class UpperCAmelCase ( Generic[T] ): SCREAMING_SNAKE_CASE__ = 4_2 # Cache store of keys SCREAMING_SNAKE_CASE__ = 4_2 # References of the keys in cache SCREAMING_SNAKE_CASE__ = 1_0 # Maximum capacity of cache def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = deque() _lowerCAmelCase = set() if not n: _lowerCAmelCase = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: _lowerCAmelCase = n def __lowerCAmelCase ( self , _lowerCAmelCase ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _lowerCAmelCase = self.dq_store.pop() self.key_reference.remove(_lowerCAmelCase ) else: self.dq_store.remove(_lowerCAmelCase ) self.dq_store.appendleft(_lowerCAmelCase ) self.key_reference.add(_lowerCAmelCase ) def __lowerCAmelCase ( self ): for k in self.dq_store: print(_lowerCAmelCase ) def __repr__( self ): return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
708
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase_ = 1_0 UpperCAmelCase_ = 2_5_6 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]: if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE ) for token in set(_SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]: return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self , *, _lowerCAmelCase = 0.85 , ): _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self._index.query(_lowerCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(_lowerCAmelCase ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.get_duplicate_clusters() with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str: _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ): di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(_SCREAMING_SNAKE_CASE ) return extremes def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple: global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ): extremes_list.append(_SCREAMING_SNAKE_CASE ) return extremes_list def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) return ds_filter, duplicate_clusters
664
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] )->int: inspect_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = path + '''.py''' assert script_name in os.listdir(_SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(_SCREAMING_SNAKE_CASE ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] )->str: inspect_metric(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = path + '''.py''' assert script_name in os.listdir(_SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(_SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict )->Tuple: _lowerCAmelCase = get_dataset_config_info(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str )->Dict: with pytest.raises(_SCREAMING_SNAKE_CASE ): get_dataset_config_info(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] )->List[Any]: _lowerCAmelCase = get_dataset_config_names(_SCREAMING_SNAKE_CASE ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] )->Union[str, Any]: _lowerCAmelCase = get_dataset_infos(_SCREAMING_SNAKE_CASE ) assert list(infos.keys() ) == expected_configs _lowerCAmelCase = expected_configs[0] assert expected_config in infos _lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any )->Optional[int]: _lowerCAmelCase = get_dataset_infos(_SCREAMING_SNAKE_CASE ) assert expected_config in infos _lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict )->Optional[Any]: with pytest.raises(_SCREAMING_SNAKE_CASE ): get_dataset_split_names(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE )
709
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = process _lowerCAmelCase = params def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): _lowerCAmelCase = self.dataset[i] _lowerCAmelCase = self.process(_lowerCAmelCase , **self.params ) return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): _lowerCAmelCase = loader _lowerCAmelCase = infer _lowerCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowerCAmelCase = None _lowerCAmelCase = loader_batch_size # Internal bookkeeping _lowerCAmelCase = None _lowerCAmelCase = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowerCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowerCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first _lowerCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowerCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowerCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowerCAmelCase = next(self.iterator ) _lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _lowerCAmelCase = processed _lowerCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) _lowerCAmelCase = None return self def __lowerCAmelCase ( self ): if self.subiterator is None: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _lowerCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) _lowerCAmelCase = next(self.subiterator ) return processed class UpperCAmelCase ( snake_case_ ): def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowerCAmelCase = False _lowerCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size _lowerCAmelCase = processed _lowerCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: _lowerCAmelCase = processed _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) return accumulator class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = key def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return self.dataset[i][self.key] class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = keya _lowerCAmelCase = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
664
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = params _lowerCAmelCase = np.array(_lowerCAmelCase ) _lowerCAmelCase = np.array([len(_lowerCAmelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , _lowerCAmelCase ): return (self.token_ids[index], self.lengths[index]) def __len__( self ): return len(self.lengths ) def __lowerCAmelCase ( self ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.params.max_model_input_size _lowerCAmelCase = self.lengths > max_len logger.info(F'''Splitting {sum(_lowerCAmelCase )} too long sequences.''' ) def divide_chunks(_lowerCAmelCase , _lowerCAmelCase ): return [l[i : i + n] for i in range(0 , len(_lowerCAmelCase ) , _lowerCAmelCase )] _lowerCAmelCase = [] _lowerCAmelCase = [] if self.params.mlm: _lowerCAmelCase , _lowerCAmelCase = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: _lowerCAmelCase , _lowerCAmelCase = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _lowerCAmelCase = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _lowerCAmelCase = np.insert(_lowerCAmelCase , 0 , _lowerCAmelCase ) if sub_s[-1] != sep_id: _lowerCAmelCase = np.insert(_lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) assert len(_lowerCAmelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_lowerCAmelCase ) new_tok_ids.extend(_lowerCAmelCase ) new_lengths.extend([len(_lowerCAmelCase ) for l in sub_seqs] ) _lowerCAmelCase = np.array(_lowerCAmelCase ) _lowerCAmelCase = np.array(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = len(self ) _lowerCAmelCase = self.lengths > 11 _lowerCAmelCase = self.token_ids[indices] _lowerCAmelCase = self.lengths[indices] _lowerCAmelCase = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def __lowerCAmelCase ( self ): if "unk_token" not in self.params.special_tok_ids: return else: _lowerCAmelCase = self.params.special_tok_ids['''unk_token'''] _lowerCAmelCase = len(self ) _lowerCAmelCase = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _lowerCAmelCase = (unk_occs / self.lengths) < 0.5 _lowerCAmelCase = self.token_ids[indices] _lowerCAmelCase = self.lengths[indices] _lowerCAmelCase = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def __lowerCAmelCase ( self ): if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = [t[0] for t in batch] _lowerCAmelCase = [t[1] for t in batch] assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) # Max for paddings _lowerCAmelCase = max(_lowerCAmelCase ) # Pad token ids if self.params.mlm: _lowerCAmelCase = self.params.special_tok_ids['''pad_token'''] else: _lowerCAmelCase = self.params.special_tok_ids['''unk_token'''] _lowerCAmelCase = [list(t.astype(_lowerCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(_lowerCAmelCase )) for t in token_ids] assert len(tk_ ) == len(_lowerCAmelCase ) assert all(len(_lowerCAmelCase ) == max_seq_len_ for t in tk_ ) _lowerCAmelCase = torch.tensor(tk_ ) # (bs, max_seq_len_) _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) # (bs) return tk_t, lg_t
710
import numpy class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ): _lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ): _lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = input_arr _lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return (value) * (1 - (value)) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any]=False )->List[Any]: try: _lowerCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _lowerCAmelCase = default else: # KEY is set, convert it to True or False. try: _lowerCAmelCase = strtobool(_SCREAMING_SNAKE_CASE ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value UpperCAmelCase_ = parse_flag_from_env("RUN_SLOW", default=False) UpperCAmelCase_ = parse_flag_from_env("RUN_REMOTE", default=False) UpperCAmelCase_ = parse_flag_from_env("RUN_LOCAL", default=True) UpperCAmelCase_ = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression UpperCAmelCase_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") UpperCAmelCase_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") UpperCAmelCase_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio UpperCAmelCase_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam UpperCAmelCase_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility UpperCAmelCase_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows UpperCAmelCase_ = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] )->Union[str, Any]: try: import faiss # noqa except ImportError: _lowerCAmelCase = unittest.skip('''test requires faiss''' )(_SCREAMING_SNAKE_CASE ) return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->List[Any]: try: import regex # noqa except ImportError: _lowerCAmelCase = unittest.skip('''test requires regex''' )(_SCREAMING_SNAKE_CASE ) return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: try: import elasticsearch # noqa except ImportError: _lowerCAmelCase = unittest.skip('''test requires elasticsearch''' )(_SCREAMING_SNAKE_CASE ) return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->int: try: import sqlalchemy # noqa except ImportError: _lowerCAmelCase = unittest.skip('''test requires sqlalchemy''' )(_SCREAMING_SNAKE_CASE ) return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->List[str]: if not config.TORCH_AVAILABLE: _lowerCAmelCase = unittest.skip('''test requires PyTorch''' )(_SCREAMING_SNAKE_CASE ) return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] )->List[str]: if not config.TF_AVAILABLE: _lowerCAmelCase = unittest.skip('''test requires TensorFlow''' )(_SCREAMING_SNAKE_CASE ) return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->List[str]: if not config.JAX_AVAILABLE: _lowerCAmelCase = unittest.skip('''test requires JAX''' )(_SCREAMING_SNAKE_CASE ) return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->str: if not config.PIL_AVAILABLE: _lowerCAmelCase = unittest.skip('''test requires Pillow''' )(_SCREAMING_SNAKE_CASE ) return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->str: try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_SCREAMING_SNAKE_CASE ) else: return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->int: try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_SCREAMING_SNAKE_CASE ) else: return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_SCREAMING_SNAKE_CASE ) else: return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] )->Dict: def _require_spacy_model(_SCREAMING_SNAKE_CASE : Optional[Any] ): try: import spacy # noqa F401 spacy.load(_SCREAMING_SNAKE_CASE ) except ImportError: return unittest.skip('''test requires spacy''' )(_SCREAMING_SNAKE_CASE ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_SCREAMING_SNAKE_CASE ) )(_SCREAMING_SNAKE_CASE ) else: return test_case return _require_spacy_model def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->Tuple: try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_SCREAMING_SNAKE_CASE ) else: return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] )->List[str]: try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_SCREAMING_SNAKE_CASE ) else: return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] )->Tuple: if not _run_slow_tests or _run_slow_tests == 0: _lowerCAmelCase = unittest.skip('''test is slow''' )(_SCREAMING_SNAKE_CASE ) return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->List[Any]: if not _run_local_tests or _run_local_tests == 0: _lowerCAmelCase = unittest.skip('''test is local''' )(_SCREAMING_SNAKE_CASE ) return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->Optional[Any]: if not _run_packaged_tests or _run_packaged_tests == 0: _lowerCAmelCase = unittest.skip('''test is packaged''' )(_SCREAMING_SNAKE_CASE ) return test_case def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->Optional[int]: if not _run_remote_tests or _run_remote_tests == 0: _lowerCAmelCase = unittest.skip('''test requires remote''' )(_SCREAMING_SNAKE_CASE ) return test_case def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : int )->Optional[Any]: def decorate(cls : Tuple ): for name, fn in cls.__dict__.items(): if callable(_SCREAMING_SNAKE_CASE ) and name.startswith('''test''' ): for decorator in decorators: _lowerCAmelCase = decorator(_SCREAMING_SNAKE_CASE ) setattr(cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return cls return decorate class UpperCAmelCase ( snake_case_ ): pass class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 @contextmanager def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=OfflineSimulationMode.CONNECTION_FAILS , _SCREAMING_SNAKE_CASE : Dict=1e-16 )->List[Any]: _lowerCAmelCase = requests.Session().request def timeout_request(_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , **_SCREAMING_SNAKE_CASE : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs _lowerCAmelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) _lowerCAmelCase = timeout try: return online_request(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _lowerCAmelCase = url _lowerCAmelCase = e.args[0] _lowerCAmelCase = (max_retry_error.args[0].replace('''10.255.255.1''' , f'''OfflineMock[{url}]''' ),) _lowerCAmelCase = (max_retry_error,) raise def raise_connection_error(_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any , **_SCREAMING_SNAKE_CASE : Tuple ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=_SCREAMING_SNAKE_CASE ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , _SCREAMING_SNAKE_CASE ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , _SCREAMING_SNAKE_CASE ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Any , **_SCREAMING_SNAKE_CASE : List[Any] )->Dict: _lowerCAmelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) as tmp_dir: try: os.chdir(_SCREAMING_SNAKE_CASE ) yield finally: os.chdir(_SCREAMING_SNAKE_CASE ) @contextmanager def UpperCAmelCase__ ( )->int: import gc gc.collect() _lowerCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__ ( )->Optional[Any]: import gc gc.collect() _lowerCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int )->Union[str, Any]: return deepcopy(_SCREAMING_SNAKE_CASE ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(_SCREAMING_SNAKE_CASE ).integers(0 , 1_0_0 , 1_0 ).tolist() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->Any: import decorator from requests.exceptions import HTTPError def _wrapper(_SCREAMING_SNAKE_CASE : Union[str, Any] , *_SCREAMING_SNAKE_CASE : Optional[Any] , **_SCREAMING_SNAKE_CASE : Any ): try: return func(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except HTTPError as err: if str(_SCREAMING_SNAKE_CASE ).startswith('''500''' ) or str(_SCREAMING_SNAKE_CASE ).startswith('''502''' ): pytest.xfail(str(_SCREAMING_SNAKE_CASE ) ) raise err return decorator.decorator(_wrapper , _SCREAMING_SNAKE_CASE ) class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = returncode _lowerCAmelCase = stdout _lowerCAmelCase = stderr async def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict )->Any: while True: _lowerCAmelCase = await stream.readline() if line: callback(_SCREAMING_SNAKE_CASE ) else: break async def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False )->_RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_SCREAMING_SNAKE_CASE , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_SCREAMING_SNAKE_CASE , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _lowerCAmelCase = [] _lowerCAmelCase = [] def tee(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any]="" ): _lowerCAmelCase = line.decode('''utf-8''' ).rstrip() sink.append(_SCREAMING_SNAKE_CASE ) if not quiet: print(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , file=_SCREAMING_SNAKE_CASE ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _SCREAMING_SNAKE_CASE : tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda _SCREAMING_SNAKE_CASE : tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sys.stderr , label='''stderr:''' ) ), ] , timeout=_SCREAMING_SNAKE_CASE , ) return _RunOutput(await p.wait() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Tuple=1_8_0 , _SCREAMING_SNAKE_CASE : List[str]=False , _SCREAMING_SNAKE_CASE : List[Any]=True )->_RunOutput: _lowerCAmelCase = asyncio.get_event_loop() _lowerCAmelCase = loop.run_until_complete( _stream_subprocess(_SCREAMING_SNAKE_CASE , env=_SCREAMING_SNAKE_CASE , stdin=_SCREAMING_SNAKE_CASE , timeout=_SCREAMING_SNAKE_CASE , quiet=_SCREAMING_SNAKE_CASE , echo=_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = ''' '''.join(_SCREAMING_SNAKE_CASE ) if result.returncode > 0: _lowerCAmelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def UpperCAmelCase__ ( )->Union[str, Any]: _lowerCAmelCase = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) _lowerCAmelCase = re.sub(r'''^gw''' , '''''' , _SCREAMING_SNAKE_CASE , 0 , re.M ) return int(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = 2_9_5_0_0 _lowerCAmelCase = pytest_xdist_worker_id() return port + uniq_delta
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : tuple[int, int] , _SCREAMING_SNAKE_CASE : int )->list[tuple[int, int]]: _lowerCAmelCase , _lowerCAmelCase = position _lowerCAmelCase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _lowerCAmelCase = [] for position in positions: _lowerCAmelCase , _lowerCAmelCase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_SCREAMING_SNAKE_CASE ) return permissible_positions def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[list[int]] )->bool: return not any(elem == 0 for row in board for elem in row ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : tuple[int, int] , _SCREAMING_SNAKE_CASE : int )->bool: if is_complete(_SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase , _lowerCAmelCase = position if board[y][x] == 0: _lowerCAmelCase = curr + 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , curr + 1 ): return True _lowerCAmelCase = 0 return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->list[list[int]]: _lowerCAmelCase = [[0 for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board _lowerCAmelCase = 0 _lowerCAmelCase = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
712
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
664
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class UpperCAmelCase ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _lowerCAmelCase = VideoClassificationPipeline(model=_lowerCAmelCase , image_processor=_lowerCAmelCase , top_k=2 ) _lowerCAmelCase = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): for example in examples: _lowerCAmelCase = video_classifier(_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ {'''score''': ANY(_lowerCAmelCase ), '''label''': ANY(_lowerCAmelCase )}, {'''score''': ANY(_lowerCAmelCase ), '''label''': ANY(_lowerCAmelCase )}, ] , ) @require_torch def __lowerCAmelCase ( self ): _lowerCAmelCase = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' _lowerCAmelCase = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) _lowerCAmelCase = pipeline( '''video-classification''' , model=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , frame_sampling_rate=4 ) _lowerCAmelCase = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _lowerCAmelCase = video_classifier(_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}] , ) _lowerCAmelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def __lowerCAmelCase ( self ): pass
713
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = 300 return config def __lowerCAmelCase ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = True _lowerCAmelCase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = () def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ): return @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
664
0
import random def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : Optional[int] )->tuple: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int )->Any: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None _lowerCAmelCase = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )] _lowerCAmelCase = 0 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase_ = "Create a default config file for Accelerate with only a few flags set." def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int]="no" , _SCREAMING_SNAKE_CASE : str = default_json_config_file , _SCREAMING_SNAKE_CASE : bool = False )->Optional[Any]: _lowerCAmelCase = Path(_SCREAMING_SNAKE_CASE ) path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) if path.exists(): print( f'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False _lowerCAmelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) _lowerCAmelCase = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): _lowerCAmelCase = torch.cuda.device_count() _lowerCAmelCase = num_gpus _lowerCAmelCase = False if num_gpus > 1: _lowerCAmelCase = '''MULTI_GPU''' else: _lowerCAmelCase = '''NO''' elif is_xpu_available() and use_xpu: _lowerCAmelCase = torch.xpu.device_count() _lowerCAmelCase = num_xpus _lowerCAmelCase = False if num_xpus > 1: _lowerCAmelCase = '''MULTI_XPU''' else: _lowerCAmelCase = '''NO''' elif is_npu_available(): _lowerCAmelCase = torch.npu.device_count() _lowerCAmelCase = num_npus _lowerCAmelCase = False if num_npus > 1: _lowerCAmelCase = '''MULTI_NPU''' else: _lowerCAmelCase = '''NO''' else: _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = 1 _lowerCAmelCase = '''NO''' _lowerCAmelCase = ClusterConfig(**_SCREAMING_SNAKE_CASE ) config.to_json_file(_SCREAMING_SNAKE_CASE ) return path def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] )->List[Any]: _lowerCAmelCase = parser.add_parser('''default''' , parents=_SCREAMING_SNAKE_CASE , help=_SCREAMING_SNAKE_CASE , formatter_class=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_SCREAMING_SNAKE_CASE , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->Optional[Any]: _lowerCAmelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f'''accelerate configuration saved at {config_file}''' )
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
664
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=30 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=10 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=None , _lowerCAmelCase=2 , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = scope _lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _lowerCAmelCase = (image_size // patch_size) ** 2 _lowerCAmelCase = num_patches + 2 def __lowerCAmelCase ( self ): _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = DeiTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = DeiTForMaskedImageModeling(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = DeiTForMaskedImageModeling(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.type_sequence_label_size _lowerCAmelCase = DeiTForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = DeiTForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): _lowerCAmelCase = DeiTModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __lowerCAmelCase ( self ): pass def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowerCAmelCase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowerCAmelCase ( self ): if not self.model_tester.is_training: return _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _lowerCAmelCase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) _lowerCAmelCase = model(**_lowerCAmelCase ).loss loss.backward() def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCAmelCase = False _lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _lowerCAmelCase = model_class(_lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(_lowerCAmelCase ) model.train() _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) _lowerCAmelCase = model(**_lowerCAmelCase ).loss loss.backward() def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCAmelCase ), *get_values(_lowerCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): _lowerCAmelCase = problem_type['''title'''] _lowerCAmelCase = problem_type['''num_labels'''] _lowerCAmelCase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if problem_type["num_labels"] > 1: _lowerCAmelCase = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) _lowerCAmelCase = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCAmelCase ) as warning_list: _lowerCAmelCase = model(**_lowerCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def __lowerCAmelCase ( self ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = DeiTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def UpperCAmelCase__ ( )->List[str]: _lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ): return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( _lowerCAmelCase ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**_lowerCAmelCase ) # verify the logits _lowerCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self ): _lowerCAmelCase = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ) _lowerCAmelCase = inputs.pixel_values.to(_lowerCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCAmelCase_ = False UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "ybelkada/fonts" def UpperCAmelCase__ ( )->Union[str, Any]: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' '''Pix2StructImageProcessor. Please upgrade torch.''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any )->str: requires_backends(_SCREAMING_SNAKE_CASE , ['''torch'''] ) _check_torch_version() _lowerCAmelCase = image_tensor.unsqueeze(0 ) _lowerCAmelCase = torch.nn.functional.unfold(_SCREAMING_SNAKE_CASE , (patch_height, patch_width) , stride=(patch_height, patch_width) ) _lowerCAmelCase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 ) _lowerCAmelCase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int = 3_6 , _SCREAMING_SNAKE_CASE : str = "black" , _SCREAMING_SNAKE_CASE : str = "white" , _SCREAMING_SNAKE_CASE : int = 5 , _SCREAMING_SNAKE_CASE : int = 5 , _SCREAMING_SNAKE_CASE : int = 5 , _SCREAMING_SNAKE_CASE : int = 5 , _SCREAMING_SNAKE_CASE : Optional[bytes] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None , )->Image.Image: requires_backends(_SCREAMING_SNAKE_CASE , '''vision''' ) # Add new lines so that each line is no more than 80 characters. _lowerCAmelCase = textwrap.TextWrapper(width=8_0 ) _lowerCAmelCase = wrapper.wrap(text=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = '''\n'''.join(_SCREAMING_SNAKE_CASE ) if font_bytes is not None and font_path is None: _lowerCAmelCase = io.BytesIO(_SCREAMING_SNAKE_CASE ) elif font_path is not None: _lowerCAmelCase = font_path else: _lowerCAmelCase = hf_hub_download(_SCREAMING_SNAKE_CASE , '''Arial.TTF''' ) _lowerCAmelCase = ImageFont.truetype(_SCREAMING_SNAKE_CASE , encoding='''UTF-8''' , size=_SCREAMING_SNAKE_CASE ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _lowerCAmelCase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , _SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = temp_draw.textbbox((0, 0) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Create the actual image with a bit of padding around the text. _lowerCAmelCase = text_width + left_padding + right_padding _lowerCAmelCase = text_height + top_padding + bottom_padding _lowerCAmelCase = Image.new('''RGB''' , (image_width, image_height) , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ImageDraw.Draw(_SCREAMING_SNAKE_CASE ) draw.text(xy=(left_padding, top_padding) , text=_SCREAMING_SNAKE_CASE , fill=_SCREAMING_SNAKE_CASE , font=_SCREAMING_SNAKE_CASE ) return image def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Optional[Any] )->Dict: requires_backends(_SCREAMING_SNAKE_CASE , '''vision''' ) # Convert to PIL image if necessary _lowerCAmelCase = to_pil_image(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = render_text(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = max(header_image.width , image.width ) _lowerCAmelCase = int(image.height * (new_width / image.width) ) _lowerCAmelCase = int(header_image.height * (new_width / header_image.width) ) _lowerCAmelCase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary _lowerCAmelCase = to_numpy_array(_SCREAMING_SNAKE_CASE ) if infer_channel_dimension_format(_SCREAMING_SNAKE_CASE ) == ChannelDimension.LAST: _lowerCAmelCase = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.LAST ) return new_image class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''flattened_patches'''] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = 2_048 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} _lowerCAmelCase = do_normalize _lowerCAmelCase = do_convert_rgb _lowerCAmelCase = max_patches _lowerCAmelCase = is_vqa def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self.extract_flattened_patches , '''torch''' ) _check_torch_version() # convert to torch _lowerCAmelCase = to_channel_dimension_format(_lowerCAmelCase , ChannelDimension.FIRST ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = patch_size['''height'''], patch_size['''width'''] _lowerCAmelCase , _lowerCAmelCase = get_image_size(_lowerCAmelCase ) # maximize scale s.t. _lowerCAmelCase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _lowerCAmelCase = max(min(math.floor(scale * image_height / patch_height ) , _lowerCAmelCase ) , 1 ) _lowerCAmelCase = max(min(math.floor(scale * image_width / patch_width ) , _lowerCAmelCase ) , 1 ) _lowerCAmelCase = max(num_feasible_rows * patch_height , 1 ) _lowerCAmelCase = max(num_feasible_cols * patch_width , 1 ) _lowerCAmelCase = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='''bilinear''' , align_corners=_lowerCAmelCase , antialias=_lowerCAmelCase , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _lowerCAmelCase = torch_extract_patches(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = patches.shape _lowerCAmelCase = patches_shape[1] _lowerCAmelCase = patches_shape[2] _lowerCAmelCase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _lowerCAmelCase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _lowerCAmelCase = torch.arange(_lowerCAmelCase ).reshape([rows, 1] ).repeat(1 , _lowerCAmelCase ).reshape([rows * columns, 1] ) _lowerCAmelCase = torch.arange(_lowerCAmelCase ).reshape([1, columns] ).repeat(_lowerCAmelCase , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _lowerCAmelCase = row_ids.to(torch.floataa ) _lowerCAmelCase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _lowerCAmelCase = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _lowerCAmelCase = torch.nn.functional.pad(_lowerCAmelCase , [0, 0, 0, max_patches - (rows * columns)] ).float() _lowerCAmelCase = to_numpy_array(_lowerCAmelCase ) return result def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase ): if image.dtype == np.uinta: _lowerCAmelCase = image.astype(np.floataa ) # take mean across the whole `image` _lowerCAmelCase = np.mean(_lowerCAmelCase ) _lowerCAmelCase = np.std(_lowerCAmelCase ) _lowerCAmelCase = max(_lowerCAmelCase , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ): _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase = patch_size if patch_size is not None else self.patch_size _lowerCAmelCase = max_patches if max_patches is not None else self.max_patches _lowerCAmelCase = self.is_vqa if kwargs.get('''data_format''' , _lowerCAmelCase ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase = [convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) _lowerCAmelCase = kwargs.pop('''font_bytes''' , _lowerCAmelCase ) _lowerCAmelCase = kwargs.pop('''font_path''' , _lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = [header_text] * len(_lowerCAmelCase ) _lowerCAmelCase = [ render_header(_lowerCAmelCase , header_text[i] , font_bytes=_lowerCAmelCase , font_path=_lowerCAmelCase ) for i, image in enumerate(_lowerCAmelCase ) ] if do_normalize: _lowerCAmelCase = [self.normalize(image=_lowerCAmelCase ) for image in images] # convert to torch tensor and permute _lowerCAmelCase = [ self.extract_flattened_patches(image=_lowerCAmelCase , max_patches=_lowerCAmelCase , patch_size=_lowerCAmelCase ) for image in images ] # create attention mask in numpy _lowerCAmelCase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _lowerCAmelCase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} , tensor_type=_lowerCAmelCase ) return encoded_outputs
718
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
0
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json UpperCAmelCase_ = "sshleifer/mar_enro_6_3_student" class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): super().setUp() _lowerCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=_lowerCAmelCase , ) _lowerCAmelCase = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def __lowerCAmelCase ( self ): MarianMTModel.from_pretrained(_lowerCAmelCase ) @slow @require_torch_gpu def __lowerCAmelCase ( self ): _lowerCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script _lowerCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() _lowerCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase = bash_script.replace(_lowerCAmelCase , str(_lowerCAmelCase ) ) _lowerCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(_lowerCAmelCase , '''argv''' , _lowerCAmelCase ): _lowerCAmelCase = argparse.ArgumentParser() _lowerCAmelCase = pl.Trainer.add_argparse_args(_lowerCAmelCase ) _lowerCAmelCase = SummarizationModule.add_model_specific_args(_lowerCAmelCase , os.getcwd() ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = main(_lowerCAmelCase ) # Check metrics _lowerCAmelCase = load_json(model.metrics_save_path ) _lowerCAmelCase = metrics['''val'''][0] _lowerCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , _lowerCAmelCase ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase = os.listdir(_lowerCAmelCase ) _lowerCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] _lowerCAmelCase = os.path.join(args.output_dir , _lowerCAmelCase ) _lowerCAmelCase = torch.load(_lowerCAmelCase , map_location='''cpu''' ) _lowerCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase = {os.path.basename(_lowerCAmelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class UpperCAmelCase ( snake_case_ ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __lowerCAmelCase ( self ): _lowerCAmelCase = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script _lowerCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) _lowerCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) _lowerCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase = bash_script.replace(_lowerCAmelCase , str(_lowerCAmelCase ) ) _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = bash_script.replace('''--fp16''' , '''''' ) _lowerCAmelCase = 6 _lowerCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ F'''--output_dir={output_dir}''', '''--gpus=1''', '''--learning_rate=1e-3''', F'''--num_train_epochs={epochs}''', '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(_lowerCAmelCase , '''argv''' , _lowerCAmelCase ): _lowerCAmelCase = argparse.ArgumentParser() _lowerCAmelCase = pl.Trainer.add_argparse_args(_lowerCAmelCase ) _lowerCAmelCase = SummarizationDistiller.add_model_specific_args(_lowerCAmelCase , os.getcwd() ) _lowerCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase = distill_main(_lowerCAmelCase ) # Check metrics _lowerCAmelCase = load_json(model.metrics_save_path ) _lowerCAmelCase = metrics['''val'''][0] _lowerCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , _lowerCAmelCase ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase = os.listdir(_lowerCAmelCase ) _lowerCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] _lowerCAmelCase = os.path.join(args.output_dir , _lowerCAmelCase ) _lowerCAmelCase = torch.load(_lowerCAmelCase , map_location='''cpu''' ) _lowerCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase = {os.path.basename(_lowerCAmelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
719
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
0
from __future__ import annotations import math import random from typing import Any class UpperCAmelCase : def __init__( self ): _lowerCAmelCase = [] _lowerCAmelCase = 0 _lowerCAmelCase = 0 def __lowerCAmelCase ( self ): return self.head == self.tail def __lowerCAmelCase ( self , _lowerCAmelCase ): self.data.append(_lowerCAmelCase ) _lowerCAmelCase = self.tail + 1 def __lowerCAmelCase ( self ): _lowerCAmelCase = self.data[self.head] _lowerCAmelCase = self.head + 1 return ret def __lowerCAmelCase ( self ): return self.tail - self.head def __lowerCAmelCase ( self ): print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = 1 def __lowerCAmelCase ( self ): return self.data def __lowerCAmelCase ( self ): return self.left def __lowerCAmelCase ( self ): return self.right def __lowerCAmelCase ( self ): return self.height def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = data def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = node def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = node def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = height def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode | None )->int: if node is None: return 0 return node.get_height() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )->int: if a > b: return a return b def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode )->MyNode: print('''left rotation node:''' , node.get_data() ) _lowerCAmelCase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_SCREAMING_SNAKE_CASE ) return ret def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode )->MyNode: print('''right rotation node:''' , node.get_data() ) _lowerCAmelCase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_SCREAMING_SNAKE_CASE ) return ret def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode )->MyNode: _lowerCAmelCase = node.get_left() assert left_child is not None node.set_left(left_rotation(_SCREAMING_SNAKE_CASE ) ) return right_rotation(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode )->MyNode: _lowerCAmelCase = node.get_right() assert right_child is not None node.set_right(right_rotation(_SCREAMING_SNAKE_CASE ) ) return left_rotation(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode | None , _SCREAMING_SNAKE_CASE : Any )->MyNode | None: if node is None: return MyNode(_SCREAMING_SNAKE_CASE ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _SCREAMING_SNAKE_CASE ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected _lowerCAmelCase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child _lowerCAmelCase = right_rotation(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = lr_rotation(_SCREAMING_SNAKE_CASE ) else: node.set_right(insert_node(node.get_right() , _SCREAMING_SNAKE_CASE ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: _lowerCAmelCase = node.get_right() assert right_child is not None if data < right_child.get_data(): _lowerCAmelCase = rl_rotation(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = left_rotation(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) return node def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode )->Any: while True: _lowerCAmelCase = root.get_right() if right_child is None: break _lowerCAmelCase = right_child return root.get_data() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode )->Any: while True: _lowerCAmelCase = root.get_left() if left_child is None: break _lowerCAmelCase = left_child return root.get_data() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode , _SCREAMING_SNAKE_CASE : Any )->MyNode | None: _lowerCAmelCase = root.get_left() _lowerCAmelCase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: _lowerCAmelCase = get_left_most(_SCREAMING_SNAKE_CASE ) root.set_data(_SCREAMING_SNAKE_CASE ) root.set_right(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) elif left_child is not None: _lowerCAmelCase = left_child elif right_child is not None: _lowerCAmelCase = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if get_height(_SCREAMING_SNAKE_CASE ) - get_height(_SCREAMING_SNAKE_CASE ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): _lowerCAmelCase = left_rotation(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = rl_rotation(_SCREAMING_SNAKE_CASE ) elif get_height(_SCREAMING_SNAKE_CASE ) - get_height(_SCREAMING_SNAKE_CASE ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): _lowerCAmelCase = right_rotation(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = lr_rotation(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_SCREAMING_SNAKE_CASE ) return root class UpperCAmelCase : def __init__( self ): _lowerCAmelCase = None def __lowerCAmelCase ( self ): return get_height(self.root ) def __lowerCAmelCase ( self , _lowerCAmelCase ): print('''insert:''' + str(_lowerCAmelCase ) ) _lowerCAmelCase = insert_node(self.root , _lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): print('''delete:''' + str(_lowerCAmelCase ) ) if self.root is None: print('''Tree is empty!''' ) return _lowerCAmelCase = del_node(self.root , _lowerCAmelCase ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree _lowerCAmelCase = '''''' _lowerCAmelCase = MyQueue() q.push(self.root ) _lowerCAmelCase = self.get_height() if layer == 0: return output _lowerCAmelCase = 0 while not q.is_empty(): _lowerCAmelCase = q.pop() _lowerCAmelCase = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(_lowerCAmelCase ) q.push(_lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space _lowerCAmelCase = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , _lowerCAmelCase ) - 1: _lowerCAmelCase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def UpperCAmelCase__ ( )->None: import doctest doctest.testmod() if __name__ == "__main__": _test() UpperCAmelCase_ = AVLtree() UpperCAmelCase_ = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
720
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): _lowerCAmelCase = '''hf-internal-testing/tiny-random-t5''' _lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = tokenizer('''This is me''' , return_tensors='''pt''' ) _lowerCAmelCase = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) _lowerCAmelCase = model.generate(**_lowerCAmelCase ) _lowerCAmelCase = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) _lowerCAmelCase = model_reloaded.generate(**_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''hf-internal-testing/tiny-random-t5''' _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_lowerCAmelCase ): model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model.reverse_bettertransformer() model.save_pretrained(_lowerCAmelCase )
721
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
0
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# a_ = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] a_ = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] a_ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks a_ = F'''down_blocks.{i}.resnets.{j}.''' a_ = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 a_ = F'''down_blocks.{i}.attentions.{j}.''' a_ = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks a_ = F'''up_blocks.{i}.resnets.{j}.''' a_ = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 a_ = F'''up_blocks.{i}.attentions.{j}.''' a_ = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 a_ = F'''down_blocks.{i}.downsamplers.0.conv.''' a_ = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 a_ = F'''up_blocks.{i}.upsamplers.0.''' a_ = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) a_ = 'mid_block.attentions.0.' a_ = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): a_ = F'''mid_block.resnets.{j}.''' a_ = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] ={k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: SCREAMING_SNAKE_CASE__ : Tuple =sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: SCREAMING_SNAKE_CASE__ : Optional[Any] =v.replace(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: SCREAMING_SNAKE_CASE__ : Union[str, Any] =v.replace(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =v SCREAMING_SNAKE_CASE__ : Dict ={v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# a_ = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): a_ = F'''encoder.down_blocks.{i}.resnets.{j}.''' a_ = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: a_ = F'''down_blocks.{i}.downsamplers.0.''' a_ = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) a_ = F'''up_blocks.{i}.upsamplers.0.''' a_ = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): a_ = F'''decoder.up_blocks.{i}.resnets.{j}.''' a_ = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): a_ = F'''mid_block.resnets.{i}.''' a_ = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) a_ = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def _a( UpperCamelCase__ : int ): '''simple docstring''' return w.reshape(*w.shape, 1, 1 ) def _a( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] ={k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: SCREAMING_SNAKE_CASE__ : Dict =v.replace(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: SCREAMING_SNAKE_CASE__ : Dict =v.replace(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =v SCREAMING_SNAKE_CASE__ : Any ={v: vae_state_dict[k] for k, v in mapping.items()} SCREAMING_SNAKE_CASE__ : List[Any] =['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"mid.attn_1.{weight_name}.weight" in k: print(f"Reshaping {k} for SD format" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =reshape_weight_for_sd(UpperCamelCase__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# a_ = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] a_ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} a_ = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp a_ = {'q': 0, 'k': 1, 'v': 2} def _a( UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] ={} SCREAMING_SNAKE_CASE__ : Optional[int] ={} SCREAMING_SNAKE_CASE__ : Tuple ={} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): SCREAMING_SNAKE_CASE__ : Optional[int] =k[: -len('''.q_proj.weight''' )] SCREAMING_SNAKE_CASE__ : List[str] =k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: SCREAMING_SNAKE_CASE__ : Optional[int] =[None, None, None] SCREAMING_SNAKE_CASE__ : Any =v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): SCREAMING_SNAKE_CASE__ : Dict =k[: -len('''.q_proj.bias''' )] SCREAMING_SNAKE_CASE__ : Union[str, Any] =k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: SCREAMING_SNAKE_CASE__ : int =[None, None, None] SCREAMING_SNAKE_CASE__ : List[Any] =v continue SCREAMING_SNAKE_CASE__ : List[Any] =textenc_pattern.sub(lambda UpperCamelCase__ : protected[re.escape(m.group(0 ) )], UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) SCREAMING_SNAKE_CASE__ : int =textenc_pattern.sub(lambda UpperCamelCase__ : protected[re.escape(m.group(0 ) )], UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.cat(UpperCamelCase__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) SCREAMING_SNAKE_CASE__ : Any =textenc_pattern.sub(lambda UpperCamelCase__ : protected[re.escape(m.group(0 ) )], UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =torch.cat(UpperCamelCase__ ) return new_state_dict def _a( UpperCamelCase__ : Dict ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) a_ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors a_ = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') a_ = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') a_ = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): a_ = load_file(unet_path, device='cpu') else: a_ = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') a_ = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): a_ = load_file(vae_path, device='cpu') else: a_ = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') a_ = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): a_ = load_file(text_enc_path, device='cpu') else: a_ = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') a_ = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model a_ = convert_unet_state_dict(unet_state_dict) a_ = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model a_ = convert_vae_state_dict(vae_state_dict) a_ = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper a_ = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm a_ = {'transformer.' + k: v for k, v in text_enc_dict.items()} a_ = convert_text_enc_state_dict_vaa(text_enc_dict) a_ = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: a_ = convert_text_enc_state_dict(text_enc_dict) a_ = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint a_ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: a_ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: a_ = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
665
'''simple docstring''' from math import isqrt def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =[True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, UpperCamelCase__, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Any =False return [i for i in range(2, UpperCamelCase__ ) if is_prime[i]] def _a( UpperCamelCase__ : int = 1_0**8 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =calculate_prime_numbers(max_number // 2 ) SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : Optional[int] =len(UpperCamelCase__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
665
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = DistilBertTokenizer snake_case_ = DistilBertTokenizerFast snake_case_ = True @slow def __magic_name__ ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ : Tuple =DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.build_inputs_with_special_tokens(__lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
665
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = SpeechTaTokenizer snake_case_ = False snake_case_ = True def __magic_name__ ( self : int ) -> Any: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : Optional[Any] =SpeechTaTokenizer(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =AddedToken('''<mask>''' , lstrip=__lowercase , rstrip=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Dict , __lowercase : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] ='''this is a test''' SCREAMING_SNAKE_CASE__ : int ='''this is a test''' return input_text, output_text def __magic_name__ ( self : List[Any] , __lowercase : int , __lowercase : Optional[Any]=False , __lowercase : Union[str, Any]=20 , __lowercase : Any=5 ) -> Any: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =self.get_input_output_texts(__lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) return text, ids def __magic_name__ ( self : Dict ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] ='''<pad>''' SCREAMING_SNAKE_CASE__ : Optional[int] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def __magic_name__ ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[Any] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(__lowercase ) , 81 ) def __magic_name__ ( self : Dict ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def __magic_name__ ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ : str =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : Any =len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) SCREAMING_SNAKE_CASE__ : int =['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.add_tokens(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] =len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size + len(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) SCREAMING_SNAKE_CASE__ : str ={'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} SCREAMING_SNAKE_CASE__ : int =tokenizer.add_special_tokens(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : int =len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size_a + len(__lowercase ) ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __magic_name__ ( self : Optional[Any] ) -> Any: pass def __magic_name__ ( self : List[str] ) -> List[Any]: pass def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Dict =self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(__lowercase , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =tokenizer.convert_tokens_to_ids(__lowercase ) # fmt: off self.assertListEqual(__lowercase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def __magic_name__ ( self : List[str] ) -> List[str]: # Use custom sequence because this tokenizer does not handle numbers. SCREAMING_SNAKE_CASE__ : List[Any] =[ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off SCREAMING_SNAKE_CASE__ : str ={ '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=__lowercase , )
665
1
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging a_ = logging.get_logger(__name__) def _a( UpperCamelCase__ : nn.ModuleList, UpperCamelCase__ : nn.ModuleList, UpperCamelCase__ : List[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ), f"{len(UpperCamelCase__ )} != {len(UpperCamelCase__ )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) a_ = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } a_ = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : List[str] ): '''simple docstring''' try: SCREAMING_SNAKE_CASE__ : Optional[int] =LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" f" {n_student}" ) return list(range(UpperCamelCase__ ) ) def _a( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : List[str] ): '''simple docstring''' if n_student > n_teacher: raise ValueError(f"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(UpperCamelCase__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _a( UpperCamelCase__ : Union[str, PreTrainedModel], UpperCamelCase__ : Union[str, Path] = "student", UpperCamelCase__ : Union[int, None] = None, UpperCamelCase__ : Union[int, None] = None, UpperCamelCase__ : Dict=False, UpperCamelCase__ : Tuple=None, UpperCamelCase__ : int=None, **UpperCamelCase__ : Union[str, Any], ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] ='''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(UpperCamelCase__, UpperCamelCase__ ): AutoTokenizer.from_pretrained(UpperCamelCase__ ).save_pretrained(UpperCamelCase__ ) # purely for convenience SCREAMING_SNAKE_CASE__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ).eval() else: assert isinstance(UpperCamelCase__, UpperCamelCase__ ), f"teacher must be a model or string got type {type(UpperCamelCase__ )}" SCREAMING_SNAKE_CASE__ : List[Any] =teacher.config.to_diff_dict() try: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] =teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: SCREAMING_SNAKE_CASE__ : int =teacher_e if d is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config, '''num_encoder_layers''' ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: SCREAMING_SNAKE_CASE__ : str =teacher_e if d is None: SCREAMING_SNAKE_CASE__ : Optional[int] =teacher_d if hasattr(teacher.config, '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(UpperCamelCase__ ) # Copy weights SCREAMING_SNAKE_CASE__ : Tuple =teacher.config_class(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =AutoModelForSeqaSeqLM.from_config(UpperCamelCase__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. SCREAMING_SNAKE_CASE__ : Any =student.load_state_dict(teacher.state_dict(), strict=UpperCamelCase__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =list(range(UpperCamelCase__ ) ), list(range(UpperCamelCase__ ) ) logger.info( f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" f" {save_path}" ) student.save_pretrained(UpperCamelCase__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: SCREAMING_SNAKE_CASE__ : List[int] =pick_layers_to_copy(UpperCamelCase__, UpperCamelCase__ ) if d_layers_to_copy is None: SCREAMING_SNAKE_CASE__ : List[int] =pick_layers_to_copy(UpperCamelCase__, UpperCamelCase__ ) try: if hasattr( UpperCamelCase__, '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers, student.prophetnet.encoder.layers, UpperCamelCase__ ) copy_layers(teacher.prophetnet.decoder.layers, student.prophetnet.decoder.layers, UpperCamelCase__ ) else: copy_layers(teacher.model.encoder.layers, student.model.encoder.layers, UpperCamelCase__ ) copy_layers(teacher.model.decoder.layers, student.model.decoder.layers, UpperCamelCase__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block, student.encoder.block, UpperCamelCase__ ) copy_layers(teacher.decoder.block, student.decoder.block, UpperCamelCase__ ) logger.info( f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(UpperCamelCase__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
665
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __lowercase : Optional[int] , __lowercase : str=13 , __lowercase : int=10 , __lowercase : List[Any]=3 , __lowercase : List[str]=2 , __lowercase : int=2 , __lowercase : Dict=True , __lowercase : Optional[Any]=True , __lowercase : int=32 , __lowercase : List[Any]=5 , __lowercase : Union[str, Any]=4 , __lowercase : Any=37 , __lowercase : Optional[Any]="gelu" , __lowercase : Union[str, Any]=0.1 , __lowercase : Tuple=0.1 , __lowercase : Dict=10 , __lowercase : int=0.02 , __lowercase : str="divided_space_time" , __lowercase : Union[str, Any]=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int =parent SCREAMING_SNAKE_CASE__ : List[str] =batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =image_size SCREAMING_SNAKE_CASE__ : List[Any] =num_channels SCREAMING_SNAKE_CASE__ : int =patch_size SCREAMING_SNAKE_CASE__ : Tuple =num_frames SCREAMING_SNAKE_CASE__ : List[Any] =is_training SCREAMING_SNAKE_CASE__ : List[str] =use_labels SCREAMING_SNAKE_CASE__ : Optional[Any] =hidden_size SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : int =num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple =intermediate_size SCREAMING_SNAKE_CASE__ : List[str] =hidden_act SCREAMING_SNAKE_CASE__ : Dict =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] =attention_type SCREAMING_SNAKE_CASE__ : Union[str, Any] =initializer_range SCREAMING_SNAKE_CASE__ : Any =scope SCREAMING_SNAKE_CASE__ : int =num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token SCREAMING_SNAKE_CASE__ : List[str] =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : str =(num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE__ : Any =ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : int =self.get_config() return config, pixel_values, labels def __magic_name__ ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] =TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) SCREAMING_SNAKE_CASE__ : List[Any] =self.num_labels return config def __magic_name__ ( self : int , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ : Tuple =TimesformerModel(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] =model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : List[str] , __lowercase : str , __lowercase : Tuple , __lowercase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : str =TimesformerForVideoClassification(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(__lowercase ) # verify the logits shape SCREAMING_SNAKE_CASE__ : Tuple =torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __lowercase ) def __magic_name__ ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =config_and_inputs SCREAMING_SNAKE_CASE__ : Any ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): snake_case_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () snake_case_ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def __magic_name__ ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Dict =TimesformerModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] =ConfigTester( self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def __magic_name__ ( self : str , __lowercase : Dict , __lowercase : str , __lowercase : Optional[int]=False ) -> int: SCREAMING_SNAKE_CASE__ : str =copy.deepcopy(__lowercase ) if return_labels: if model_class in get_values(__lowercase ): SCREAMING_SNAKE_CASE__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) return inputs_dict def __magic_name__ ( self : List[Any] ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ) -> Optional[int]: pass def __magic_name__ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str =model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Any =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def __magic_name__ ( self : Any ) -> Any: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] =model_class(__lowercase ) SCREAMING_SNAKE_CASE__ : str =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : List[str] =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Dict =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def __magic_name__ ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __magic_name__ ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__lowercase ) @slow def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =TimesformerModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> List[str]: if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[Any] =True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] =self.model_tester.seq_length SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.model_tester.num_frames SCREAMING_SNAKE_CASE__ : Optional[Any] =True SCREAMING_SNAKE_CASE__ : str =False SCREAMING_SNAKE_CASE__ : Tuple =True SCREAMING_SNAKE_CASE__ : Dict =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] =model(**self._prepare_for_class(__lowercase , __lowercase ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE__ : List[Any] =True SCREAMING_SNAKE_CASE__ : List[str] =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any =model(**self._prepare_for_class(__lowercase , __lowercase ) ) SCREAMING_SNAKE_CASE__ : List[Any] =outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) SCREAMING_SNAKE_CASE__ : Optional[int] =len(__lowercase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE__ : Optional[int] =True SCREAMING_SNAKE_CASE__ : Union[str, Any] =True SCREAMING_SNAKE_CASE__ : Optional[Any] =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(**self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(out_len + 1 , len(__lowercase ) ) SCREAMING_SNAKE_CASE__ : List[str] =outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self : Tuple ) -> List[Any]: def check_hidden_states_output(__lowercase : Tuple , __lowercase : Dict , __lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : List[Any] =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : int =model(**self._prepare_for_class(__lowercase , __lowercase ) ) SCREAMING_SNAKE_CASE__ : List[Any] =outputs.hidden_states SCREAMING_SNAKE_CASE__ : Tuple =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowercase ) , __lowercase ) SCREAMING_SNAKE_CASE__ : int =self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Tuple =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : List[str] =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) SCREAMING_SNAKE_CASE__ : Any =np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def __magic_name__ ( self : Any ) -> List[str]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int =TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =self.default_image_processor SCREAMING_SNAKE_CASE__ : Tuple =prepare_video() SCREAMING_SNAKE_CASE__ : Any =image_processor(video[:8] , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] =model(**__lowercase ) # verify the logits SCREAMING_SNAKE_CASE__ : List[str] =torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
665
1
'''simple docstring''' import re from filelock import FileLock try: import nltk a_ = True except (ImportError, ModuleNotFoundError): a_ = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _a( UpperCamelCase__ : str ): '''simple docstring''' re.sub('''<n>''', '''''', UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
665
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } a_ = { 'bert-base-uncased': 5_1_2, 'bert-large-uncased': 5_1_2, 'bert-base-cased': 5_1_2, 'bert-large-cased': 5_1_2, 'bert-base-multilingual-uncased': 5_1_2, 'bert-base-multilingual-cased': 5_1_2, 'bert-base-chinese': 5_1_2, 'bert-base-german-cased': 5_1_2, 'bert-large-uncased-whole-word-masking': 5_1_2, 'bert-large-cased-whole-word-masking': 5_1_2, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_1_2, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_1_2, 'bert-base-cased-finetuned-mrpc': 5_1_2, 'bert-base-german-dbmdz-cased': 5_1_2, 'bert-base-german-dbmdz-uncased': 5_1_2, 'TurkuNLP/bert-base-finnish-cased-v1': 5_1_2, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_1_2, 'wietsedv/bert-base-dutch-cased': 5_1_2, } a_ = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = BertTokenizer def __init__( self : int , __lowercase : Union[str, Any]=None , __lowercase : Tuple=None , __lowercase : str=True , __lowercase : Optional[Any]="[UNK]" , __lowercase : Tuple="[SEP]" , __lowercase : Any="[PAD]" , __lowercase : List[Any]="[CLS]" , __lowercase : Union[str, Any]="[MASK]" , __lowercase : Tuple=True , __lowercase : str=None , **__lowercase : Any , ) -> Optional[Any]: super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) SCREAMING_SNAKE_CASE__ : str =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowercase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE__ : int =getattr(__lowercase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ : Any =do_lower_case SCREAMING_SNAKE_CASE__ : Any =strip_accents SCREAMING_SNAKE_CASE__ : Dict =tokenize_chinese_chars SCREAMING_SNAKE_CASE__ : Union[str, Any] =normalizer_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =do_lower_case def __magic_name__ ( self : int , __lowercase : Optional[Any] , __lowercase : Union[str, Any]=None ) -> int: SCREAMING_SNAKE_CASE__ : Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ : List[str] =[self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self : List[Any] , __lowercase : str , __lowercase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ : Optional[int] =self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
665
1
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Tuple ): '''simple docstring''' if gpta_config_file == "": SCREAMING_SNAKE_CASE__ : Optional[Any] =GPTaConfig() else: SCREAMING_SNAKE_CASE__ : List[Any] =GPTaConfig.from_json_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[str] =GPTaModel(UpperCamelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # Save pytorch-model SCREAMING_SNAKE_CASE__ : str =pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE__ : str =pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict(), UpperCamelCase__ ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(UpperCamelCase__, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) a_ = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
665
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters a_ = False a_ = False def _a( UpperCamelCase__ : Namespace ): '''simple docstring''' return TrainCommand(UpperCamelCase__ ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): @staticmethod def __magic_name__ ( __lowercase : ArgumentParser ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] =parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' , type=__lowercase , required=__lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=__lowercase , default=0 , help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' , type=__lowercase , default=1 , help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' , type=__lowercase , default=2 , help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' , type=__lowercase , default='''''' , help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' , type=__lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=__lowercase , default='''./''' , help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' , type=__lowercase , default='''text_classification''' , help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' , type=__lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' , type=__lowercase , default=32 , help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' , type=__lowercase , default=64 , help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' , type=__lowercase , default=3e-5 , help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' , type=__lowercase , default=1e-08 , help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=__lowercase ) def __init__( self : Tuple , __lowercase : Namespace ) -> List[str]: SCREAMING_SNAKE_CASE__ : Tuple =logging.get_logger('''transformers-cli/training''' ) SCREAMING_SNAKE_CASE__ : int ='''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =args.output SCREAMING_SNAKE_CASE__ : str =args.column_label SCREAMING_SNAKE_CASE__ : List[Any] =args.column_text SCREAMING_SNAKE_CASE__ : Tuple =args.column_id self.logger.info(F"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": SCREAMING_SNAKE_CASE__ : List[str] =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"Loading dataset from {args.train_data}" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =None if args.validation_data: self.logger.info(F"Loading validation dataset from {args.validation_data}" ) SCREAMING_SNAKE_CASE__ : List[Any] =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =args.validation_split SCREAMING_SNAKE_CASE__ : List[Any] =args.train_batch_size SCREAMING_SNAKE_CASE__ : Any =args.valid_batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =args.learning_rate SCREAMING_SNAKE_CASE__ : int =args.adam_epsilon def __magic_name__ ( self : Any ) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def __magic_name__ ( self : Optional[int] ) -> Tuple: raise NotImplementedError def __magic_name__ ( self : Dict ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
665
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """wavlm""" def __init__( self : List[Any] , __lowercase : Any=32 , __lowercase : List[str]=7_68 , __lowercase : Any=12 , __lowercase : Any=12 , __lowercase : Dict=30_72 , __lowercase : Union[str, Any]="gelu" , __lowercase : List[str]=0.1 , __lowercase : List[str]=0.1 , __lowercase : Dict=0.1 , __lowercase : Union[str, Any]=0.0 , __lowercase : str=0.1 , __lowercase : List[Any]=0.1 , __lowercase : Dict=0.02 , __lowercase : Any=1e-5 , __lowercase : Union[str, Any]="group" , __lowercase : List[str]="gelu" , __lowercase : Optional[Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __lowercase : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __lowercase : Dict=(10, 3, 3, 3, 3, 2, 2) , __lowercase : str=False , __lowercase : Optional[int]=1_28 , __lowercase : Dict=16 , __lowercase : int=3_20 , __lowercase : Optional[Any]=8_00 , __lowercase : Optional[int]=False , __lowercase : int=True , __lowercase : str=0.05 , __lowercase : Any=10 , __lowercase : List[Any]=2 , __lowercase : Optional[Any]=0.0 , __lowercase : Any=10 , __lowercase : Dict=3_20 , __lowercase : Optional[Any]=2 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=1_00 , __lowercase : Optional[Any]=2_56 , __lowercase : Dict=2_56 , __lowercase : Dict=0.1 , __lowercase : Any="mean" , __lowercase : List[Any]=False , __lowercase : List[Any]=False , __lowercase : Any=2_56 , __lowercase : List[Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , __lowercase : Optional[int]=(5, 3, 3, 1, 1) , __lowercase : Optional[int]=(1, 2, 3, 1, 1) , __lowercase : str=5_12 , __lowercase : Any=80 , __lowercase : List[Any]=0 , __lowercase : Optional[Any]=1 , __lowercase : int=2 , __lowercase : Tuple=False , __lowercase : int=3 , __lowercase : Tuple=2 , __lowercase : List[Any]=3 , __lowercase : Tuple=None , **__lowercase : Any , ) -> Any: super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase ) SCREAMING_SNAKE_CASE__ : int =hidden_size SCREAMING_SNAKE_CASE__ : str =feat_extract_norm SCREAMING_SNAKE_CASE__ : str =feat_extract_activation SCREAMING_SNAKE_CASE__ : int =list(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =list(__lowercase ) SCREAMING_SNAKE_CASE__ : int =list(__lowercase ) SCREAMING_SNAKE_CASE__ : int =conv_bias SCREAMING_SNAKE_CASE__ : Tuple =num_buckets SCREAMING_SNAKE_CASE__ : List[str] =max_bucket_distance SCREAMING_SNAKE_CASE__ : Union[str, Any] =num_conv_pos_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] =num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE__ : Optional[int] =len(self.conv_dim ) SCREAMING_SNAKE_CASE__ : Optional[int] =num_hidden_layers SCREAMING_SNAKE_CASE__ : Dict =intermediate_size SCREAMING_SNAKE_CASE__ : int =hidden_act SCREAMING_SNAKE_CASE__ : List[Any] =num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple =hidden_dropout SCREAMING_SNAKE_CASE__ : Dict =attention_dropout SCREAMING_SNAKE_CASE__ : List[str] =activation_dropout SCREAMING_SNAKE_CASE__ : List[Any] =feat_proj_dropout SCREAMING_SNAKE_CASE__ : str =final_dropout SCREAMING_SNAKE_CASE__ : List[Any] =layerdrop SCREAMING_SNAKE_CASE__ : List[str] =layer_norm_eps SCREAMING_SNAKE_CASE__ : int =initializer_range SCREAMING_SNAKE_CASE__ : List[str] =num_ctc_classes SCREAMING_SNAKE_CASE__ : Tuple =vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] =do_stable_layer_norm SCREAMING_SNAKE_CASE__ : str =use_weighted_layer_sum SCREAMING_SNAKE_CASE__ : Tuple =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE__ : int =apply_spec_augment SCREAMING_SNAKE_CASE__ : Tuple =mask_time_prob SCREAMING_SNAKE_CASE__ : Any =mask_time_length SCREAMING_SNAKE_CASE__ : Dict =mask_time_min_masks SCREAMING_SNAKE_CASE__ : Optional[Any] =mask_feature_prob SCREAMING_SNAKE_CASE__ : List[Any] =mask_feature_length # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE__ : int =num_codevectors_per_group SCREAMING_SNAKE_CASE__ : List[Any] =num_codevector_groups SCREAMING_SNAKE_CASE__ : Union[str, Any] =contrastive_logits_temperature SCREAMING_SNAKE_CASE__ : Optional[Any] =num_negatives SCREAMING_SNAKE_CASE__ : List[Any] =codevector_dim SCREAMING_SNAKE_CASE__ : Optional[Any] =proj_codevector_dim SCREAMING_SNAKE_CASE__ : int =diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE__ : List[Any] =ctc_loss_reduction SCREAMING_SNAKE_CASE__ : Any =ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE__ : Optional[int] =add_adapter SCREAMING_SNAKE_CASE__ : List[str] =adapter_kernel_size SCREAMING_SNAKE_CASE__ : int =adapter_stride SCREAMING_SNAKE_CASE__ : Union[str, Any] =num_adapter_layers SCREAMING_SNAKE_CASE__ : Optional[int] =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE__ : Any =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE__ : Dict =list(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =list(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =list(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =xvector_output_dim @property def __magic_name__ ( self : Tuple ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
665
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = KandinskyVaaImgaImgPipeline snake_case_ = ["""image_embeds""", """negative_image_embeds""", """image"""] snake_case_ = [ """image_embeds""", """negative_image_embeds""", """image""", ] snake_case_ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] snake_case_ = False @property def __magic_name__ ( self : List[str] ) -> Tuple: return 32 @property def __magic_name__ ( self : List[str] ) -> str: return 32 @property def __magic_name__ ( self : Any ) -> Optional[int]: return self.time_input_dim @property def __magic_name__ ( self : List[Any] ) -> int: return self.time_input_dim * 4 @property def __magic_name__ ( self : Tuple ) -> Optional[int]: return 1_00 @property def __magic_name__ ( self : Union[str, Any] ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE__ : Optional[int] =UNetaDConditionModel(**__lowercase ) return model @property def __magic_name__ ( self : Dict ) -> Any: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __magic_name__ ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] =VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[str] =self.dummy_unet SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_movq SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''num_train_timesteps''': 10_00, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE__ : str =DDIMScheduler(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __magic_name__ ( self : str , __lowercase : Optional[Any] , __lowercase : Any=0 ) -> int: SCREAMING_SNAKE_CASE__ : Optional[int] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowercase ) ).to(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowercase ) # create init_image SCREAMING_SNAKE_CASE__ : Optional[Any] =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ : Any =Image.fromarray(np.uinta(__lowercase ) ).convert('''RGB''' ).resize((2_56, 2_56) ) if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : Dict =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Tuple =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : str ={ '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[Any] ='''cpu''' SCREAMING_SNAKE_CASE__ : Tuple =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Dict =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =pipe(**self.get_dummy_inputs(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple =output.images SCREAMING_SNAKE_CASE__ : Union[str, Any] =pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] SCREAMING_SNAKE_CASE__ : List[Any] =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : Tuple =np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : int ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ : str =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE__ : List[Any] ='''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE__ : Optional[int] =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Dict =pipeline.to(__lowercase ) pipeline.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] =pipe_prior( __lowercase , generator=__lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE__ : List[Any] =pipeline( image=__lowercase , image_embeds=__lowercase , negative_image_embeds=__lowercase , generator=__lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : int =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
665
1
'''simple docstring''' from math import sqrt def _a( UpperCamelCase__ : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(sqrt(UpperCamelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a( UpperCamelCase__ : int = 1_0_0_0_1 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =0 SCREAMING_SNAKE_CASE__ : Dict =1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase__ ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
665
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a_ = TypeVar('T') class __SCREAMING_SNAKE_CASE ( Generic[T] ): snake_case_ = 42 # Cache store of keys snake_case_ = 42 # References of the keys in cache snake_case_ = 10 # Maximum capacity of cache def __init__( self : Dict , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ : Any =deque() SCREAMING_SNAKE_CASE__ : str =set() if not n: SCREAMING_SNAKE_CASE__ : Optional[Any] =sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] =n def __magic_name__ ( self : List[str] , __lowercase : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: SCREAMING_SNAKE_CASE__ : int =self.dq_store.pop() self.key_reference.remove(__lowercase ) else: self.dq_store.remove(__lowercase ) self.dq_store.appendleft(__lowercase ) self.key_reference.add(__lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> None: for k in self.dq_store: print(__lowercase ) def __repr__( self : List[Any] ) -> str: return F"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}" if __name__ == "__main__": import doctest doctest.testmod() a_ = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
665
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = KandinskyVaaImgaImgPipeline snake_case_ = ["""image_embeds""", """negative_image_embeds""", """image"""] snake_case_ = [ """image_embeds""", """negative_image_embeds""", """image""", ] snake_case_ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] snake_case_ = False @property def __magic_name__ ( self : List[str] ) -> Tuple: return 32 @property def __magic_name__ ( self : List[str] ) -> str: return 32 @property def __magic_name__ ( self : Any ) -> Optional[int]: return self.time_input_dim @property def __magic_name__ ( self : List[Any] ) -> int: return self.time_input_dim * 4 @property def __magic_name__ ( self : Tuple ) -> Optional[int]: return 1_00 @property def __magic_name__ ( self : Union[str, Any] ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE__ : Optional[int] =UNetaDConditionModel(**__lowercase ) return model @property def __magic_name__ ( self : Dict ) -> Any: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __magic_name__ ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] =VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[str] =self.dummy_unet SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_movq SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''num_train_timesteps''': 10_00, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE__ : str =DDIMScheduler(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __magic_name__ ( self : str , __lowercase : Optional[Any] , __lowercase : Any=0 ) -> int: SCREAMING_SNAKE_CASE__ : Optional[int] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowercase ) ).to(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowercase ) # create init_image SCREAMING_SNAKE_CASE__ : Optional[Any] =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ : Any =Image.fromarray(np.uinta(__lowercase ) ).convert('''RGB''' ).resize((2_56, 2_56) ) if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : Dict =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Tuple =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : str ={ '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[Any] ='''cpu''' SCREAMING_SNAKE_CASE__ : Tuple =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Dict =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =pipe(**self.get_dummy_inputs(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple =output.images SCREAMING_SNAKE_CASE__ : Union[str, Any] =pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] SCREAMING_SNAKE_CASE__ : List[Any] =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : Tuple =np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : int ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ : str =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE__ : List[Any] ='''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE__ : Optional[int] =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Dict =pipeline.to(__lowercase ) pipeline.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] =pipe_prior( __lowercase , generator=__lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE__ : List[Any] =pipeline( image=__lowercase , image_embeds=__lowercase , negative_image_embeds=__lowercase , generator=__lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : int =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
665
'''simple docstring''' from __future__ import annotations from collections.abc import Callable a_ = list[list[float | int]] def _a( UpperCamelCase__ : Matrix, UpperCamelCase__ : Matrix ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Matrix =[[0 for _ in range(size + 1 )] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : float for row in range(UpperCamelCase__ ): for col in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Tuple =matrix[row][col] SCREAMING_SNAKE_CASE__ : Optional[int] =vector[row][0] SCREAMING_SNAKE_CASE__ : Any =0 SCREAMING_SNAKE_CASE__ : Union[str, Any] =0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE__ : Any =max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCamelCase__, UpperCamelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =augmented[pivot_row], augmented[row] for rowa in range(row + 1, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE__ : Tuple =0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, UpperCamelCase__ ): for row in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =augmented[row][col] / augmented[col][col] for cola in range(UpperCamelCase__, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 1_0 )] for row in range(UpperCamelCase__ ) ] def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Matrix =[[0 for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Matrix =[[0] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Matrix SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int for x_val, y_val in enumerate(UpperCamelCase__ ): for col in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] =(x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE__ : Dict =y_val SCREAMING_SNAKE_CASE__ : Optional[int] =solve(UpperCamelCase__, UpperCamelCase__ ) def interpolated_func(UpperCamelCase__ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCamelCase__ ) ) return interpolated_func def _a( UpperCamelCase__ : int ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def _a( UpperCamelCase__ : Callable[[int], int] = question_function, UpperCamelCase__ : int = 1_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : list[int] =[func(UpperCamelCase__ ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE__ : list[Callable[[int], int]] =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : Callable[[int], int] SCREAMING_SNAKE_CASE__ : int for poly in polynomials: SCREAMING_SNAKE_CASE__ : Any =1 while func(UpperCamelCase__ ) == poly(UpperCamelCase__ ): x_val += 1 ret += poly(UpperCamelCase__ ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
665
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -1_1, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = 42 snake_case_ = 42 class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : Iterable[int] ) -> None: SCREAMING_SNAKE_CASE__ : Node | None =None for i in sorted(__lowercase , reverse=__lowercase ): SCREAMING_SNAKE_CASE__ : Any =Node(__lowercase , self.head ) def __iter__( self : Any ) -> Iterator[int]: SCREAMING_SNAKE_CASE__ : List[Any] =self.head while node: yield node.data SCREAMING_SNAKE_CASE__ : Any =node.next_node def __len__( self : List[Any] ) -> int: return sum(1 for _ in self ) def __str__( self : List[Any] ) -> str: return " -> ".join([str(__lowercase ) for node in self] ) def _a( UpperCamelCase__ : SortedLinkedList, UpperCamelCase__ : SortedLinkedList ): '''simple docstring''' return SortedLinkedList(list(UpperCamelCase__ ) + list(UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
665
'''simple docstring''' def _a( UpperCamelCase__ : Optional[int], UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =0 SCREAMING_SNAKE_CASE__ : Union[str, Any] =len(UpperCamelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None SCREAMING_SNAKE_CASE__ : Union[str, Any] =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None SCREAMING_SNAKE_CASE__ : Optional[int] =sorted_collection[point] if current_item == item: return point else: if point < left: SCREAMING_SNAKE_CASE__ : Union[str, Any] =left SCREAMING_SNAKE_CASE__ : Optional[Any] =point elif point > right: SCREAMING_SNAKE_CASE__ : Optional[int] =right SCREAMING_SNAKE_CASE__ : Tuple =point else: if item < current_item: SCREAMING_SNAKE_CASE__ : str =point - 1 else: SCREAMING_SNAKE_CASE__ : Tuple =point + 1 return None def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None SCREAMING_SNAKE_CASE__ : Dict =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) elif point > right: return interpolation_search_by_recursion(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, point - 1 ) else: return interpolation_search_by_recursion( UpperCamelCase__, UpperCamelCase__, point + 1, UpperCamelCase__ ) def _a( UpperCamelCase__ : Dict ): '''simple docstring''' if collection != sorted(UpperCamelCase__ ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys a_ = 0 if debug == 1: a_ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') a_ = 6_7 a_ = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('Not found')
665
1
'''simple docstring''' from math import ceil, sqrt def _a( UpperCamelCase__ : int = 1_0_0_0_0_0_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =0 for outer_width in range(3, (limit // 4) + 2 ): if outer_width**2 > limit: SCREAMING_SNAKE_CASE__ : List[str] =max(ceil(sqrt(outer_width**2 - limit ) ), 1 ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
665
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : @staticmethod def __magic_name__ ( *__lowercase : int , **__lowercase : Optional[Any] ) -> Optional[Any]: pass @is_pipeline_test @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @require_torch def __magic_name__ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] =pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) SCREAMING_SNAKE_CASE__ : List[str] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : Any =image_classifier(__lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowercase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) SCREAMING_SNAKE_CASE__ : int =image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], ] , ) @require_tf def __magic_name__ ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] =pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) SCREAMING_SNAKE_CASE__ : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : Tuple =image_classifier(__lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowercase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) SCREAMING_SNAKE_CASE__ : List[Any] =image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], ] , ) @slow @require_torch def __magic_name__ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] =pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE__ : Any =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : List[str] =image_classifier(__lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __magic_name__ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ : str =pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE__ : Optional[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : Any =image_classifier(__lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE__ : List[Any] =image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
665
1
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a( UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =int(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] =t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}" def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Dict, UpperCamelCase__ : int, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Dict=3_0_0 ): '''simple docstring''' return f"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n " def _a( UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] ='''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: SCREAMING_SNAKE_CASE__ : List[Any] =f"{elt:.6f}" if isinstance(UpperCamelCase__, UpperCamelCase__ ) else str(UpperCamelCase__ ) html_code += f" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __SCREAMING_SNAKE_CASE : snake_case_ = 5 snake_case_ = 0.2 def __init__( self : str , __lowercase : int , __lowercase : Optional[str] = None , __lowercase : bool = True , __lowercase : Optional["NotebookTrainingTracker"] = None , __lowercase : int = 3_00 , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[Any] =total SCREAMING_SNAKE_CASE__ : List[str] ='''''' if prefix is None else prefix SCREAMING_SNAKE_CASE__ : Tuple =leave SCREAMING_SNAKE_CASE__ : Optional[Any] =parent SCREAMING_SNAKE_CASE__ : List[Any] =width SCREAMING_SNAKE_CASE__ : List[Any] =None SCREAMING_SNAKE_CASE__ : List[str] =None SCREAMING_SNAKE_CASE__ : str =None def __magic_name__ ( self : int , __lowercase : int , __lowercase : bool = False , __lowercase : str = None ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple =value if comment is not None: SCREAMING_SNAKE_CASE__ : Tuple =comment if self.last_value is None: SCREAMING_SNAKE_CASE__ : str =time.time() SCREAMING_SNAKE_CASE__ : Union[str, Any] =value SCREAMING_SNAKE_CASE__ : Optional[Any] =None SCREAMING_SNAKE_CASE__ : Any =self.warmup SCREAMING_SNAKE_CASE__ : Any =1 self.update_bar(__lowercase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 SCREAMING_SNAKE_CASE__ : Optional[int] =time.time() SCREAMING_SNAKE_CASE__ : Any =current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: SCREAMING_SNAKE_CASE__ : Any =self.elapsed_time / (value - self.start_value) else: SCREAMING_SNAKE_CASE__ : Dict =None if value >= self.total: SCREAMING_SNAKE_CASE__ : int =self.total SCREAMING_SNAKE_CASE__ : Optional[int] =None if not self.leave: self.close() elif self.average_time_per_item is not None: SCREAMING_SNAKE_CASE__ : List[Any] =self.average_time_per_item * (self.total - value) self.update_bar(__lowercase ) SCREAMING_SNAKE_CASE__ : int =value SCREAMING_SNAKE_CASE__ : Optional[int] =current_time if self.average_time_per_item is None: SCREAMING_SNAKE_CASE__ : List[str] =1 else: SCREAMING_SNAKE_CASE__ : int =max(int(self.update_every / self.average_time_per_item ) , 1 ) def __magic_name__ ( self : str , __lowercase : List[str] , __lowercase : Union[str, Any]=None ) -> List[str]: SCREAMING_SNAKE_CASE__ : Tuple =''' ''' * (len(str(self.total ) ) - len(str(__lowercase ) )) + str(__lowercase ) if self.elapsed_time is None: SCREAMING_SNAKE_CASE__ : str =F"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: SCREAMING_SNAKE_CASE__ : Any =F"[{spaced_value}/{self.total} {format_time(self.elapsed_time )}" else: SCREAMING_SNAKE_CASE__ : List[str] =( F"[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <" F" {format_time(self.predicted_remaining )}" ) self.label += F", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F", {self.comment}]" self.display() def __magic_name__ ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int =html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: SCREAMING_SNAKE_CASE__ : Optional[int] =disp.display(disp.HTML(self.html_code ) , display_id=__lowercase ) else: self.output.update(disp.HTML(self.html_code ) ) def __magic_name__ ( self : Dict ) -> str: if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Union[str, Any] , __lowercase : Dict , __lowercase : Union[str, Any]=None ) -> Optional[int]: super().__init__(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =None if column_names is None else [column_names] SCREAMING_SNAKE_CASE__ : Dict =None def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : str =html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: SCREAMING_SNAKE_CASE__ : Optional[Any] =disp.display(disp.HTML(self.html_code ) , display_id=__lowercase ) else: self.output.update(disp.HTML(self.html_code ) ) def __magic_name__ ( self : int , __lowercase : str ) -> List[str]: if self.inner_table is None: SCREAMING_SNAKE_CASE__ : List[str] =[list(values.keys() ), list(values.values() )] else: SCREAMING_SNAKE_CASE__ : Dict =self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =columns self.inner_table.append([values[c] for c in columns] ) def __magic_name__ ( self : Optional[Any] , __lowercase : str , __lowercase : Dict=None , __lowercase : List[Any]=3_00 ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : int =NotebookProgressBar(__lowercase , prefix=__lowercase , parent=self , width=__lowercase ) return self.child_bar def __magic_name__ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ : Any =None self.display() class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : int =None SCREAMING_SNAKE_CASE__ : Optional[int] =None SCREAMING_SNAKE_CASE__ : Any =False def __magic_name__ ( self : Dict , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : List[Any] , **__lowercase : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] ='''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' SCREAMING_SNAKE_CASE__ : Any =0 SCREAMING_SNAKE_CASE__ : List[Any] =0 SCREAMING_SNAKE_CASE__ : Tuple =[self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) SCREAMING_SNAKE_CASE__ : Dict =NotebookTrainingTracker(state.max_steps , __lowercase ) def __magic_name__ ( self : Optional[int] , __lowercase : List[str] , __lowercase : str , __lowercase : int , **__lowercase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ : Dict =int(state.epoch ) if int(state.epoch ) == state.epoch else F"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1 , comment=F"Epoch {epoch}/{state.num_train_epochs}" , force_update=self._force_next_update , ) SCREAMING_SNAKE_CASE__ : List[str] =False def __magic_name__ ( self : Union[str, Any] , __lowercase : Dict , __lowercase : int , __lowercase : Optional[int] , __lowercase : str=None , **__lowercase : int ) -> List[str]: if not has_length(__lowercase ): return if self.prediction_bar is None: if self.training_tracker is not None: SCREAMING_SNAKE_CASE__ : List[str] =self.training_tracker.add_child(len(__lowercase ) ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] =NotebookProgressBar(len(__lowercase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __magic_name__ ( self : Dict , __lowercase : List[Any] , __lowercase : Any , __lowercase : Dict , **__lowercase : Dict ) -> Optional[int]: if self.prediction_bar is not None: self.prediction_bar.close() SCREAMING_SNAKE_CASE__ : int =None def __magic_name__ ( self : Optional[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str] , __lowercase : Tuple=None , **__lowercase : List[str] ) -> int: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: SCREAMING_SNAKE_CASE__ : List[Any] ={'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy SCREAMING_SNAKE_CASE__ : List[Any] =state.global_step self.training_tracker.write_line(__lowercase ) def __magic_name__ ( self : Optional[Any] , __lowercase : List[str] , __lowercase : List[str] , __lowercase : str , __lowercase : List[str]=None , **__lowercase : List[str] ) -> Tuple: if self.training_tracker is not None: SCREAMING_SNAKE_CASE__ : Tuple ={'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: SCREAMING_SNAKE_CASE__ : Optional[Any] =log['''loss'''] break if self.first_column == "Epoch": SCREAMING_SNAKE_CASE__ : Optional[Any] =int(state.epoch ) else: SCREAMING_SNAKE_CASE__ : int =state.global_step SCREAMING_SNAKE_CASE__ : Tuple ='''eval''' for k in metrics: if k.endswith('''_loss''' ): SCREAMING_SNAKE_CASE__ : Optional[Any] =re.sub(r'''\_loss$''' , '''''' , __lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =metrics.pop('''total_flos''' , __lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =metrics.pop('''epoch''' , __lowercase ) SCREAMING_SNAKE_CASE__ : int =metrics.pop(F"{metric_key_prefix}_runtime" , __lowercase ) SCREAMING_SNAKE_CASE__ : Any =metrics.pop(F"{metric_key_prefix}_samples_per_second" , __lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =metrics.pop(F"{metric_key_prefix}_steps_per_second" , __lowercase ) SCREAMING_SNAKE_CASE__ : int =metrics.pop(F"{metric_key_prefix}_jit_compilation_time" , __lowercase ) for k, v in metrics.items(): if k == F"{metric_key_prefix}_loss": SCREAMING_SNAKE_CASE__ : int =v else: SCREAMING_SNAKE_CASE__ : Tuple =k.split('''_''' ) SCREAMING_SNAKE_CASE__ : Dict =''' '''.join([part.capitalize() for part in splits[1:]] ) SCREAMING_SNAKE_CASE__ : str =v self.training_tracker.write_line(__lowercase ) self.training_tracker.remove_child() SCREAMING_SNAKE_CASE__ : Union[str, Any] =None # Evaluation takes a long time so we should force the next update. SCREAMING_SNAKE_CASE__ : Optional[Any] =True def __magic_name__ ( self : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple , __lowercase : int , **__lowercase : Optional[int] ) -> Tuple: self.training_tracker.update( state.global_step , comment=F"Epoch {int(state.epoch )}/{state.num_train_epochs}" , force_update=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =None
665
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = JukeboxTokenizer snake_case_ = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def __magic_name__ ( self : Optional[int] ) -> str: import torch SCREAMING_SNAKE_CASE__ : List[str] =JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) SCREAMING_SNAKE_CASE__ : str =tokenizer(**self.metas )['''input_ids'''] # fmt: off SCREAMING_SNAKE_CASE__ : str =[ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __magic_name__ ( self : Any ) -> List[str]: import torch SCREAMING_SNAKE_CASE__ : int =JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer(**self.metas )['''input_ids'''] # fmt: off SCREAMING_SNAKE_CASE__ : Optional[int] =[ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
665
1
'''simple docstring''' def _a( UpperCamelCase__ : int = 1_0, UpperCamelCase__ : int = 2_2 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =range(1, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =range(1, UpperCamelCase__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F'''{solution(1_0, 2_2) = }''')
665
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """gpt_neox""" def __init__( self : List[Any] , __lowercase : Union[str, Any]=5_04_32 , __lowercase : int=61_44 , __lowercase : Tuple=44 , __lowercase : List[str]=64 , __lowercase : str=2_45_76 , __lowercase : Dict="gelu" , __lowercase : Tuple=0.25 , __lowercase : Tuple=1_00_00 , __lowercase : Tuple=0.0 , __lowercase : str=0.0 , __lowercase : List[Any]=0.1 , __lowercase : Dict=20_48 , __lowercase : Any=0.02 , __lowercase : Dict=1e-5 , __lowercase : List[Any]=True , __lowercase : str=0 , __lowercase : Optional[Any]=2 , __lowercase : Tuple=False , __lowercase : List[Any]=True , __lowercase : Optional[Any]=None , **__lowercase : Any , ) -> Dict: super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : Any =hidden_size SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : Any =num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] =intermediate_size SCREAMING_SNAKE_CASE__ : Dict =hidden_act SCREAMING_SNAKE_CASE__ : str =rotary_pct SCREAMING_SNAKE_CASE__ : Optional[Any] =rotary_emb_base SCREAMING_SNAKE_CASE__ : List[Any] =attention_dropout SCREAMING_SNAKE_CASE__ : List[Any] =hidden_dropout SCREAMING_SNAKE_CASE__ : str =classifier_dropout SCREAMING_SNAKE_CASE__ : Any =initializer_range SCREAMING_SNAKE_CASE__ : Dict =layer_norm_eps SCREAMING_SNAKE_CASE__ : Any =use_cache SCREAMING_SNAKE_CASE__ : Tuple =tie_word_embeddings SCREAMING_SNAKE_CASE__ : Tuple =use_parallel_residual SCREAMING_SNAKE_CASE__ : Union[str, Any] =rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowercase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE__ : int =self.rope_scaling.get('''type''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.rope_scaling.get('''factor''' , __lowercase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowercase , __lowercase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
665
1