code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """gpt_neox""" def __init__( self : List[Any] , __lowercase : Union[str, Any]=5_04_32 , __lowercase : int=61_44 , __lowercase : Tuple=44 , __lowercase : List[str]=64 , __lowercase : str=2_45_76 , __lowercase : Dict="gelu" , __lowercase : Tuple=0.25 , __lowercase : Tuple=1_00_00 , __lowercase : Tuple=0.0 , __lowercase : str=0.0 , __lowercase : List[Any]=0.1 , __lowercase : Dict=20_48 , __lowercase : Any=0.02 , __lowercase : Dict=1e-5 , __lowercase : List[Any]=True , __lowercase : str=0 , __lowercase : Optional[Any]=2 , __lowercase : Tuple=False , __lowercase : List[Any]=True , __lowercase : Optional[Any]=None , **__lowercase : Any , ) -> Dict: super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : Any =hidden_size SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : Any =num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] =intermediate_size SCREAMING_SNAKE_CASE__ : Dict =hidden_act SCREAMING_SNAKE_CASE__ : str =rotary_pct SCREAMING_SNAKE_CASE__ : Optional[Any] =rotary_emb_base SCREAMING_SNAKE_CASE__ : List[Any] =attention_dropout SCREAMING_SNAKE_CASE__ : List[Any] =hidden_dropout SCREAMING_SNAKE_CASE__ : str =classifier_dropout SCREAMING_SNAKE_CASE__ : Any =initializer_range SCREAMING_SNAKE_CASE__ : Dict =layer_norm_eps SCREAMING_SNAKE_CASE__ : Any =use_cache SCREAMING_SNAKE_CASE__ : Tuple =tie_word_embeddings SCREAMING_SNAKE_CASE__ : Tuple =use_parallel_residual SCREAMING_SNAKE_CASE__ : Union[str, Any] =rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowercase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE__ : int =self.rope_scaling.get('''type''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.rope_scaling.get('''factor''' , __lowercase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowercase , __lowercase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
716
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __lowercase : Optional[Any] , __lowercase : List[str]=13 , __lowercase : int=7 , __lowercase : Tuple=True , __lowercase : Optional[Any]=True , __lowercase : List[Any]=True , __lowercase : str=True , __lowercase : Tuple=99 , __lowercase : Union[str, Any]=64 , __lowercase : Tuple=32 , __lowercase : Optional[Any]=5 , __lowercase : Tuple=4 , __lowercase : Optional[int]=37 , __lowercase : int="gelu" , __lowercase : Union[str, Any]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : List[Any]=5_12 , __lowercase : int=16 , __lowercase : Optional[int]=2 , __lowercase : Tuple=0.02 , __lowercase : List[str]=3 , __lowercase : List[str]=4 , __lowercase : List[str]=None , ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =parent SCREAMING_SNAKE_CASE__ : Any =batch_size SCREAMING_SNAKE_CASE__ : Optional[Any] =seq_length SCREAMING_SNAKE_CASE__ : Dict =is_training SCREAMING_SNAKE_CASE__ : List[Any] =use_input_mask SCREAMING_SNAKE_CASE__ : Union[str, Any] =use_token_type_ids SCREAMING_SNAKE_CASE__ : List[Any] =use_labels SCREAMING_SNAKE_CASE__ : int =vocab_size SCREAMING_SNAKE_CASE__ : str =hidden_size SCREAMING_SNAKE_CASE__ : Any =embedding_size SCREAMING_SNAKE_CASE__ : Tuple =num_hidden_layers SCREAMING_SNAKE_CASE__ : str =num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple =intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : str =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any =max_position_embeddings SCREAMING_SNAKE_CASE__ : Optional[Any] =type_vocab_size SCREAMING_SNAKE_CASE__ : Any =type_sequence_label_size SCREAMING_SNAKE_CASE__ : Optional[Any] =initializer_range SCREAMING_SNAKE_CASE__ : str =num_labels SCREAMING_SNAKE_CASE__ : List[str] =num_choices SCREAMING_SNAKE_CASE__ : List[str] =scope def __magic_name__ ( self : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : int =None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : int =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =None SCREAMING_SNAKE_CASE__ : Optional[Any] =None SCREAMING_SNAKE_CASE__ : Optional[int] =None if self.use_labels: SCREAMING_SNAKE_CASE__ : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Any =ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : List[str] ) -> Any: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) def __magic_name__ ( self : Any , __lowercase : Tuple , __lowercase : Any , __lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : List[str] , __lowercase : Dict , __lowercase : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ : List[str] =MegatronBertModel(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] =model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =model(__lowercase , token_type_ids=__lowercase ) SCREAMING_SNAKE_CASE__ : str =model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self : Dict , __lowercase : Optional[int] , __lowercase : List[str] , __lowercase : str , __lowercase : Tuple , __lowercase : Any , __lowercase : Optional[int] , __lowercase : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : str =MegatronBertForMaskedLM(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Tuple =model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : List[str] , __lowercase : Tuple , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : str , __lowercase : Any , __lowercase : str ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[Any] =MegatronBertForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Dict =model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : Union[str, Any] , __lowercase : int , __lowercase : Any ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] =MegatronBertForNextSentencePrediction(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] =model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self : List[str] , __lowercase : Optional[int] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Optional[Any] , __lowercase : str , __lowercase : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =MegatronBertForPreTraining(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] =model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , next_sentence_label=__lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self : Optional[int] , __lowercase : Tuple , __lowercase : Optional[int] , __lowercase : Union[str, Any] , __lowercase : int , __lowercase : Any , __lowercase : Any , __lowercase : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] =MegatronBertForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Dict =model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , start_positions=__lowercase , end_positions=__lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Optional[int] , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : int , __lowercase : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =self.num_labels SCREAMING_SNAKE_CASE__ : Dict =MegatronBertForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] =model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Tuple =self.num_labels SCREAMING_SNAKE_CASE__ : int =MegatronBertForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] =model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Dict , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : Any , __lowercase : List[Any] , __lowercase : int , __lowercase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ : int =self.num_choices SCREAMING_SNAKE_CASE__ : List[str] =MegatronBertForMultipleChoice(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Optional[int] =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Tuple =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Optional[Any] =model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : str ) -> Any: SCREAMING_SNAKE_CASE__ : Tuple =self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : str =config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) snake_case_ = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True # test_resize_embeddings = False snake_case_ = False def __magic_name__ ( self : List[Any] , __lowercase : List[str] , __lowercase : Tuple , __lowercase : Tuple=False ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class in get_values(__lowercase ): SCREAMING_SNAKE_CASE__ : List[str] =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) return inputs_dict def __magic_name__ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =MegatronBertModelTester(self ) SCREAMING_SNAKE_CASE__ : Tuple =ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def __magic_name__ ( self : str ) -> Dict: self.config_tester.run_common_tests() def __magic_name__ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__lowercase ) def __magic_name__ ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__lowercase ) def __magic_name__ ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__lowercase ) def __magic_name__ ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__lowercase ) def __magic_name__ ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__lowercase ) def __magic_name__ ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__lowercase ) def __magic_name__ ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__lowercase ) def _a( UpperCamelCase__ : List[str] ): '''simple docstring''' return torch.tensor( UpperCamelCase__, dtype=torch.long, device=UpperCamelCase__, ) a_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def __magic_name__ ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Any ='''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE__ : Optional[int] =os.path.join(os.environ['''MYDIR'''] , __lowercase ) SCREAMING_SNAKE_CASE__ : Any =MegatronBertModel.from_pretrained(__lowercase ) model.to(__lowercase ) model.half() SCREAMING_SNAKE_CASE__ : Dict =_long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(__lowercase )[0] SCREAMING_SNAKE_CASE__ : Dict =torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , __lowercase ) SCREAMING_SNAKE_CASE__ : str =[-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): SCREAMING_SNAKE_CASE__ : List[Any] =output[0, ii, jj] SCREAMING_SNAKE_CASE__ : Tuple =expected[3 * ii + jj] SCREAMING_SNAKE_CASE__ : List[str] ='''ii={} jj={} a={} b={}'''.format(__lowercase , __lowercase , __lowercase , __lowercase ) self.assertTrue(math.isclose(__lowercase , __lowercase , rel_tol=__lowercase , abs_tol=__lowercase ) , msg=__lowercase )
665
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = ShapEImgaImgPipeline snake_case_ = ["""image"""] snake_case_ = ["""image"""] snake_case_ = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] snake_case_ = False @property def __magic_name__ ( self : List[Any] ) -> List[Any]: return 32 @property def __magic_name__ ( self : List[str] ) -> Optional[int]: return 32 @property def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: return self.time_input_dim * 4 @property def __magic_name__ ( self : Dict ) -> Union[str, Any]: return 8 @property def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE__ : str =CLIPVisionModel(__lowercase ) return model @property def __magic_name__ ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ : int =CLIPImageProcessor( crop_size=2_24 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __magic_name__ ( self : List[str] ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : str ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } SCREAMING_SNAKE_CASE__ : str =PriorTransformer(**__lowercase ) return model @property def __magic_name__ ( self : Tuple ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE__ : str =ShapERenderer(**__lowercase ) return model def __magic_name__ ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =self.dummy_prior SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_image_encoder SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_image_processor SCREAMING_SNAKE_CASE__ : Tuple =self.dummy_renderer SCREAMING_SNAKE_CASE__ : int =HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=__lowercase , clip_sample=__lowercase , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE__ : Any ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __magic_name__ ( self : Any , __lowercase : List[str] , __lowercase : Any=0 ) -> Any: SCREAMING_SNAKE_CASE__ : int =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : List[str] =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : Any ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ : int ='''cpu''' SCREAMING_SNAKE_CASE__ : Any =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : str =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =pipe(**self.get_dummy_inputs(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple =output.images[0] SCREAMING_SNAKE_CASE__ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[Any] =np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : List[Any] ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch_device == '''cpu''' SCREAMING_SNAKE_CASE__ : Optional[Any] =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__lowercase , relax_max_difference=__lowercase , ) def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : Any =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Dict =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =1 SCREAMING_SNAKE_CASE__ : List[str] =2 SCREAMING_SNAKE_CASE__ : Dict =self.get_dummy_inputs(__lowercase ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE__ : Tuple =batch_size * [inputs[key]] SCREAMING_SNAKE_CASE__ : List[Any] =pipe(**__lowercase , num_images_per_prompt=__lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : Optional[Any] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) SCREAMING_SNAKE_CASE__ : Dict =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) SCREAMING_SNAKE_CASE__ : List[Any] =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) SCREAMING_SNAKE_CASE__ : Tuple =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =torch.Generator(device=__lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple =pipe( __lowercase , generator=__lowercase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
717
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ : Optional[Any] =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) SCREAMING_SNAKE_CASE__ : Dict =os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __magic_name__ ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE__ : Any =F"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split() SCREAMING_SNAKE_CASE__ : List[str] =[sys.executable] + distributed_args execute_subprocess_async(__lowercase , env=os.environ.copy() )
665
0
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a_ = logging.get_logger(__name__) def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : List[Any] ): '''simple docstring''' return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def _a( UpperCamelCase__ : np.ndarray, UpperCamelCase__ : Optional[str], UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =tesseract_config if tesseract_config is not None else '''''' # apply OCR SCREAMING_SNAKE_CASE__ : Tuple =to_pil_image(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =pil_image.size SCREAMING_SNAKE_CASE__ : str =pytesseract.image_to_data(UpperCamelCase__, lang=UpperCamelCase__, output_type='''dict''', config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE__ : Tuple =[idx for idx, word in enumerate(UpperCamelCase__ ) if not word.strip()] SCREAMING_SNAKE_CASE__ : Any =[word for idx, word in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : Optional[Any] =[coord for idx, coord in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : Union[str, Any] =[coord for idx, coord in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : int =[coord for idx, coord in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : str =[coord for idx, coord in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE__ : Union[str, Any] =[] for x, y, w, h in zip(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Dict =[x, y, x + w, y + h] actual_boxes.append(UpperCamelCase__ ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE__ : Optional[int] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""pixel_values"""] def __init__( self : Any , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : bool = True , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "" , **__lowercase : List[str] , ) -> None: '''simple docstring''' super().__init__(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =size if size is not None else {'''height''': 2_24, '''width''': 2_24} SCREAMING_SNAKE_CASE__ : Optional[int] =get_size_dict(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =do_resize SCREAMING_SNAKE_CASE__ : Any =size SCREAMING_SNAKE_CASE__ : Union[str, Any] =resample SCREAMING_SNAKE_CASE__ : Optional[int] =apply_ocr SCREAMING_SNAKE_CASE__ : List[str] =ocr_lang SCREAMING_SNAKE_CASE__ : Optional[int] =tesseract_config def __magic_name__ ( self : List[str] , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Tuple , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) SCREAMING_SNAKE_CASE__ : List[Any] =(size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Tuple , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : ChannelDimension = ChannelDimension.FIRST , **__lowercase : str , ) -> PIL.Image.Image: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : List[Any] =size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Optional[int] =get_size_dict(__lowercase ) SCREAMING_SNAKE_CASE__ : int =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : List[str] =apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE__ : int =ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE__ : Optional[int] =tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE__ : List[str] =make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : int =[to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =[] SCREAMING_SNAKE_CASE__ : Optional[int] =[] for image in images: SCREAMING_SNAKE_CASE__ : List[Any] =apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: SCREAMING_SNAKE_CASE__ : int =[self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) SCREAMING_SNAKE_CASE__ : Optional[int] =[flip_channel_order(__lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Tuple =[to_channel_dimension_format(__lowercase , __lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : int =BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: SCREAMING_SNAKE_CASE__ : Union[str, Any] =words_batch SCREAMING_SNAKE_CASE__ : Optional[int] =boxes_batch return data
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = ShapEImgaImgPipeline snake_case_ = ["""image"""] snake_case_ = ["""image"""] snake_case_ = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] snake_case_ = False @property def __magic_name__ ( self : List[Any] ) -> List[Any]: return 32 @property def __magic_name__ ( self : List[str] ) -> Optional[int]: return 32 @property def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: return self.time_input_dim * 4 @property def __magic_name__ ( self : Dict ) -> Union[str, Any]: return 8 @property def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE__ : str =CLIPVisionModel(__lowercase ) return model @property def __magic_name__ ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ : int =CLIPImageProcessor( crop_size=2_24 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __magic_name__ ( self : List[str] ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : str ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } SCREAMING_SNAKE_CASE__ : str =PriorTransformer(**__lowercase ) return model @property def __magic_name__ ( self : Tuple ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE__ : str =ShapERenderer(**__lowercase ) return model def __magic_name__ ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =self.dummy_prior SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_image_encoder SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_image_processor SCREAMING_SNAKE_CASE__ : Tuple =self.dummy_renderer SCREAMING_SNAKE_CASE__ : int =HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=__lowercase , clip_sample=__lowercase , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE__ : Any ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __magic_name__ ( self : Any , __lowercase : List[str] , __lowercase : Any=0 ) -> Any: SCREAMING_SNAKE_CASE__ : int =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : List[str] =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : Any ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ : int ='''cpu''' SCREAMING_SNAKE_CASE__ : Any =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : str =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =pipe(**self.get_dummy_inputs(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple =output.images[0] SCREAMING_SNAKE_CASE__ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[Any] =np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : List[Any] ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch_device == '''cpu''' SCREAMING_SNAKE_CASE__ : Optional[Any] =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__lowercase , relax_max_difference=__lowercase , ) def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : Any =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Dict =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =1 SCREAMING_SNAKE_CASE__ : List[str] =2 SCREAMING_SNAKE_CASE__ : Dict =self.get_dummy_inputs(__lowercase ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE__ : Tuple =batch_size * [inputs[key]] SCREAMING_SNAKE_CASE__ : List[Any] =pipe(**__lowercase , num_images_per_prompt=__lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : Optional[Any] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) SCREAMING_SNAKE_CASE__ : Dict =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) SCREAMING_SNAKE_CASE__ : List[Any] =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) SCREAMING_SNAKE_CASE__ : Tuple =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =torch.Generator(device=__lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple =pipe( __lowercase , generator=__lowercase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
665
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['MaskFormerFeatureExtractor'] a_ = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] a_ = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """gpt_bigcode""" snake_case_ = ["""past_key_values"""] snake_case_ = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , __lowercase : Any=5_02_57 , __lowercase : int=10_24 , __lowercase : List[str]=7_68 , __lowercase : Optional[int]=12 , __lowercase : Dict=12 , __lowercase : List[str]=None , __lowercase : int="gelu_pytorch_tanh" , __lowercase : Union[str, Any]=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : Optional[Any]=1e-5 , __lowercase : List[str]=0.02 , __lowercase : Tuple=True , __lowercase : Optional[Any]=True , __lowercase : Union[str, Any]=5_02_56 , __lowercase : List[Any]=5_02_56 , __lowercase : Union[str, Any]=True , __lowercase : List[str]=True , __lowercase : Dict=True , **__lowercase : List[Any] , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =n_positions SCREAMING_SNAKE_CASE__ : Dict =n_embd SCREAMING_SNAKE_CASE__ : Dict =n_layer SCREAMING_SNAKE_CASE__ : Union[str, Any] =n_head SCREAMING_SNAKE_CASE__ : List[str] =n_inner SCREAMING_SNAKE_CASE__ : List[str] =activation_function SCREAMING_SNAKE_CASE__ : List[Any] =resid_pdrop SCREAMING_SNAKE_CASE__ : List[Any] =embd_pdrop SCREAMING_SNAKE_CASE__ : List[str] =attn_pdrop SCREAMING_SNAKE_CASE__ : Dict =layer_norm_epsilon SCREAMING_SNAKE_CASE__ : List[str] =initializer_range SCREAMING_SNAKE_CASE__ : List[Any] =scale_attn_weights SCREAMING_SNAKE_CASE__ : Union[str, Any] =use_cache SCREAMING_SNAKE_CASE__ : Dict =attention_softmax_in_fpaa SCREAMING_SNAKE_CASE__ : int =scale_attention_softmax_in_fpaa SCREAMING_SNAKE_CASE__ : Dict =multi_query SCREAMING_SNAKE_CASE__ : Optional[Any] =bos_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] =eos_token_id super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
665
0
'''simple docstring''' def _a( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def _a( ): '''simple docstring''' assert nand_gate(0, 0 ) == 1 assert nand_gate(0, 1 ) == 1 assert nand_gate(1, 0 ) == 1 assert nand_gate(1, 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
720
'''simple docstring''' class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =size SCREAMING_SNAKE_CASE__ : List[Any] =[0] * size SCREAMING_SNAKE_CASE__ : str =[0] * size @staticmethod def __magic_name__ ( __lowercase : int ) -> int: return index | (index + 1) @staticmethod def __magic_name__ ( __lowercase : int ) -> int: return (index & (index + 1)) - 1 def __magic_name__ ( self : Dict , __lowercase : int , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ : List[str] =value while index < self.size: SCREAMING_SNAKE_CASE__ : Any =self.get_prev(__lowercase ) + 1 if current_left_border == index: SCREAMING_SNAKE_CASE__ : List[str] =value else: SCREAMING_SNAKE_CASE__ : str =max(__lowercase , __lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =self.get_next(__lowercase ) def __magic_name__ ( self : Optional[int] , __lowercase : int , __lowercase : int ) -> int: right -= 1 # Because of right is exclusive SCREAMING_SNAKE_CASE__ : str =0 while left <= right: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.get_prev(__lowercase ) if left <= current_left: SCREAMING_SNAKE_CASE__ : List[Any] =max(__lowercase , self.tree[right] ) SCREAMING_SNAKE_CASE__ : Any =current_left else: SCREAMING_SNAKE_CASE__ : Optional[Any] =max(__lowercase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
665
0
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict a_ = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def _a( UpperCamelCase__ : Optional[int], UpperCamelCase__ : Tuple ): '''simple docstring''' return (abs(source - target ) / target) < 0.0_1 @pytest.mark.integration def _a( UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =_TestCommandArgs(dataset=UpperCamelCase__, all_configs=UpperCamelCase__, save_infos=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =TestCommand(*UpperCamelCase__ ) test_command.run() SCREAMING_SNAKE_CASE__ : List[Any] =os.path.join(UpperCamelCase__, '''README.md''' ) assert os.path.exists(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =DatasetInfosDict.from_directory(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ), splits=[ { '''name''': '''train''', '''num_bytes''': 2_3_5_1_5_6_3, '''num_examples''': 1_0_0_0_0, }, { '''name''': '''validation''', '''num_bytes''': 2_3_8_4_1_8, '''num_examples''': 1_0_0_0, }, ], download_size=3_9_4_0_6_8_0, dataset_size=2_5_8_9_9_8_1, ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: SCREAMING_SNAKE_CASE__ : Optional[int] =getattr(dataset_infos['''default'''], UpperCamelCase__ ), getattr(expected_dataset_infos['''default'''], UpperCamelCase__ ) if key == "num_bytes": assert is_apercent_close(UpperCamelCase__, UpperCamelCase__ ) elif key == "splits": assert list(UpperCamelCase__ ) == list(UpperCamelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes, expected[split].num_bytes ) else: result == expected
721
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""vqvae"""] def __init__( self : int , __lowercase : AutoencoderKL , __lowercase : UNetaDConditionModel , __lowercase : Mel , __lowercase : Union[DDIMScheduler, DDPMScheduler] , ) -> int: super().__init__() self.register_modules(unet=__lowercase , scheduler=__lowercase , mel=__lowercase , vqvae=__lowercase ) def __magic_name__ ( self : List[str] ) -> int: return 50 if isinstance(self.scheduler , __lowercase ) else 10_00 @torch.no_grad() def __call__( self : Dict , __lowercase : int = 1 , __lowercase : str = None , __lowercase : np.ndarray = None , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = None , __lowercase : torch.Generator = None , __lowercase : float = 0 , __lowercase : float = 0 , __lowercase : torch.Generator = None , __lowercase : float = 0 , __lowercase : torch.Tensor = None , __lowercase : torch.Tensor = None , __lowercase : Dict=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: SCREAMING_SNAKE_CASE__ : Optional[Any] =steps or self.get_default_steps() self.scheduler.set_timesteps(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: SCREAMING_SNAKE_CASE__ : Union[str, Any] =(self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: SCREAMING_SNAKE_CASE__ : Optional[int] =randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__lowercase , device=self.device , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =noise SCREAMING_SNAKE_CASE__ : List[str] =None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Dict =self.mel.audio_slice_to_image(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) SCREAMING_SNAKE_CASE__ : int =(input_image / 2_55) * 2 - 1 SCREAMING_SNAKE_CASE__ : Optional[int] =torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: SCREAMING_SNAKE_CASE__ : Optional[int] =self.vqvae.encode(torch.unsqueeze(__lowercase , 0 ) ).latent_dist.sample( generator=__lowercase )[0] SCREAMING_SNAKE_CASE__ : int =self.vqvae.config.scaling_factor * input_images if start_step > 0: SCREAMING_SNAKE_CASE__ : int =self.scheduler.add_noise(__lowercase , __lowercase , self.scheduler.timesteps[start_step - 1] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) SCREAMING_SNAKE_CASE__ : Optional[Any] =int(mask_start_secs * pixels_per_second ) SCREAMING_SNAKE_CASE__ : Tuple =int(mask_end_secs * pixels_per_second ) SCREAMING_SNAKE_CASE__ : int =self.scheduler.add_noise(__lowercase , __lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __lowercase ): SCREAMING_SNAKE_CASE__ : str =self.unet(__lowercase , __lowercase , __lowercase )['''sample'''] else: SCREAMING_SNAKE_CASE__ : str =self.unet(__lowercase , __lowercase )['''sample'''] if isinstance(self.scheduler , __lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] =self.scheduler.step( model_output=__lowercase , timestep=__lowercase , sample=__lowercase , eta=__lowercase , generator=__lowercase , )['''prev_sample'''] else: SCREAMING_SNAKE_CASE__ : Any =self.scheduler.step( model_output=__lowercase , timestep=__lowercase , sample=__lowercase , generator=__lowercase , )['''prev_sample'''] if mask is not None: if mask_start > 0: SCREAMING_SNAKE_CASE__ : Optional[Any] =mask[:, step, :, :mask_start] if mask_end > 0: SCREAMING_SNAKE_CASE__ : List[str] =mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance SCREAMING_SNAKE_CASE__ : str =1 / self.vqvae.config.scaling_factor * images SCREAMING_SNAKE_CASE__ : int =self.vqvae.decode(__lowercase )['''sample'''] SCREAMING_SNAKE_CASE__ : List[str] =(images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =images.cpu().permute(0 , 2 , 3 , 1 ).numpy() SCREAMING_SNAKE_CASE__ : Dict =(images * 2_55).round().astype('''uint8''' ) SCREAMING_SNAKE_CASE__ : Any =list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) ) SCREAMING_SNAKE_CASE__ : Optional[int] =[self.mel.image_to_audio(__lowercase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__lowercase ) ) @torch.no_grad() def __magic_name__ ( self : Optional[int] , __lowercase : List[Image.Image] , __lowercase : int = 50 ) -> np.ndarray: assert isinstance(self.scheduler , __lowercase ) self.scheduler.set_timesteps(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) SCREAMING_SNAKE_CASE__ : str =(sample / 2_55) * 2 - 1 SCREAMING_SNAKE_CASE__ : str =torch.Tensor(__lowercase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): SCREAMING_SNAKE_CASE__ : Tuple =t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps SCREAMING_SNAKE_CASE__ : Any =self.scheduler.alphas_cumprod[t] SCREAMING_SNAKE_CASE__ : int =( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) SCREAMING_SNAKE_CASE__ : int =1 - alpha_prod_t SCREAMING_SNAKE_CASE__ : Optional[Any] =self.unet(__lowercase , __lowercase )['''sample'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] =(1 - alpha_prod_t_prev) ** 0.5 * model_output SCREAMING_SNAKE_CASE__ : str =(sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) SCREAMING_SNAKE_CASE__ : Any =sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __magic_name__ ( __lowercase : torch.Tensor , __lowercase : torch.Tensor , __lowercase : float ) -> torch.Tensor: SCREAMING_SNAKE_CASE__ : Optional[int] =acos(torch.dot(torch.flatten(__lowercase ) , torch.flatten(__lowercase ) ) / torch.norm(__lowercase ) / torch.norm(__lowercase ) ) return sin((1 - alpha) * theta ) * xa / sin(__lowercase ) + sin(alpha * theta ) * xa / sin(__lowercase )
665
0
def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =0 # if input_string is "aba" than new_input_string become "a|b|a" SCREAMING_SNAKE_CASE__ : Optional[Any] ='''''' SCREAMING_SNAKE_CASE__ : Dict ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(UpperCamelCase__ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring SCREAMING_SNAKE_CASE__ : Optional[int] =0, 0 # length[i] shows the length of palindromic substring with center i SCREAMING_SNAKE_CASE__ : Tuple =[1 for i in range(len(UpperCamelCase__ ) )] # for each character in new_string find corresponding palindromic string SCREAMING_SNAKE_CASE__ : Tuple =0 for j in range(len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE__ : str =1 if j > r else min(length[l + r - j] // 2, r - j + 1 ) while ( j - k >= 0 and j + k < len(UpperCamelCase__ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 SCREAMING_SNAKE_CASE__ : Dict =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: SCREAMING_SNAKE_CASE__ : Optional[int] =j - k + 1 # noqa: E741 SCREAMING_SNAKE_CASE__ : Union[str, Any] =j + k - 1 # update max_length and start position if max_length < length[j]: SCREAMING_SNAKE_CASE__ : Any =length[j] SCREAMING_SNAKE_CASE__ : List[str] =j # create that string SCREAMING_SNAKE_CASE__ : List[Any] =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' from math import isqrt def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =[True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, UpperCamelCase__, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Any =False return [i for i in range(2, UpperCamelCase__ ) if is_prime[i]] def _a( UpperCamelCase__ : int = 1_0**8 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =calculate_prime_numbers(max_number // 2 ) SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : Optional[int] =len(UpperCamelCase__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
665
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = SpeechTaTokenizer snake_case_ = False snake_case_ = True def __magic_name__ ( self : int ) -> Any: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : Optional[Any] =SpeechTaTokenizer(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =AddedToken('''<mask>''' , lstrip=__lowercase , rstrip=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Dict , __lowercase : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] ='''this is a test''' SCREAMING_SNAKE_CASE__ : int ='''this is a test''' return input_text, output_text def __magic_name__ ( self : List[Any] , __lowercase : int , __lowercase : Optional[Any]=False , __lowercase : Union[str, Any]=20 , __lowercase : Any=5 ) -> Any: SCREAMING_SNAKE_CASE__ : int =self.get_input_output_texts(__lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) return text, ids def __magic_name__ ( self : Dict ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] ='''<pad>''' SCREAMING_SNAKE_CASE__ : Optional[int] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def __magic_name__ ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[Any] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(__lowercase ) , 81 ) def __magic_name__ ( self : Dict ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def __magic_name__ ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ : str =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : Any =len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) SCREAMING_SNAKE_CASE__ : int =['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.add_tokens(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] =len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size + len(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) SCREAMING_SNAKE_CASE__ : str ={'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} SCREAMING_SNAKE_CASE__ : int =tokenizer.add_special_tokens(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : int =len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size_a + len(__lowercase ) ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __magic_name__ ( self : Optional[Any] ) -> Any: pass def __magic_name__ ( self : List[str] ) -> List[Any]: pass def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Dict =self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(__lowercase , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =tokenizer.convert_tokens_to_ids(__lowercase ) # fmt: off self.assertListEqual(__lowercase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def __magic_name__ ( self : List[str] ) -> List[str]: # Use custom sequence because this tokenizer does not handle numbers. SCREAMING_SNAKE_CASE__ : List[Any] =[ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off SCREAMING_SNAKE_CASE__ : str ={ '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=__lowercase , )
701
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = SpeechTaTokenizer snake_case_ = False snake_case_ = True def __magic_name__ ( self : int ) -> Any: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : Optional[Any] =SpeechTaTokenizer(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =AddedToken('''<mask>''' , lstrip=__lowercase , rstrip=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Dict , __lowercase : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] ='''this is a test''' SCREAMING_SNAKE_CASE__ : int ='''this is a test''' return input_text, output_text def __magic_name__ ( self : List[Any] , __lowercase : int , __lowercase : Optional[Any]=False , __lowercase : Union[str, Any]=20 , __lowercase : Any=5 ) -> Any: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =self.get_input_output_texts(__lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) return text, ids def __magic_name__ ( self : Dict ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] ='''<pad>''' SCREAMING_SNAKE_CASE__ : Optional[int] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def __magic_name__ ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[Any] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(__lowercase ) , 81 ) def __magic_name__ ( self : Dict ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def __magic_name__ ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ : str =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : Any =len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) SCREAMING_SNAKE_CASE__ : int =['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.add_tokens(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] =len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size + len(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) SCREAMING_SNAKE_CASE__ : str ={'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} SCREAMING_SNAKE_CASE__ : int =tokenizer.add_special_tokens(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : int =len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size_a + len(__lowercase ) ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __magic_name__ ( self : Optional[Any] ) -> Any: pass def __magic_name__ ( self : List[str] ) -> List[Any]: pass def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Dict =self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(__lowercase , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =tokenizer.convert_tokens_to_ids(__lowercase ) # fmt: off self.assertListEqual(__lowercase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def __magic_name__ ( self : List[str] ) -> List[str]: # Use custom sequence because this tokenizer does not handle numbers. SCREAMING_SNAKE_CASE__ : List[Any] =[ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off SCREAMING_SNAKE_CASE__ : str ={ '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=__lowercase , )
665
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """audio-spectrogram-transformer""" def __init__( self : List[Any] , __lowercase : Tuple=7_68 , __lowercase : Union[str, Any]=12 , __lowercase : int=12 , __lowercase : Union[str, Any]=30_72 , __lowercase : List[str]="gelu" , __lowercase : Union[str, Any]=0.0 , __lowercase : int=0.0 , __lowercase : Optional[int]=0.02 , __lowercase : Union[str, Any]=1e-12 , __lowercase : Dict=16 , __lowercase : Tuple=True , __lowercase : Union[str, Any]=10 , __lowercase : Any=10 , __lowercase : str=10_24 , __lowercase : Dict=1_28 , **__lowercase : Dict , ) -> int: super().__init__(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =hidden_size SCREAMING_SNAKE_CASE__ : Any =num_hidden_layers SCREAMING_SNAKE_CASE__ : int =num_attention_heads SCREAMING_SNAKE_CASE__ : Dict =intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] =hidden_act SCREAMING_SNAKE_CASE__ : Dict =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : str =initializer_range SCREAMING_SNAKE_CASE__ : List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE__ : int =patch_size SCREAMING_SNAKE_CASE__ : Any =qkv_bias SCREAMING_SNAKE_CASE__ : Union[str, Any] =frequency_stride SCREAMING_SNAKE_CASE__ : int =time_stride SCREAMING_SNAKE_CASE__ : str =max_length SCREAMING_SNAKE_CASE__ : List[Any] =num_mel_bins
702
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __lowercase : Optional[int] , __lowercase : str=13 , __lowercase : int=10 , __lowercase : List[Any]=3 , __lowercase : List[str]=2 , __lowercase : int=2 , __lowercase : Dict=True , __lowercase : Optional[Any]=True , __lowercase : int=32 , __lowercase : List[Any]=5 , __lowercase : Union[str, Any]=4 , __lowercase : Any=37 , __lowercase : Optional[Any]="gelu" , __lowercase : Union[str, Any]=0.1 , __lowercase : Tuple=0.1 , __lowercase : Dict=10 , __lowercase : int=0.02 , __lowercase : str="divided_space_time" , __lowercase : Union[str, Any]=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int =parent SCREAMING_SNAKE_CASE__ : List[str] =batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =image_size SCREAMING_SNAKE_CASE__ : List[Any] =num_channels SCREAMING_SNAKE_CASE__ : int =patch_size SCREAMING_SNAKE_CASE__ : Tuple =num_frames SCREAMING_SNAKE_CASE__ : List[Any] =is_training SCREAMING_SNAKE_CASE__ : List[str] =use_labels SCREAMING_SNAKE_CASE__ : Optional[Any] =hidden_size SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : int =num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple =intermediate_size SCREAMING_SNAKE_CASE__ : List[str] =hidden_act SCREAMING_SNAKE_CASE__ : Dict =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] =attention_type SCREAMING_SNAKE_CASE__ : Union[str, Any] =initializer_range SCREAMING_SNAKE_CASE__ : Any =scope SCREAMING_SNAKE_CASE__ : int =num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token SCREAMING_SNAKE_CASE__ : List[str] =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : str =(num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE__ : Any =ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : int =self.get_config() return config, pixel_values, labels def __magic_name__ ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] =TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) SCREAMING_SNAKE_CASE__ : List[Any] =self.num_labels return config def __magic_name__ ( self : int , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ : Tuple =TimesformerModel(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] =model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : List[str] , __lowercase : str , __lowercase : Tuple , __lowercase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : str =TimesformerForVideoClassification(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(__lowercase ) # verify the logits shape SCREAMING_SNAKE_CASE__ : Tuple =torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __lowercase ) def __magic_name__ ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =config_and_inputs SCREAMING_SNAKE_CASE__ : Any ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): snake_case_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () snake_case_ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def __magic_name__ ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Dict =TimesformerModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] =ConfigTester( self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def __magic_name__ ( self : str , __lowercase : Dict , __lowercase : str , __lowercase : Optional[int]=False ) -> int: SCREAMING_SNAKE_CASE__ : str =copy.deepcopy(__lowercase ) if return_labels: if model_class in get_values(__lowercase ): SCREAMING_SNAKE_CASE__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) return inputs_dict def __magic_name__ ( self : List[Any] ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ) -> Optional[int]: pass def __magic_name__ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str =model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Any =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def __magic_name__ ( self : Any ) -> Any: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] =model_class(__lowercase ) SCREAMING_SNAKE_CASE__ : str =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : List[str] =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Dict =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def __magic_name__ ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __magic_name__ ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__lowercase ) @slow def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =TimesformerModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> List[str]: if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[Any] =True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] =self.model_tester.seq_length SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.model_tester.num_frames SCREAMING_SNAKE_CASE__ : Optional[Any] =True SCREAMING_SNAKE_CASE__ : str =False SCREAMING_SNAKE_CASE__ : Tuple =True SCREAMING_SNAKE_CASE__ : Dict =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] =model(**self._prepare_for_class(__lowercase , __lowercase ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE__ : List[Any] =True SCREAMING_SNAKE_CASE__ : List[str] =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any =model(**self._prepare_for_class(__lowercase , __lowercase ) ) SCREAMING_SNAKE_CASE__ : List[Any] =outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) SCREAMING_SNAKE_CASE__ : Optional[int] =len(__lowercase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE__ : Optional[int] =True SCREAMING_SNAKE_CASE__ : Union[str, Any] =True SCREAMING_SNAKE_CASE__ : Optional[Any] =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(**self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(out_len + 1 , len(__lowercase ) ) SCREAMING_SNAKE_CASE__ : List[str] =outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self : Tuple ) -> List[Any]: def check_hidden_states_output(__lowercase : Tuple , __lowercase : Dict , __lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : List[Any] =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : int =model(**self._prepare_for_class(__lowercase , __lowercase ) ) SCREAMING_SNAKE_CASE__ : List[Any] =outputs.hidden_states SCREAMING_SNAKE_CASE__ : Tuple =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowercase ) , __lowercase ) SCREAMING_SNAKE_CASE__ : int =self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Tuple =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : List[str] =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) SCREAMING_SNAKE_CASE__ : Any =np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def __magic_name__ ( self : Any ) -> List[str]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int =TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =self.default_image_processor SCREAMING_SNAKE_CASE__ : Tuple =prepare_video() SCREAMING_SNAKE_CASE__ : Any =image_processor(video[:8] , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] =model(**__lowercase ) # verify the logits SCREAMING_SNAKE_CASE__ : List[str] =torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
665
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } a_ = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } a_ = {'facebook/blenderbot_small-90M': 5_1_2} def _a( UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =set() SCREAMING_SNAKE_CASE__ : Optional[Any] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ : List[Any] =char SCREAMING_SNAKE_CASE__ : Any =set(UpperCamelCase__ ) return pairs class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , __lowercase : List[str] , __lowercase : Dict , __lowercase : Optional[int]="__start__" , __lowercase : Union[str, Any]="__end__" , __lowercase : int="__unk__" , __lowercase : Union[str, Any]="__null__" , **__lowercase : Optional[Any] , ) -> int: super().__init__(unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , **__lowercase ) with open(__lowercase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE__ : Optional[int] =json.load(__lowercase ) SCREAMING_SNAKE_CASE__ : str ={v: k for k, v in self.encoder.items()} with open(__lowercase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ : Dict =merges_handle.read().split('''\n''' )[1:-1] SCREAMING_SNAKE_CASE__ : Tuple =[tuple(merge.split() ) for merge in merges] SCREAMING_SNAKE_CASE__ : Dict =dict(zip(__lowercase , range(len(__lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ : str ={} @property def __magic_name__ ( self : Union[str, Any] ) -> int: return len(self.encoder ) def __magic_name__ ( self : List[str] ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : Optional[Any] , __lowercase : str ) -> str: if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ : Dict =re.sub('''([.,!?()])''' , r''' \1''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =re.sub('''(\')''' , r''' \1 ''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =re.sub(r'''\s{2,}''' , ''' ''' , __lowercase ) if "\n" in token: SCREAMING_SNAKE_CASE__ : Any =token.replace('''\n''' , ''' __newln__''' ) SCREAMING_SNAKE_CASE__ : Dict =token.split(''' ''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =[] for token in tokens: if not len(__lowercase ): continue SCREAMING_SNAKE_CASE__ : Optional[int] =token.lower() SCREAMING_SNAKE_CASE__ : Optional[int] =tuple(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE__ : int =get_pairs(__lowercase ) if not pairs: words.append(__lowercase ) continue while True: SCREAMING_SNAKE_CASE__ : str =min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__ : Optional[int] =bigram SCREAMING_SNAKE_CASE__ : int =[] SCREAMING_SNAKE_CASE__ : str =0 while i < len(__lowercase ): try: SCREAMING_SNAKE_CASE__ : List[Any] =word.index(__lowercase , __lowercase ) new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ : List[str] =j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ : Any =tuple(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =new_word if len(__lowercase ) == 1: break else: SCREAMING_SNAKE_CASE__ : Dict =get_pairs(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict ='''@@ '''.join(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =word[:-4] SCREAMING_SNAKE_CASE__ : Any =word words.append(__lowercase ) return " ".join(__lowercase ) def __magic_name__ ( self : Tuple , __lowercase : str ) -> List[str]: SCREAMING_SNAKE_CASE__ : int =[] SCREAMING_SNAKE_CASE__ : str =re.findall(r'''\S+\n?''' , __lowercase ) for token in words: split_tokens.extend(list(self.bpe(__lowercase ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Optional[int] , __lowercase : str ) -> int: SCREAMING_SNAKE_CASE__ : Any =token.lower() return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : List[str] , __lowercase : int ) -> str: return self.decoder.get(__lowercase , self.unk_token ) def __magic_name__ ( self : str , __lowercase : List[str] ) -> str: SCREAMING_SNAKE_CASE__ : Union[str, Any] =''' '''.join(__lowercase ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , __lowercase : str , __lowercase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE__ : List[Any] =os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : int =os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '''\n''' ) SCREAMING_SNAKE_CASE__ : Dict =0 with open(__lowercase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =token_index writer.write(''' '''.join(__lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file
703
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } a_ = { 'bert-base-uncased': 5_1_2, 'bert-large-uncased': 5_1_2, 'bert-base-cased': 5_1_2, 'bert-large-cased': 5_1_2, 'bert-base-multilingual-uncased': 5_1_2, 'bert-base-multilingual-cased': 5_1_2, 'bert-base-chinese': 5_1_2, 'bert-base-german-cased': 5_1_2, 'bert-large-uncased-whole-word-masking': 5_1_2, 'bert-large-cased-whole-word-masking': 5_1_2, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_1_2, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_1_2, 'bert-base-cased-finetuned-mrpc': 5_1_2, 'bert-base-german-dbmdz-cased': 5_1_2, 'bert-base-german-dbmdz-uncased': 5_1_2, 'TurkuNLP/bert-base-finnish-cased-v1': 5_1_2, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_1_2, 'wietsedv/bert-base-dutch-cased': 5_1_2, } a_ = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = BertTokenizer def __init__( self : int , __lowercase : Union[str, Any]=None , __lowercase : Tuple=None , __lowercase : str=True , __lowercase : Optional[Any]="[UNK]" , __lowercase : Tuple="[SEP]" , __lowercase : Any="[PAD]" , __lowercase : List[Any]="[CLS]" , __lowercase : Union[str, Any]="[MASK]" , __lowercase : Tuple=True , __lowercase : str=None , **__lowercase : Any , ) -> Optional[Any]: super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) SCREAMING_SNAKE_CASE__ : str =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowercase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE__ : int =getattr(__lowercase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ : Any =do_lower_case SCREAMING_SNAKE_CASE__ : Any =strip_accents SCREAMING_SNAKE_CASE__ : Dict =tokenize_chinese_chars SCREAMING_SNAKE_CASE__ : Union[str, Any] =normalizer_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =do_lower_case def __magic_name__ ( self : int , __lowercase : Optional[Any] , __lowercase : Union[str, Any]=None ) -> int: SCREAMING_SNAKE_CASE__ : Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ : List[str] =[self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self : List[Any] , __lowercase : str , __lowercase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ : Optional[int] =self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
665
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """data2vec-vision""" def __init__( self : Tuple , __lowercase : str=7_68 , __lowercase : Tuple=12 , __lowercase : Tuple=12 , __lowercase : Optional[int]=30_72 , __lowercase : Any="gelu" , __lowercase : List[Any]=0.0 , __lowercase : Dict=0.0 , __lowercase : str=0.02 , __lowercase : List[str]=1e-12 , __lowercase : Tuple=2_24 , __lowercase : Dict=16 , __lowercase : int=3 , __lowercase : Dict=False , __lowercase : Optional[Any]=False , __lowercase : List[str]=False , __lowercase : Optional[Any]=False , __lowercase : Tuple=0.1 , __lowercase : int=0.1 , __lowercase : List[Any]=True , __lowercase : List[Any]=[3, 5, 7, 11] , __lowercase : Any=[1, 2, 3, 6] , __lowercase : Dict=True , __lowercase : Optional[int]=0.4 , __lowercase : Optional[Any]=2_56 , __lowercase : Tuple=1 , __lowercase : Optional[Any]=False , __lowercase : int=2_55 , **__lowercase : Any , ) -> List[str]: super().__init__(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] =num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] =num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] =intermediate_size SCREAMING_SNAKE_CASE__ : Any =hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : str =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] =initializer_range SCREAMING_SNAKE_CASE__ : int =layer_norm_eps SCREAMING_SNAKE_CASE__ : Dict =image_size SCREAMING_SNAKE_CASE__ : List[Any] =patch_size SCREAMING_SNAKE_CASE__ : List[Any] =num_channels SCREAMING_SNAKE_CASE__ : List[Any] =use_mask_token SCREAMING_SNAKE_CASE__ : List[str] =use_absolute_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] =use_relative_position_bias SCREAMING_SNAKE_CASE__ : List[Any] =use_shared_relative_position_bias SCREAMING_SNAKE_CASE__ : str =layer_scale_init_value SCREAMING_SNAKE_CASE__ : Optional[int] =drop_path_rate SCREAMING_SNAKE_CASE__ : Union[str, Any] =use_mean_pooling # decode head attributes (semantic segmentation) SCREAMING_SNAKE_CASE__ : Dict =out_indices SCREAMING_SNAKE_CASE__ : int =pool_scales # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE__ : Union[str, Any] =use_auxiliary_head SCREAMING_SNAKE_CASE__ : str =auxiliary_loss_weight SCREAMING_SNAKE_CASE__ : Optional[int] =auxiliary_channels SCREAMING_SNAKE_CASE__ : Any =auxiliary_num_convs SCREAMING_SNAKE_CASE__ : List[Any] =auxiliary_concat_input SCREAMING_SNAKE_CASE__ : List[str] =semantic_loss_ignore_index class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = version.parse("""1.11""" ) @property def __magic_name__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __magic_name__ ( self : List[str] ) -> float: return 1e-4
704
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters a_ = False a_ = False def _a( UpperCamelCase__ : Namespace ): '''simple docstring''' return TrainCommand(UpperCamelCase__ ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): @staticmethod def __magic_name__ ( __lowercase : ArgumentParser ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] =parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' , type=__lowercase , required=__lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=__lowercase , default=0 , help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' , type=__lowercase , default=1 , help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' , type=__lowercase , default=2 , help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' , type=__lowercase , default='''''' , help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' , type=__lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=__lowercase , default='''./''' , help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' , type=__lowercase , default='''text_classification''' , help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' , type=__lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' , type=__lowercase , default=32 , help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' , type=__lowercase , default=64 , help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' , type=__lowercase , default=3e-5 , help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' , type=__lowercase , default=1e-08 , help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=__lowercase ) def __init__( self : Tuple , __lowercase : Namespace ) -> List[str]: SCREAMING_SNAKE_CASE__ : Tuple =logging.get_logger('''transformers-cli/training''' ) SCREAMING_SNAKE_CASE__ : int ='''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =args.output SCREAMING_SNAKE_CASE__ : str =args.column_label SCREAMING_SNAKE_CASE__ : List[Any] =args.column_text SCREAMING_SNAKE_CASE__ : Tuple =args.column_id self.logger.info(F"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": SCREAMING_SNAKE_CASE__ : List[str] =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"Loading dataset from {args.train_data}" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =None if args.validation_data: self.logger.info(F"Loading validation dataset from {args.validation_data}" ) SCREAMING_SNAKE_CASE__ : List[Any] =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =args.validation_split SCREAMING_SNAKE_CASE__ : List[Any] =args.train_batch_size SCREAMING_SNAKE_CASE__ : Any =args.valid_batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =args.learning_rate SCREAMING_SNAKE_CASE__ : int =args.adam_epsilon def __magic_name__ ( self : Any ) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def __magic_name__ ( self : Optional[int] ) -> Tuple: raise NotImplementedError def __magic_name__ ( self : Dict ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
665
0
'''simple docstring''' def _a( UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =[False] * len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =[-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : List[Any], UpperCamelCase__ : str ): SCREAMING_SNAKE_CASE__ : Tuple =True SCREAMING_SNAKE_CASE__ : Optional[Any] =c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__, 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__, 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowerCAmelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
705
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = KandinskyVaaImgaImgPipeline snake_case_ = ["""image_embeds""", """negative_image_embeds""", """image"""] snake_case_ = [ """image_embeds""", """negative_image_embeds""", """image""", ] snake_case_ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] snake_case_ = False @property def __magic_name__ ( self : List[str] ) -> Tuple: return 32 @property def __magic_name__ ( self : List[str] ) -> str: return 32 @property def __magic_name__ ( self : Any ) -> Optional[int]: return self.time_input_dim @property def __magic_name__ ( self : List[Any] ) -> int: return self.time_input_dim * 4 @property def __magic_name__ ( self : Tuple ) -> Optional[int]: return 1_00 @property def __magic_name__ ( self : Union[str, Any] ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE__ : Optional[int] =UNetaDConditionModel(**__lowercase ) return model @property def __magic_name__ ( self : Dict ) -> Any: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __magic_name__ ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] =VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[str] =self.dummy_unet SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_movq SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''num_train_timesteps''': 10_00, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE__ : str =DDIMScheduler(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __magic_name__ ( self : str , __lowercase : Optional[Any] , __lowercase : Any=0 ) -> int: SCREAMING_SNAKE_CASE__ : Optional[int] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowercase ) ).to(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowercase ) # create init_image SCREAMING_SNAKE_CASE__ : Optional[Any] =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ : Any =Image.fromarray(np.uinta(__lowercase ) ).convert('''RGB''' ).resize((2_56, 2_56) ) if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : Dict =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Tuple =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : str ={ '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[Any] ='''cpu''' SCREAMING_SNAKE_CASE__ : Tuple =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Dict =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =pipe(**self.get_dummy_inputs(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple =output.images SCREAMING_SNAKE_CASE__ : Union[str, Any] =pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] SCREAMING_SNAKE_CASE__ : List[Any] =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : Tuple =np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : int ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ : str =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE__ : List[Any] ='''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE__ : Optional[int] =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Dict =pipeline.to(__lowercase ) pipeline.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] =pipe_prior( __lowercase , generator=__lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE__ : List[Any] =pipeline( image=__lowercase , image_embeds=__lowercase , negative_image_embeds=__lowercase , generator=__lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : int =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
665
0
'''simple docstring''' def _a( UpperCamelCase__ : Optional[int], UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =0 SCREAMING_SNAKE_CASE__ : Union[str, Any] =len(UpperCamelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None SCREAMING_SNAKE_CASE__ : Union[str, Any] =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None SCREAMING_SNAKE_CASE__ : Optional[int] =sorted_collection[point] if current_item == item: return point else: if point < left: SCREAMING_SNAKE_CASE__ : Union[str, Any] =left SCREAMING_SNAKE_CASE__ : Optional[Any] =point elif point > right: SCREAMING_SNAKE_CASE__ : Optional[int] =right SCREAMING_SNAKE_CASE__ : Tuple =point else: if item < current_item: SCREAMING_SNAKE_CASE__ : str =point - 1 else: SCREAMING_SNAKE_CASE__ : Tuple =point + 1 return None def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None SCREAMING_SNAKE_CASE__ : Dict =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) elif point > right: return interpolation_search_by_recursion(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, point - 1 ) else: return interpolation_search_by_recursion( UpperCamelCase__, UpperCamelCase__, point + 1, UpperCamelCase__ ) def _a( UpperCamelCase__ : Dict ): '''simple docstring''' if collection != sorted(UpperCamelCase__ ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys a_ = 0 if debug == 1: a_ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') a_ = 6_7 a_ = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('Not found')
706
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a_ = TypeVar('T') class __SCREAMING_SNAKE_CASE ( Generic[T] ): snake_case_ = 42 # Cache store of keys snake_case_ = 42 # References of the keys in cache snake_case_ = 10 # Maximum capacity of cache def __init__( self : Dict , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ : Any =deque() SCREAMING_SNAKE_CASE__ : str =set() if not n: SCREAMING_SNAKE_CASE__ : Optional[Any] =sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] =n def __magic_name__ ( self : List[str] , __lowercase : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: SCREAMING_SNAKE_CASE__ : int =self.dq_store.pop() self.key_reference.remove(__lowercase ) else: self.dq_store.remove(__lowercase ) self.dq_store.appendleft(__lowercase ) self.key_reference.add(__lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> None: for k in self.dq_store: print(__lowercase ) def __repr__( self : List[Any] ) -> str: return F"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}" if __name__ == "__main__": import doctest doctest.testmod() a_ = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
665
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split a_ = datasets.load_iris() a_ = np.array(data['data']) a_ = np.array(data['target']) a_ = data['target_names'] a_ , a_ , a_ , a_ = train_test_split(X, y) def _a( UpperCamelCase__ : Any, UpperCamelCase__ : List[Any] ): '''simple docstring''' return np.linalg.norm(np.array(UpperCamelCase__ ) - np.array(UpperCamelCase__ ) ) def _a( UpperCamelCase__ : str, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Any=5 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =zip(UpperCamelCase__, UpperCamelCase__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE__ : Tuple =[] for data_point in data: SCREAMING_SNAKE_CASE__ : str =euclidean_distance(data_point[0], UpperCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE__ : Optional[Any] =[i[1] for i in sorted(UpperCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE__ : Any =Counter(UpperCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
707
'''simple docstring''' from __future__ import annotations from collections.abc import Callable a_ = list[list[float | int]] def _a( UpperCamelCase__ : Matrix, UpperCamelCase__ : Matrix ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Matrix =[[0 for _ in range(size + 1 )] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : float for row in range(UpperCamelCase__ ): for col in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Tuple =matrix[row][col] SCREAMING_SNAKE_CASE__ : Optional[int] =vector[row][0] SCREAMING_SNAKE_CASE__ : Any =0 SCREAMING_SNAKE_CASE__ : Union[str, Any] =0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE__ : Any =max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCamelCase__, UpperCamelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =augmented[pivot_row], augmented[row] for rowa in range(row + 1, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE__ : Tuple =0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, UpperCamelCase__ ): for row in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =augmented[row][col] / augmented[col][col] for cola in range(UpperCamelCase__, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 1_0 )] for row in range(UpperCamelCase__ ) ] def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Matrix =[[0 for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Matrix =[[0] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Matrix SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int for x_val, y_val in enumerate(UpperCamelCase__ ): for col in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] =(x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE__ : Dict =y_val SCREAMING_SNAKE_CASE__ : Optional[int] =solve(UpperCamelCase__, UpperCamelCase__ ) def interpolated_func(UpperCamelCase__ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCamelCase__ ) ) return interpolated_func def _a( UpperCamelCase__ : int ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def _a( UpperCamelCase__ : Callable[[int], int] = question_function, UpperCamelCase__ : int = 1_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : list[int] =[func(UpperCamelCase__ ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE__ : list[Callable[[int], int]] =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : Callable[[int], int] SCREAMING_SNAKE_CASE__ : int for poly in polynomials: SCREAMING_SNAKE_CASE__ : Any =1 while func(UpperCamelCase__ ) == poly(UpperCamelCase__ ): x_val += 1 ret += poly(UpperCamelCase__ ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
665
0
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def _a( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =torch.load(UpperCamelCase__, map_location='''cpu''' ) if "model" in sd.keys(): SCREAMING_SNAKE_CASE__ : int =torch.load(UpperCamelCase__, map_location='''cpu''' )['''model'''] # pop unnecessary weights SCREAMING_SNAKE_CASE__ : int =[ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple ={ '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: SCREAMING_SNAKE_CASE__ : Optional[int] =sd.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: SCREAMING_SNAKE_CASE__ : Any =sd[key] # We split QKV in separate Q,K,V SCREAMING_SNAKE_CASE__ : List[Any] =key.replace('''.qkv_proj.''', '''.q_proj.''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =key.replace('''.qkv_proj.''', '''.k_proj.''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =key.replace('''.qkv_proj.''', '''.v_proj.''' ) SCREAMING_SNAKE_CASE__ : List[str] =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 SCREAMING_SNAKE_CASE__ : List[Any] =torch.split(UpperCamelCase__, depth // 3, dim=0 ) SCREAMING_SNAKE_CASE__ : Any =q SCREAMING_SNAKE_CASE__ : Any =k SCREAMING_SNAKE_CASE__ : Optional[int] =v del sd[key] return sd @torch.no_grad() def _a( UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Union[str, Any]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =load_checkpoint(UpperCamelCase__ ) if config is not None: SCREAMING_SNAKE_CASE__ : Tuple =OPTConfig.from_pretrained(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ : str =OPTConfig() SCREAMING_SNAKE_CASE__ : Dict =OPTModel(UpperCamelCase__ ).half().eval() model.load_state_dict(UpperCamelCase__ ) # Check results Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') a_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
708
'''simple docstring''' def _a( UpperCamelCase__ : Optional[int], UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =0 SCREAMING_SNAKE_CASE__ : Union[str, Any] =len(UpperCamelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None SCREAMING_SNAKE_CASE__ : Union[str, Any] =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None SCREAMING_SNAKE_CASE__ : Optional[int] =sorted_collection[point] if current_item == item: return point else: if point < left: SCREAMING_SNAKE_CASE__ : Union[str, Any] =left SCREAMING_SNAKE_CASE__ : Optional[Any] =point elif point > right: SCREAMING_SNAKE_CASE__ : Optional[int] =right SCREAMING_SNAKE_CASE__ : Tuple =point else: if item < current_item: SCREAMING_SNAKE_CASE__ : str =point - 1 else: SCREAMING_SNAKE_CASE__ : Tuple =point + 1 return None def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None SCREAMING_SNAKE_CASE__ : Dict =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) elif point > right: return interpolation_search_by_recursion(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, point - 1 ) else: return interpolation_search_by_recursion( UpperCamelCase__, UpperCamelCase__, point + 1, UpperCamelCase__ ) def _a( UpperCamelCase__ : Dict ): '''simple docstring''' if collection != sorted(UpperCamelCase__ ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys a_ = 0 if debug == 1: a_ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') a_ = 6_7 a_ = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('Not found')
665
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ConditionalDetrFeatureExtractor'] a_ = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : @staticmethod def __magic_name__ ( *__lowercase : int , **__lowercase : Optional[Any] ) -> Optional[Any]: pass @is_pipeline_test @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @require_torch def __magic_name__ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] =pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) SCREAMING_SNAKE_CASE__ : List[str] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : Any =image_classifier(__lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowercase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) SCREAMING_SNAKE_CASE__ : int =image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], ] , ) @require_tf def __magic_name__ ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] =pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) SCREAMING_SNAKE_CASE__ : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : Tuple =image_classifier(__lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowercase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) SCREAMING_SNAKE_CASE__ : List[Any] =image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], ] , ) @slow @require_torch def __magic_name__ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] =pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE__ : Any =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : List[str] =image_classifier(__lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __magic_name__ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ : str =pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE__ : Optional[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : Any =image_classifier(__lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE__ : List[Any] =image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
665
0
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase ): @register_to_config def __init__( self : Optional[int] , *, __lowercase : int = 4 , __lowercase : int = 7_68 , __lowercase : int , __lowercase : Dict , ) -> Tuple: super().__init__() SCREAMING_SNAKE_CASE__ : List[Any] =nn.Parameter(torch.zeros(__lowercase ) ) # parameters for additional clip time embeddings SCREAMING_SNAKE_CASE__ : Dict =nn.Linear(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =nn.Linear(__lowercase , __lowercase ) # parameters for encoder hidden states SCREAMING_SNAKE_CASE__ : Tuple =clip_extra_context_tokens SCREAMING_SNAKE_CASE__ : str =nn.Linear( __lowercase , self.clip_extra_context_tokens * cross_attention_dim ) SCREAMING_SNAKE_CASE__ : List[str] =nn.Linear(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =nn.LayerNorm(__lowercase ) def __magic_name__ ( self : Optional[int] , *, __lowercase : Optional[int] , __lowercase : Any , __lowercase : str , __lowercase : List[Any] ) -> Tuple: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings SCREAMING_SNAKE_CASE__ : List[Any] =image_embeddings.shape[0] SCREAMING_SNAKE_CASE__ : Any =self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Any =classifier_free_guidance_embeddings.expand( __lowercase , -1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] SCREAMING_SNAKE_CASE__ : Dict =prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... SCREAMING_SNAKE_CASE__ : Optional[int] =self.embedding_proj(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.clip_image_embeddings_project_to_time_embeddings(__lowercase ) SCREAMING_SNAKE_CASE__ : str =time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" SCREAMING_SNAKE_CASE__ : Tuple =self.clip_extra_context_tokens_proj(__lowercase ) SCREAMING_SNAKE_CASE__ : str =clip_extra_context_tokens.reshape(__lowercase , -1 , self.clip_extra_context_tokens ) SCREAMING_SNAKE_CASE__ : Optional[Any] =clip_extra_context_tokens.permute(0 , 2 , 1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =self.encoder_hidden_states_proj(__lowercase ) SCREAMING_SNAKE_CASE__ : str =self.text_encoder_hidden_states_norm(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
710
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = JukeboxTokenizer snake_case_ = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def __magic_name__ ( self : Optional[int] ) -> str: import torch SCREAMING_SNAKE_CASE__ : List[str] =JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) SCREAMING_SNAKE_CASE__ : str =tokenizer(**self.metas )['''input_ids'''] # fmt: off SCREAMING_SNAKE_CASE__ : str =[ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __magic_name__ ( self : Any ) -> List[str]: import torch SCREAMING_SNAKE_CASE__ : int =JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer(**self.metas )['''input_ids'''] # fmt: off SCREAMING_SNAKE_CASE__ : Optional[int] =[ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
665
0
'''simple docstring''' from manim import * class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __magic_name__ ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] =Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE__ : int =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE__ : Optional[int] =Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE__ : int =[mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Union[str, Any] =[mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Tuple =VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : List[Any] =VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : int =VGroup(__lowercase , __lowercase ).arrange(__lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : str =Text('''CPU''' , font_size=24 ) SCREAMING_SNAKE_CASE__ : Any =Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =[mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE__ : Dict =VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =Text('''GPU''' , font_size=24 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) gpu.move_to([-1, -1, 0] ) self.add(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =[mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Dict =VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =Text('''Model''' , font_size=24 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) model.move_to([3, -1.0, 0] ) self.add(__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =[] SCREAMING_SNAKE_CASE__ : Tuple =[] for i, rect in enumerate(__lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] =fill.copy().set_fill(__lowercase , opacity=0.8 ) target.move_to(__lowercase ) model_arr.append(__lowercase ) SCREAMING_SNAKE_CASE__ : str =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__lowercase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__lowercase ) self.add(*__lowercase , *__lowercase ) SCREAMING_SNAKE_CASE__ : int =[meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : List[Any] =[meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Optional[Any] =VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : Optional[int] =VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : List[str] =VGroup(__lowercase , __lowercase ).arrange(__lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : int =Text('''Disk''' , font_size=24 ) SCREAMING_SNAKE_CASE__ : Any =Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) disk.move_to([-4, -1.25, 0] ) self.add(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Any =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowercase ) SCREAMING_SNAKE_CASE__ : str =MarkupText( F"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =Square(0.3 ) input.set_fill(__lowercase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , __lowercase , buff=0.5 ) self.play(Write(__lowercase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=__lowercase , buff=0.02 ) self.play(MoveToTarget(__lowercase ) ) self.play(FadeOut(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] =Arrow(start=__lowercase , end=__lowercase , color=__lowercase , buff=0.5 ) a.next_to(model_arr[0].get_left() , __lowercase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) SCREAMING_SNAKE_CASE__ : Any =MarkupText( F"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase , run_time=3 ) ) SCREAMING_SNAKE_CASE__ : Tuple ={'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(__lowercase ) , Circumscribe(model_arr[0] , color=__lowercase , **__lowercase ) , Circumscribe(model_cpu_arr[0] , color=__lowercase , **__lowercase ) , Circumscribe(gpu_rect[0] , color=__lowercase , **__lowercase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) SCREAMING_SNAKE_CASE__ : Optional[int] =a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , __lowercase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =AnimationGroup( FadeOut(__lowercase , run_time=0.5 ) , MoveToTarget(__lowercase , run_time=0.5 ) , FadeIn(__lowercase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(__lowercase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: SCREAMING_SNAKE_CASE__ : Optional[int] =0.7 self.play( Circumscribe(model_arr[i] , **__lowercase ) , Circumscribe(cpu_left_col_base[i] , **__lowercase ) , Circumscribe(cpu_left_col_base[i + 1] , color=__lowercase , **__lowercase ) , Circumscribe(gpu_rect[0] , color=__lowercase , **__lowercase ) , Circumscribe(model_arr[i + 1] , color=__lowercase , **__lowercase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=__lowercase , **__lowercase ) , Circumscribe(cpu_left_col_base[-1] , color=__lowercase , **__lowercase ) , Circumscribe(gpu_rect[0] , color=__lowercase , **__lowercase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) SCREAMING_SNAKE_CASE__ : List[Any] =a_c SCREAMING_SNAKE_CASE__ : Union[str, Any] =a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(__lowercase ) , FadeOut(__lowercase , run_time=0.5 ) , ) SCREAMING_SNAKE_CASE__ : str =MarkupText(F"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase , run_time=3 ) , MoveToTarget(__lowercase ) ) self.wait()
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """gpt_neox""" def __init__( self : List[Any] , __lowercase : Union[str, Any]=5_04_32 , __lowercase : int=61_44 , __lowercase : Tuple=44 , __lowercase : List[str]=64 , __lowercase : str=2_45_76 , __lowercase : Dict="gelu" , __lowercase : Tuple=0.25 , __lowercase : Tuple=1_00_00 , __lowercase : Tuple=0.0 , __lowercase : str=0.0 , __lowercase : List[Any]=0.1 , __lowercase : Dict=20_48 , __lowercase : Any=0.02 , __lowercase : Dict=1e-5 , __lowercase : List[Any]=True , __lowercase : str=0 , __lowercase : Optional[Any]=2 , __lowercase : Tuple=False , __lowercase : List[Any]=True , __lowercase : Optional[Any]=None , **__lowercase : Any , ) -> Dict: super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : Any =hidden_size SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : Any =num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] =intermediate_size SCREAMING_SNAKE_CASE__ : Dict =hidden_act SCREAMING_SNAKE_CASE__ : str =rotary_pct SCREAMING_SNAKE_CASE__ : Optional[Any] =rotary_emb_base SCREAMING_SNAKE_CASE__ : List[Any] =attention_dropout SCREAMING_SNAKE_CASE__ : List[Any] =hidden_dropout SCREAMING_SNAKE_CASE__ : str =classifier_dropout SCREAMING_SNAKE_CASE__ : Any =initializer_range SCREAMING_SNAKE_CASE__ : Dict =layer_norm_eps SCREAMING_SNAKE_CASE__ : Any =use_cache SCREAMING_SNAKE_CASE__ : Tuple =tie_word_embeddings SCREAMING_SNAKE_CASE__ : Tuple =use_parallel_residual SCREAMING_SNAKE_CASE__ : Union[str, Any] =rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowercase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE__ : int =self.rope_scaling.get('''type''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.rope_scaling.get('''factor''' , __lowercase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowercase , __lowercase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
665
0
'''simple docstring''' from __future__ import annotations import math def _a( UpperCamelCase__ : float, UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =u for i in range(1, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] =temp * (u - i) return temp def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =int(input('''enter the numbers of values: ''' ) ) SCREAMING_SNAKE_CASE__ : list[list[float]] =[] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =0 print('''enter the values of parameters in a list: ''' ) SCREAMING_SNAKE_CASE__ : int =list(map(UpperCamelCase__, input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Any =float(input() ) SCREAMING_SNAKE_CASE__ : int =int(input('''enter the value to interpolate: ''' ) ) SCREAMING_SNAKE_CASE__ : Any =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1, UpperCamelCase__ ): for j in range(n - i ): SCREAMING_SNAKE_CASE__ : List[str] =y[j + 1][i - 1] - y[j][i - 1] SCREAMING_SNAKE_CASE__ : Tuple =y[0][0] for i in range(1, UpperCamelCase__ ): summ += (ucal(UpperCamelCase__, UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"the value at {value} is {summ}" ) if __name__ == "__main__": main()
712
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
665
0
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a_ = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def _a( UpperCamelCase__ : Any, UpperCamelCase__ : List[Any]=None ): '''simple docstring''' require_version(deps[pkg], UpperCamelCase__ )
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _a( UpperCamelCase__ : NDArray[floataa], UpperCamelCase__ : NDArray[floataa], UpperCamelCase__ : list[int], UpperCamelCase__ : int, ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =coefficient_matrix.shape SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE__ : Any =f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase__ ) if colsa != 1: SCREAMING_SNAKE_CASE__ : str =f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase__ ) if rowsa != rowsa: SCREAMING_SNAKE_CASE__ : str =( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(UpperCamelCase__ ) if len(UpperCamelCase__ ) != rowsa: SCREAMING_SNAKE_CASE__ : Union[str, Any] =( '''Number of initial values must be equal to number of rows in coefficient ''' f"matrix but received {len(UpperCamelCase__ )} and {rowsa}" ) raise ValueError(UpperCamelCase__ ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) SCREAMING_SNAKE_CASE__ : NDArray[floataa] =np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =table.shape strictly_diagonally_dominant(UpperCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] =[] for row in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =0 for col in range(UpperCamelCase__ ): if col == row: SCREAMING_SNAKE_CASE__ : int =table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE__ : Any =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE__ : int =(temp + val) / denom new_val.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =new_val return [float(UpperCamelCase__ ) for i in new_val] def _a( UpperCamelCase__ : NDArray[floataa] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =table.shape SCREAMING_SNAKE_CASE__ : Any =True for i in range(0, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : int =0 for j in range(0, cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
665
0
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 a_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') a_ = get_tests_dir('fixtures/vocab.json') a_ = get_tests_dir('fixtures') class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def __magic_name__ ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] =0 def __magic_name__ ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(__lowercase , __lowercase ) def __magic_name__ ( self : str ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : int =WavaVecaConfig() SCREAMING_SNAKE_CASE__ : Tuple =AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : str =AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def __magic_name__ ( self : Optional[int] ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__lowercase , os.path.join(__lowercase , __lowercase ) ) copyfile(__lowercase , os.path.join(__lowercase , '''vocab.json''' ) ) SCREAMING_SNAKE_CASE__ : List[str] =AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def __magic_name__ ( self : Any ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[str] =WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ : str =AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) SCREAMING_SNAKE_CASE__ : List[Any] =WavaVecaProcessor(__lowercase , __lowercase ) # save in new folder processor.save_pretrained(__lowercase ) # drop `processor_class` in tokenizer with open(os.path.join(__lowercase , __lowercase ) , '''r''' ) as f: SCREAMING_SNAKE_CASE__ : str =json.load(__lowercase ) config_dict.pop('''processor_class''' ) with open(os.path.join(__lowercase , __lowercase ) , '''w''' ) as f: f.write(json.dumps(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] =AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def __magic_name__ ( self : Tuple ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Tuple =WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ : int =AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) SCREAMING_SNAKE_CASE__ : int =WavaVecaProcessor(__lowercase , __lowercase ) # save in new folder processor.save_pretrained(__lowercase ) # drop `processor_class` in feature extractor with open(os.path.join(__lowercase , __lowercase ) , '''r''' ) as f: SCREAMING_SNAKE_CASE__ : List[Any] =json.load(__lowercase ) config_dict.pop('''processor_class''' ) with open(os.path.join(__lowercase , __lowercase ) , '''w''' ) as f: f.write(json.dumps(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple =AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def __magic_name__ ( self : Optional[Any] ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : int =WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(__lowercase ) # copy relevant files copyfile(__lowercase , os.path.join(__lowercase , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(__lowercase , __lowercase ) , '''w''' ) as f: f.write('''{}''' ) SCREAMING_SNAKE_CASE__ : str =AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase ): SCREAMING_SNAKE_CASE__ : List[str] =AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowercase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) SCREAMING_SNAKE_CASE__ : Dict =processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ : List[str] =AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowercase , use_fast=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __magic_name__ ( self : str ) -> Union[str, Any]: try: AutoConfig.register('''custom''' , __lowercase ) AutoFeatureExtractor.register(__lowercase , __lowercase ) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase ) AutoProcessor.register(__lowercase , __lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): AutoProcessor.register(__lowercase , __lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE__ : Any =CustomFeatureExtractor.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : Any =os.path.join(__lowercase , '''vocab.txt''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =CustomTokenizer(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =CustomProcessor(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __magic_name__ ( self : str ) -> Dict: class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = False class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = False class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """AutoFeatureExtractor""" snake_case_ = """AutoTokenizer""" snake_case_ = False try: AutoConfig.register('''custom''' , __lowercase ) AutoFeatureExtractor.register(__lowercase , __lowercase ) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase ) AutoProcessor.register(__lowercase , __lowercase ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE__ : Tuple =AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE__ : Any =AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowercase ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE__ : str =AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowercase ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __magic_name__ ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ : Optional[int] =AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __magic_name__ ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[str] =AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def __magic_name__ ( cls : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[int] =TOKEN HfFolder.save_token(__lowercase ) @classmethod def __magic_name__ ( cls : List[str] ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __magic_name__ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ : Any =WavaVecaProcessor.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowercase , '''test-processor''' ) , push_to_hub=__lowercase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : int =WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowercase , getattr(new_processor.feature_extractor , __lowercase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __magic_name__ ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ : Any =WavaVecaProcessor.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowercase , '''test-processor-org''' ) , push_to_hub=__lowercase , use_auth_token=self._token , organization='''valid_org''' , ) SCREAMING_SNAKE_CASE__ : Any =WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowercase , getattr(new_processor.feature_extractor , __lowercase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __magic_name__ ( self : Union[str, Any] ) -> Dict: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE__ : Any =CustomFeatureExtractor.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : List[str] =os.path.join(__lowercase , '''vocab.txt''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : str =CustomTokenizer(__lowercase ) SCREAMING_SNAKE_CASE__ : int =CustomProcessor(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) SCREAMING_SNAKE_CASE__ : List[str] =Repository(__lowercase , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(__lowercase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) ) as f: SCREAMING_SNAKE_CASE__ : Union[str, Any] =json.load(__lowercase ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__lowercase , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowercase , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowercase , '''custom_processing.py''' ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE__ : Union[str, Any] =AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=__lowercase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
714
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _a( UpperCamelCase__ : str, UpperCamelCase__ : Tuple, UpperCamelCase__ : Any, UpperCamelCase__ : List[str], UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' with open(UpperCamelCase__ ) as metadata_file: SCREAMING_SNAKE_CASE__ : Optional[int] =json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =LukeConfig(use_entity_aware_attention=UpperCamelCase__, **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.load(UpperCamelCase__, map_location='''cpu''' )['''module'''] # Load the entity vocab file SCREAMING_SNAKE_CASE__ : List[str] =load_original_entity_vocab(UpperCamelCase__ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE__ : Optional[int] =max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE__ : Optional[int] =XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE__ : List[Any] =AddedToken('''<ent>''', lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =AddedToken('''<ent2>''', lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__, '''tokenizer_config.json''' ), '''r''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] =json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int ='''MLukeTokenizer''' with open(os.path.join(UpperCamelCase__, '''tokenizer_config.json''' ), '''w''' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__, MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ), '''w''' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =MLukeTokenizer.from_pretrained(UpperCamelCase__ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE__ : str =tokenizer.convert_tokens_to_ids(['''@'''] )[0] SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.convert_tokens_to_ids(['''#'''] )[0] SCREAMING_SNAKE_CASE__ : Dict =state_dict['''embeddings.word_embeddings.weight'''] SCREAMING_SNAKE_CASE__ : List[str] =word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Tuple =word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : str =torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE__ : Optional[Any] =state_dict[bias_name] SCREAMING_SNAKE_CASE__ : List[Any] =decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : str =decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : List[str] =torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE__ : Tuple =f"encoder.layer.{layer_index}.attention.self." SCREAMING_SNAKE_CASE__ : Optional[int] =state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ : Optional[int] =state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ : List[Any] =state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE__ : Any =state_dict['''entity_embeddings.entity_embeddings.weight'''] SCREAMING_SNAKE_CASE__ : Any =entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Any =torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE__ : Optional[int] =state_dict['''entity_predictions.bias'''] SCREAMING_SNAKE_CASE__ : Tuple =entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Any =torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE__ : int =LukeForMaskedLM(config=UpperCamelCase__ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) SCREAMING_SNAKE_CASE__ : Tuple =OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): SCREAMING_SNAKE_CASE__ : Optional[Any] =state_dict[key] else: SCREAMING_SNAKE_CASE__ : Any =state_dict[key] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] =model.load_state_dict(UpperCamelCase__, strict=UpperCamelCase__ ) if set(UpperCamelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(UpperCamelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE__ : Any =MLukeTokenizer.from_pretrained(UpperCamelCase__, task='''entity_classification''' ) SCREAMING_SNAKE_CASE__ : str ='''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =(0, 9) SCREAMING_SNAKE_CASE__ : str =tokenizer(UpperCamelCase__, entity_spans=[span], return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : List[Any] =model(**UpperCamelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE__ : str =torch.Size((1, 3_3, 7_6_8) ) SCREAMING_SNAKE_CASE__ : int =torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCamelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE__ : Any =torch.Size((1, 1, 7_6_8) ) SCREAMING_SNAKE_CASE__ : int =torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCamelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE__ : str =MLukeTokenizer.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''Tokyo is the capital of <mask>.''' SCREAMING_SNAKE_CASE__ : Dict =(2_4, 3_0) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer(UpperCamelCase__, entity_spans=[span], return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : List[str] =model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =encoding['''input_ids'''][0].tolist() SCREAMING_SNAKE_CASE__ : Any =input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) SCREAMING_SNAKE_CASE__ : List[Any] =outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE__ : Dict =[ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(UpperCamelCase__ ) ) model.save_pretrained(UpperCamelCase__ ) def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =['''[MASK]''', '''[PAD]''', '''[UNK]'''] SCREAMING_SNAKE_CASE__ : List[str] =[json.loads(UpperCamelCase__ ) for line in open(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Optional[int] ={} for entry in data: SCREAMING_SNAKE_CASE__ : Tuple =entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE__ : str =entity_id break SCREAMING_SNAKE_CASE__ : Union[str, Any] =f"{language}:{entity_name}" SCREAMING_SNAKE_CASE__ : Union[str, Any] =entity_id return new_mapping if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
665
0
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class __SCREAMING_SNAKE_CASE : @property def __magic_name__ ( self : str ) -> Tuple: return self.get_dummy_input() @property def __magic_name__ ( self : int ) -> List[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def __magic_name__ ( self : str , __lowercase : Any=True , __lowercase : Any=False , __lowercase : List[Any]=False , __lowercase : Dict=False , ) -> List[Any]: SCREAMING_SNAKE_CASE__ : str =4 SCREAMING_SNAKE_CASE__ : Tuple =32 SCREAMING_SNAKE_CASE__ : Optional[int] =(32, 32) SCREAMING_SNAKE_CASE__ : str =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] =torch.device(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =(batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE__ : Any =randn_tensor(__lowercase , generator=__lowercase , device=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] ={'''hidden_states''': hidden_states} if include_temb: SCREAMING_SNAKE_CASE__ : Any =1_28 SCREAMING_SNAKE_CASE__ : List[Any] =randn_tensor((batch_size, temb_channels) , generator=__lowercase , device=__lowercase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =torch.manual_seed(1 ) SCREAMING_SNAKE_CASE__ : Tuple =(randn_tensor(__lowercase , generator=__lowercase , device=__lowercase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE__ : Dict =floats_tensor((batch_size, 32, 32) ).to(__lowercase ) if include_skip_sample: SCREAMING_SNAKE_CASE__ : str =randn_tensor(((batch_size, 3) + sizes) , generator=__lowercase , device=__lowercase ) return dummy_input def __magic_name__ ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int ={ '''in_channels''': 32, '''out_channels''': 32, '''temb_channels''': 1_28, } if self.block_type == "up": SCREAMING_SNAKE_CASE__ : str =32 if self.block_type == "mid": init_dict.pop('''out_channels''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.dummy_input return init_dict, inputs_dict def __magic_name__ ( self : int , __lowercase : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] =self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Dict =self.block_class(**__lowercase ) unet_block.to(__lowercase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] =unet_block(**__lowercase ) if isinstance(__lowercase , __lowercase ): SCREAMING_SNAKE_CASE__ : Optional[int] =output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE__ : int =torch.tensor(__lowercase ).to(__lowercase ) assert torch_all_close(output_slice.flatten() , __lowercase , atol=5e-3 ) @unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''' ) def __magic_name__ ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Dict =self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : str =self.block_class(**__lowercase ) model.to(__lowercase ) model.train() SCREAMING_SNAKE_CASE__ : str =model(**__lowercase ) if isinstance(__lowercase , __lowercase ): SCREAMING_SNAKE_CASE__ : Tuple =output[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.device(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =randn_tensor(output.shape , device=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =torch.nn.functional.mse_loss(__lowercase , __lowercase ) loss.backward()
715
'''simple docstring''' def _a( UpperCamelCase__ : str, UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =[[False for _ in range(m + 1 )] for _ in range(n + 1 )] SCREAMING_SNAKE_CASE__ : List[Any] =True for i in range(UpperCamelCase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: SCREAMING_SNAKE_CASE__ : Optional[int] =True if a[i].islower(): SCREAMING_SNAKE_CASE__ : List[Any] =True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
665
0
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def _a( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if "model" in orig_key: SCREAMING_SNAKE_CASE__ : List[Any] =orig_key.replace('''model.''', '''''' ) if "norm1" in orig_key: SCREAMING_SNAKE_CASE__ : Tuple =orig_key.replace('''norm1''', '''attention.output.LayerNorm''' ) if "norm2" in orig_key: SCREAMING_SNAKE_CASE__ : Optional[Any] =orig_key.replace('''norm2''', '''output.LayerNorm''' ) if "norm" in orig_key: SCREAMING_SNAKE_CASE__ : Dict =orig_key.replace('''norm''', '''LayerNorm''' ) if "transformer" in orig_key: SCREAMING_SNAKE_CASE__ : Union[str, Any] =orig_key.split('''.''' )[0].split('''_''' )[-1] SCREAMING_SNAKE_CASE__ : Dict =orig_key.replace(f"transformer_{layer_num}", f"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: SCREAMING_SNAKE_CASE__ : Optional[int] =orig_key.replace('''mha.attn''', '''attention.self''' ) if "mha" in orig_key: SCREAMING_SNAKE_CASE__ : List[Any] =orig_key.replace('''mha''', '''attention''' ) if "W_q" in orig_key: SCREAMING_SNAKE_CASE__ : Any =orig_key.replace('''W_q''', '''self.query''' ) if "W_k" in orig_key: SCREAMING_SNAKE_CASE__ : Tuple =orig_key.replace('''W_k''', '''self.key''' ) if "W_v" in orig_key: SCREAMING_SNAKE_CASE__ : Any =orig_key.replace('''W_v''', '''self.value''' ) if "ff1" in orig_key: SCREAMING_SNAKE_CASE__ : Any =orig_key.replace('''ff1''', '''intermediate.dense''' ) if "ff2" in orig_key: SCREAMING_SNAKE_CASE__ : List[Any] =orig_key.replace('''ff2''', '''output.dense''' ) if "ff" in orig_key: SCREAMING_SNAKE_CASE__ : Union[str, Any] =orig_key.replace('''ff''', '''output.dense''' ) if "mlm_class" in orig_key: SCREAMING_SNAKE_CASE__ : Optional[int] =orig_key.replace('''mlm.mlm_class''', '''cls.predictions.decoder''' ) if "mlm" in orig_key: SCREAMING_SNAKE_CASE__ : int =orig_key.replace('''mlm''', '''cls.predictions.transform''' ) if "cls" not in orig_key: SCREAMING_SNAKE_CASE__ : Optional[int] ='''yoso.''' + orig_key return orig_key def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : str ): '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ : List[str] =orig_state_dict.pop(UpperCamelCase__ ) if ("pooler" in key) or ("sen_class" in key): continue else: SCREAMING_SNAKE_CASE__ : Optional[int] =val SCREAMING_SNAKE_CASE__ : Dict =orig_state_dict['''cls.predictions.decoder.bias'''] SCREAMING_SNAKE_CASE__ : Optional[int] =torch.arange(UpperCamelCase__ ).expand((1, -1) ) + 2 return orig_state_dict def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.load(UpperCamelCase__, map_location='''cpu''' )['''model_state_dict'''] SCREAMING_SNAKE_CASE__ : Optional[int] =YosoConfig.from_json_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =YosoForMaskedLM(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =convert_checkpoint_helper(config.max_position_embeddings, UpperCamelCase__ ) print(model.load_state_dict(UpperCamelCase__ ) ) model.eval() model.save_pretrained(UpperCamelCase__ ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
716
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __lowercase : Optional[Any] , __lowercase : List[str]=13 , __lowercase : int=7 , __lowercase : Tuple=True , __lowercase : Optional[Any]=True , __lowercase : List[Any]=True , __lowercase : str=True , __lowercase : Tuple=99 , __lowercase : Union[str, Any]=64 , __lowercase : Tuple=32 , __lowercase : Optional[Any]=5 , __lowercase : Tuple=4 , __lowercase : Optional[int]=37 , __lowercase : int="gelu" , __lowercase : Union[str, Any]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : List[Any]=5_12 , __lowercase : int=16 , __lowercase : Optional[int]=2 , __lowercase : Tuple=0.02 , __lowercase : List[str]=3 , __lowercase : List[str]=4 , __lowercase : List[str]=None , ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =parent SCREAMING_SNAKE_CASE__ : Any =batch_size SCREAMING_SNAKE_CASE__ : Optional[Any] =seq_length SCREAMING_SNAKE_CASE__ : Dict =is_training SCREAMING_SNAKE_CASE__ : List[Any] =use_input_mask SCREAMING_SNAKE_CASE__ : Union[str, Any] =use_token_type_ids SCREAMING_SNAKE_CASE__ : List[Any] =use_labels SCREAMING_SNAKE_CASE__ : int =vocab_size SCREAMING_SNAKE_CASE__ : str =hidden_size SCREAMING_SNAKE_CASE__ : Any =embedding_size SCREAMING_SNAKE_CASE__ : Tuple =num_hidden_layers SCREAMING_SNAKE_CASE__ : str =num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple =intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : str =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any =max_position_embeddings SCREAMING_SNAKE_CASE__ : Optional[Any] =type_vocab_size SCREAMING_SNAKE_CASE__ : Any =type_sequence_label_size SCREAMING_SNAKE_CASE__ : Optional[Any] =initializer_range SCREAMING_SNAKE_CASE__ : str =num_labels SCREAMING_SNAKE_CASE__ : List[str] =num_choices SCREAMING_SNAKE_CASE__ : List[str] =scope def __magic_name__ ( self : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : int =None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : int =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =None SCREAMING_SNAKE_CASE__ : Optional[Any] =None SCREAMING_SNAKE_CASE__ : Optional[int] =None if self.use_labels: SCREAMING_SNAKE_CASE__ : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Any =ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : List[str] ) -> Any: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) def __magic_name__ ( self : Any , __lowercase : Tuple , __lowercase : Any , __lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : List[str] , __lowercase : Dict , __lowercase : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ : List[str] =MegatronBertModel(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] =model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =model(__lowercase , token_type_ids=__lowercase ) SCREAMING_SNAKE_CASE__ : str =model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self : Dict , __lowercase : Optional[int] , __lowercase : List[str] , __lowercase : str , __lowercase : Tuple , __lowercase : Any , __lowercase : Optional[int] , __lowercase : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : str =MegatronBertForMaskedLM(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Tuple =model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : List[str] , __lowercase : Tuple , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : str , __lowercase : Any , __lowercase : str ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[Any] =MegatronBertForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Dict =model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : Union[str, Any] , __lowercase : int , __lowercase : Any ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] =MegatronBertForNextSentencePrediction(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] =model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self : List[str] , __lowercase : Optional[int] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Optional[Any] , __lowercase : str , __lowercase : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =MegatronBertForPreTraining(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] =model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , next_sentence_label=__lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self : Optional[int] , __lowercase : Tuple , __lowercase : Optional[int] , __lowercase : Union[str, Any] , __lowercase : int , __lowercase : Any , __lowercase : Any , __lowercase : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] =MegatronBertForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Dict =model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , start_positions=__lowercase , end_positions=__lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Optional[int] , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : int , __lowercase : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =self.num_labels SCREAMING_SNAKE_CASE__ : Dict =MegatronBertForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] =model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Tuple =self.num_labels SCREAMING_SNAKE_CASE__ : int =MegatronBertForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] =model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Dict , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : Any , __lowercase : List[Any] , __lowercase : int , __lowercase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ : int =self.num_choices SCREAMING_SNAKE_CASE__ : List[str] =MegatronBertForMultipleChoice(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Optional[int] =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Tuple =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Optional[Any] =model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : str ) -> Any: SCREAMING_SNAKE_CASE__ : Tuple =self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : str =config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) snake_case_ = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True # test_resize_embeddings = False snake_case_ = False def __magic_name__ ( self : List[Any] , __lowercase : List[str] , __lowercase : Tuple , __lowercase : Tuple=False ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class in get_values(__lowercase ): SCREAMING_SNAKE_CASE__ : List[str] =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) return inputs_dict def __magic_name__ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =MegatronBertModelTester(self ) SCREAMING_SNAKE_CASE__ : Tuple =ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def __magic_name__ ( self : str ) -> Dict: self.config_tester.run_common_tests() def __magic_name__ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__lowercase ) def __magic_name__ ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__lowercase ) def __magic_name__ ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__lowercase ) def __magic_name__ ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__lowercase ) def __magic_name__ ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__lowercase ) def __magic_name__ ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__lowercase ) def __magic_name__ ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__lowercase ) def _a( UpperCamelCase__ : List[str] ): '''simple docstring''' return torch.tensor( UpperCamelCase__, dtype=torch.long, device=UpperCamelCase__, ) a_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def __magic_name__ ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Any ='''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE__ : Optional[int] =os.path.join(os.environ['''MYDIR'''] , __lowercase ) SCREAMING_SNAKE_CASE__ : Any =MegatronBertModel.from_pretrained(__lowercase ) model.to(__lowercase ) model.half() SCREAMING_SNAKE_CASE__ : Dict =_long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(__lowercase )[0] SCREAMING_SNAKE_CASE__ : Dict =torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , __lowercase ) SCREAMING_SNAKE_CASE__ : str =[-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): SCREAMING_SNAKE_CASE__ : List[Any] =output[0, ii, jj] SCREAMING_SNAKE_CASE__ : Tuple =expected[3 * ii + jj] SCREAMING_SNAKE_CASE__ : List[str] ='''ii={} jj={} a={} b={}'''.format(__lowercase , __lowercase , __lowercase , __lowercase ) self.assertTrue(math.isclose(__lowercase , __lowercase , rel_tol=__lowercase , abs_tol=__lowercase ) , msg=__lowercase )
665
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ : Optional[Any] =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) SCREAMING_SNAKE_CASE__ : Dict =os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __magic_name__ ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE__ : Any =F"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split() SCREAMING_SNAKE_CASE__ : List[str] =[sys.executable] + distributed_args execute_subprocess_async(__lowercase , env=os.environ.copy() )
665
0
'''simple docstring''' def _a( UpperCamelCase__ : int = 1_0**9 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =1 SCREAMING_SNAKE_CASE__ : List[str] =2 SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : Union[str, Any] =0 SCREAMING_SNAKE_CASE__ : int =0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value SCREAMING_SNAKE_CASE__ : List[str] =2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = ShapEImgaImgPipeline snake_case_ = ["""image"""] snake_case_ = ["""image"""] snake_case_ = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] snake_case_ = False @property def __magic_name__ ( self : List[Any] ) -> List[Any]: return 32 @property def __magic_name__ ( self : List[str] ) -> Optional[int]: return 32 @property def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: return self.time_input_dim * 4 @property def __magic_name__ ( self : Dict ) -> Union[str, Any]: return 8 @property def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE__ : str =CLIPVisionModel(__lowercase ) return model @property def __magic_name__ ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ : int =CLIPImageProcessor( crop_size=2_24 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __magic_name__ ( self : List[str] ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : str ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } SCREAMING_SNAKE_CASE__ : str =PriorTransformer(**__lowercase ) return model @property def __magic_name__ ( self : Tuple ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE__ : str =ShapERenderer(**__lowercase ) return model def __magic_name__ ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =self.dummy_prior SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_image_encoder SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_image_processor SCREAMING_SNAKE_CASE__ : Tuple =self.dummy_renderer SCREAMING_SNAKE_CASE__ : int =HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=__lowercase , clip_sample=__lowercase , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE__ : Any ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __magic_name__ ( self : Any , __lowercase : List[str] , __lowercase : Any=0 ) -> Any: SCREAMING_SNAKE_CASE__ : int =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : List[str] =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : Any ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ : int ='''cpu''' SCREAMING_SNAKE_CASE__ : Any =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : str =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =pipe(**self.get_dummy_inputs(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple =output.images[0] SCREAMING_SNAKE_CASE__ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[Any] =np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : List[Any] ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch_device == '''cpu''' SCREAMING_SNAKE_CASE__ : Optional[Any] =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__lowercase , relax_max_difference=__lowercase , ) def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : Any =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Dict =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =1 SCREAMING_SNAKE_CASE__ : List[str] =2 SCREAMING_SNAKE_CASE__ : Dict =self.get_dummy_inputs(__lowercase ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE__ : Tuple =batch_size * [inputs[key]] SCREAMING_SNAKE_CASE__ : List[Any] =pipe(**__lowercase , num_images_per_prompt=__lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : Optional[Any] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) SCREAMING_SNAKE_CASE__ : Dict =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) SCREAMING_SNAKE_CASE__ : List[Any] =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) SCREAMING_SNAKE_CASE__ : Tuple =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =torch.Generator(device=__lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple =pipe( __lowercase , generator=__lowercase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
665
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[int] ): '''simple docstring''' assert isinstance(UpperCamelCase__, UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def _a( UpperCamelCase__ : str, UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ : Tuple ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ : Optional[Any] =ParquetDatasetReader(UpperCamelCase__, cache_dir=UpperCamelCase__, keep_in_memory=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__, UpperCamelCase__ ) @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ : Dict ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ : Dict =features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ : str =( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ : Any =ParquetDatasetReader(UpperCamelCase__, features=UpperCamelCase__, cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__, UpperCamelCase__ ) @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _a( UpperCamelCase__ : str, UpperCamelCase__ : List[str], UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ : Any ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ : int =ParquetDatasetReader(UpperCamelCase__, cache_dir=UpperCamelCase__, split=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__, UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''', [str, list] ) def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Dict, UpperCamelCase__ : List[Any] ): '''simple docstring''' if issubclass(UpperCamelCase__, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =parquet_path elif issubclass(UpperCamelCase__, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Tuple =[parquet_path] SCREAMING_SNAKE_CASE__ : Optional[int] =tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ : Optional[Any] ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ : Optional[int] =ParquetDatasetReader(UpperCamelCase__, cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__, UpperCamelCase__ ) def _a( UpperCamelCase__ : Tuple, UpperCamelCase__ : Any, UpperCamelCase__ : List[str]=("train",) ): '''simple docstring''' assert isinstance(UpperCamelCase__, UpperCamelCase__ ) for split in splits: SCREAMING_SNAKE_CASE__ : Tuple =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : str, UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ : int ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ : List[Any] =ParquetDatasetReader( {'''train''': parquet_path}, cache_dir=UpperCamelCase__, keep_in_memory=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__, UpperCamelCase__ ) @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : int, UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ : List[str] ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ : Dict =features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ : List[Any] =( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ : List[Any] =ParquetDatasetReader({'''train''': parquet_path}, features=UpperCamelCase__, cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__, UpperCamelCase__ ) @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Any, UpperCamelCase__ : Optional[int] ): '''simple docstring''' if split: SCREAMING_SNAKE_CASE__ : Optional[Any] ={split: parquet_path} else: SCREAMING_SNAKE_CASE__ : Optional[Any] ='''train''' SCREAMING_SNAKE_CASE__ : str ={'''train''': parquet_path, '''test''': parquet_path} SCREAMING_SNAKE_CASE__ : Any =tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ : Optional[int] ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ : Optional[Any] =ParquetDatasetReader(UpperCamelCase__, cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__, UpperCamelCase__, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =ParquetDatasetWriter(UpperCamelCase__, tmp_path / '''foo.parquet''' ) assert writer.write() > 0 SCREAMING_SNAKE_CASE__ : List[Any] =pq.ParquetFile(tmp_path / '''foo.parquet''' ) SCREAMING_SNAKE_CASE__ : Any =pf.read() assert dataset.data.table == output_table def _a( UpperCamelCase__ : Tuple, UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =str(shared_datadir / '''test_image_rgb.jpg''' ) SCREAMING_SNAKE_CASE__ : List[Any] ={'''image''': [image_path]} SCREAMING_SNAKE_CASE__ : Optional[Any] =Features({'''image''': Image()} ) SCREAMING_SNAKE_CASE__ : List[Any] =Dataset.from_dict(UpperCamelCase__, features=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =ParquetDatasetWriter(UpperCamelCase__, tmp_path / '''foo.parquet''' ) assert writer.write() > 0 SCREAMING_SNAKE_CASE__ : List[Any] =Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features SCREAMING_SNAKE_CASE__ : Union[str, Any] =ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ), streaming=UpperCamelCase__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''', [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ], ) def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : Tuple ): '''simple docstring''' assert get_writer_batch_size(UpperCamelCase__ ) == expected
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """gpt_bigcode""" snake_case_ = ["""past_key_values"""] snake_case_ = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , __lowercase : Any=5_02_57 , __lowercase : int=10_24 , __lowercase : List[str]=7_68 , __lowercase : Optional[int]=12 , __lowercase : Dict=12 , __lowercase : List[str]=None , __lowercase : int="gelu_pytorch_tanh" , __lowercase : Union[str, Any]=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : Optional[Any]=1e-5 , __lowercase : List[str]=0.02 , __lowercase : Tuple=True , __lowercase : Optional[Any]=True , __lowercase : Union[str, Any]=5_02_56 , __lowercase : List[Any]=5_02_56 , __lowercase : Union[str, Any]=True , __lowercase : List[str]=True , __lowercase : Dict=True , **__lowercase : List[Any] , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =n_positions SCREAMING_SNAKE_CASE__ : Dict =n_embd SCREAMING_SNAKE_CASE__ : Dict =n_layer SCREAMING_SNAKE_CASE__ : Union[str, Any] =n_head SCREAMING_SNAKE_CASE__ : List[str] =n_inner SCREAMING_SNAKE_CASE__ : List[str] =activation_function SCREAMING_SNAKE_CASE__ : List[Any] =resid_pdrop SCREAMING_SNAKE_CASE__ : List[Any] =embd_pdrop SCREAMING_SNAKE_CASE__ : List[str] =attn_pdrop SCREAMING_SNAKE_CASE__ : Dict =layer_norm_epsilon SCREAMING_SNAKE_CASE__ : List[str] =initializer_range SCREAMING_SNAKE_CASE__ : List[Any] =scale_attn_weights SCREAMING_SNAKE_CASE__ : Union[str, Any] =use_cache SCREAMING_SNAKE_CASE__ : Dict =attention_softmax_in_fpaa SCREAMING_SNAKE_CASE__ : int =scale_attention_softmax_in_fpaa SCREAMING_SNAKE_CASE__ : Dict =multi_query SCREAMING_SNAKE_CASE__ : Optional[Any] =bos_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] =eos_token_id super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
665
0
'''simple docstring''' def _a( UpperCamelCase__ : list ): '''simple docstring''' def merge(UpperCamelCase__ : list, UpperCamelCase__ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCamelCase__ ) <= 1: return collection SCREAMING_SNAKE_CASE__ : Optional[Any] =len(UpperCamelCase__ ) // 2 return merge(merge_sort(collection[:mid] ), merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = input('Enter numbers separated by a comma:\n').strip() a_ = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
720
'''simple docstring''' class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =size SCREAMING_SNAKE_CASE__ : List[Any] =[0] * size SCREAMING_SNAKE_CASE__ : str =[0] * size @staticmethod def __magic_name__ ( __lowercase : int ) -> int: return index | (index + 1) @staticmethod def __magic_name__ ( __lowercase : int ) -> int: return (index & (index + 1)) - 1 def __magic_name__ ( self : Dict , __lowercase : int , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ : List[str] =value while index < self.size: SCREAMING_SNAKE_CASE__ : Any =self.get_prev(__lowercase ) + 1 if current_left_border == index: SCREAMING_SNAKE_CASE__ : List[str] =value else: SCREAMING_SNAKE_CASE__ : str =max(__lowercase , __lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =self.get_next(__lowercase ) def __magic_name__ ( self : Optional[int] , __lowercase : int , __lowercase : int ) -> int: right -= 1 # Because of right is exclusive SCREAMING_SNAKE_CASE__ : str =0 while left <= right: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.get_prev(__lowercase ) if left <= current_left: SCREAMING_SNAKE_CASE__ : List[Any] =max(__lowercase , self.tree[right] ) SCREAMING_SNAKE_CASE__ : Any =current_left else: SCREAMING_SNAKE_CASE__ : Optional[Any] =max(__lowercase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
665
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _a( UpperCamelCase__ : str, UpperCamelCase__ : Tuple, UpperCamelCase__ : Any, UpperCamelCase__ : List[str], UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' with open(UpperCamelCase__ ) as metadata_file: SCREAMING_SNAKE_CASE__ : Optional[int] =json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =LukeConfig(use_entity_aware_attention=UpperCamelCase__, **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.load(UpperCamelCase__, map_location='''cpu''' )['''module'''] # Load the entity vocab file SCREAMING_SNAKE_CASE__ : List[str] =load_original_entity_vocab(UpperCamelCase__ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE__ : Optional[int] =max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE__ : Optional[int] =XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE__ : List[Any] =AddedToken('''<ent>''', lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =AddedToken('''<ent2>''', lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__, '''tokenizer_config.json''' ), '''r''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] =json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int ='''MLukeTokenizer''' with open(os.path.join(UpperCamelCase__, '''tokenizer_config.json''' ), '''w''' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__, MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ), '''w''' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =MLukeTokenizer.from_pretrained(UpperCamelCase__ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE__ : str =tokenizer.convert_tokens_to_ids(['''@'''] )[0] SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.convert_tokens_to_ids(['''#'''] )[0] SCREAMING_SNAKE_CASE__ : Dict =state_dict['''embeddings.word_embeddings.weight'''] SCREAMING_SNAKE_CASE__ : List[str] =word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Tuple =word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : str =torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE__ : Optional[Any] =state_dict[bias_name] SCREAMING_SNAKE_CASE__ : List[Any] =decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : str =decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : List[str] =torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE__ : Tuple =f"encoder.layer.{layer_index}.attention.self." SCREAMING_SNAKE_CASE__ : Optional[int] =state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ : Optional[int] =state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ : List[Any] =state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE__ : Any =state_dict['''entity_embeddings.entity_embeddings.weight'''] SCREAMING_SNAKE_CASE__ : Any =entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Any =torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE__ : Optional[int] =state_dict['''entity_predictions.bias'''] SCREAMING_SNAKE_CASE__ : Tuple =entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Any =torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE__ : int =LukeForMaskedLM(config=UpperCamelCase__ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) SCREAMING_SNAKE_CASE__ : Tuple =OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): SCREAMING_SNAKE_CASE__ : Optional[Any] =state_dict[key] else: SCREAMING_SNAKE_CASE__ : Any =state_dict[key] SCREAMING_SNAKE_CASE__ : List[str] =model.load_state_dict(UpperCamelCase__, strict=UpperCamelCase__ ) if set(UpperCamelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(UpperCamelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE__ : Any =MLukeTokenizer.from_pretrained(UpperCamelCase__, task='''entity_classification''' ) SCREAMING_SNAKE_CASE__ : str ='''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =(0, 9) SCREAMING_SNAKE_CASE__ : str =tokenizer(UpperCamelCase__, entity_spans=[span], return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : List[Any] =model(**UpperCamelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE__ : str =torch.Size((1, 3_3, 7_6_8) ) SCREAMING_SNAKE_CASE__ : int =torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCamelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE__ : Any =torch.Size((1, 1, 7_6_8) ) SCREAMING_SNAKE_CASE__ : int =torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCamelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE__ : str =MLukeTokenizer.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''Tokyo is the capital of <mask>.''' SCREAMING_SNAKE_CASE__ : Dict =(2_4, 3_0) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer(UpperCamelCase__, entity_spans=[span], return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : List[str] =model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =encoding['''input_ids'''][0].tolist() SCREAMING_SNAKE_CASE__ : Any =input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) SCREAMING_SNAKE_CASE__ : List[Any] =outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE__ : Dict =[ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(UpperCamelCase__ ) ) model.save_pretrained(UpperCamelCase__ ) def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =['''[MASK]''', '''[PAD]''', '''[UNK]'''] SCREAMING_SNAKE_CASE__ : List[str] =[json.loads(UpperCamelCase__ ) for line in open(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Optional[int] ={} for entry in data: SCREAMING_SNAKE_CASE__ : Tuple =entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE__ : str =entity_id break SCREAMING_SNAKE_CASE__ : Union[str, Any] =f"{language}:{entity_name}" SCREAMING_SNAKE_CASE__ : Union[str, Any] =entity_id return new_mapping if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
721
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""vqvae"""] def __init__( self : int , __lowercase : AutoencoderKL , __lowercase : UNetaDConditionModel , __lowercase : Mel , __lowercase : Union[DDIMScheduler, DDPMScheduler] , ) -> int: super().__init__() self.register_modules(unet=__lowercase , scheduler=__lowercase , mel=__lowercase , vqvae=__lowercase ) def __magic_name__ ( self : List[str] ) -> int: return 50 if isinstance(self.scheduler , __lowercase ) else 10_00 @torch.no_grad() def __call__( self : Dict , __lowercase : int = 1 , __lowercase : str = None , __lowercase : np.ndarray = None , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = None , __lowercase : torch.Generator = None , __lowercase : float = 0 , __lowercase : float = 0 , __lowercase : torch.Generator = None , __lowercase : float = 0 , __lowercase : torch.Tensor = None , __lowercase : torch.Tensor = None , __lowercase : Dict=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: SCREAMING_SNAKE_CASE__ : Optional[Any] =steps or self.get_default_steps() self.scheduler.set_timesteps(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: SCREAMING_SNAKE_CASE__ : Union[str, Any] =(self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: SCREAMING_SNAKE_CASE__ : Optional[int] =randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__lowercase , device=self.device , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =noise SCREAMING_SNAKE_CASE__ : List[str] =None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Dict =self.mel.audio_slice_to_image(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) SCREAMING_SNAKE_CASE__ : int =(input_image / 2_55) * 2 - 1 SCREAMING_SNAKE_CASE__ : Optional[int] =torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: SCREAMING_SNAKE_CASE__ : Optional[int] =self.vqvae.encode(torch.unsqueeze(__lowercase , 0 ) ).latent_dist.sample( generator=__lowercase )[0] SCREAMING_SNAKE_CASE__ : int =self.vqvae.config.scaling_factor * input_images if start_step > 0: SCREAMING_SNAKE_CASE__ : int =self.scheduler.add_noise(__lowercase , __lowercase , self.scheduler.timesteps[start_step - 1] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) SCREAMING_SNAKE_CASE__ : Optional[Any] =int(mask_start_secs * pixels_per_second ) SCREAMING_SNAKE_CASE__ : Tuple =int(mask_end_secs * pixels_per_second ) SCREAMING_SNAKE_CASE__ : int =self.scheduler.add_noise(__lowercase , __lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __lowercase ): SCREAMING_SNAKE_CASE__ : str =self.unet(__lowercase , __lowercase , __lowercase )['''sample'''] else: SCREAMING_SNAKE_CASE__ : str =self.unet(__lowercase , __lowercase )['''sample'''] if isinstance(self.scheduler , __lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] =self.scheduler.step( model_output=__lowercase , timestep=__lowercase , sample=__lowercase , eta=__lowercase , generator=__lowercase , )['''prev_sample'''] else: SCREAMING_SNAKE_CASE__ : Any =self.scheduler.step( model_output=__lowercase , timestep=__lowercase , sample=__lowercase , generator=__lowercase , )['''prev_sample'''] if mask is not None: if mask_start > 0: SCREAMING_SNAKE_CASE__ : Optional[Any] =mask[:, step, :, :mask_start] if mask_end > 0: SCREAMING_SNAKE_CASE__ : List[str] =mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance SCREAMING_SNAKE_CASE__ : str =1 / self.vqvae.config.scaling_factor * images SCREAMING_SNAKE_CASE__ : int =self.vqvae.decode(__lowercase )['''sample'''] SCREAMING_SNAKE_CASE__ : List[str] =(images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =images.cpu().permute(0 , 2 , 3 , 1 ).numpy() SCREAMING_SNAKE_CASE__ : Dict =(images * 2_55).round().astype('''uint8''' ) SCREAMING_SNAKE_CASE__ : Any =list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) ) SCREAMING_SNAKE_CASE__ : Optional[int] =[self.mel.image_to_audio(__lowercase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__lowercase ) ) @torch.no_grad() def __magic_name__ ( self : Optional[int] , __lowercase : List[Image.Image] , __lowercase : int = 50 ) -> np.ndarray: assert isinstance(self.scheduler , __lowercase ) self.scheduler.set_timesteps(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) SCREAMING_SNAKE_CASE__ : str =(sample / 2_55) * 2 - 1 SCREAMING_SNAKE_CASE__ : str =torch.Tensor(__lowercase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): SCREAMING_SNAKE_CASE__ : Tuple =t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps SCREAMING_SNAKE_CASE__ : Any =self.scheduler.alphas_cumprod[t] SCREAMING_SNAKE_CASE__ : int =( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) SCREAMING_SNAKE_CASE__ : int =1 - alpha_prod_t SCREAMING_SNAKE_CASE__ : Optional[Any] =self.unet(__lowercase , __lowercase )['''sample'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] =(1 - alpha_prod_t_prev) ** 0.5 * model_output SCREAMING_SNAKE_CASE__ : str =(sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) SCREAMING_SNAKE_CASE__ : Any =sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __magic_name__ ( __lowercase : torch.Tensor , __lowercase : torch.Tensor , __lowercase : float ) -> torch.Tensor: SCREAMING_SNAKE_CASE__ : Optional[int] =acos(torch.dot(torch.flatten(__lowercase ) , torch.flatten(__lowercase ) ) / torch.norm(__lowercase ) / torch.norm(__lowercase ) ) return sin((1 - alpha) * theta ) * xa / sin(__lowercase ) + sin(alpha * theta ) * xa / sin(__lowercase )
665
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : str , __A : list[str] | None = None , __A : dict[str, float] | None = None , __A : bool = False , ): a_ : Union[str, Any] = cipher_alphabet or [chr(__A ) for i in range(97 , 1_23 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) a_ : Tuple = { '''a''': 0.08497, '''b''': 0.01492, '''c''': 0.02202, '''d''': 0.04253, '''e''': 0.11162, '''f''': 0.02228, '''g''': 0.02015, '''h''': 0.06094, '''i''': 0.07546, '''j''': 0.00153, '''k''': 0.01292, '''l''': 0.04025, '''m''': 0.02406, '''n''': 0.06749, '''o''': 0.07507, '''p''': 0.01929, '''q''': 0.00095, '''r''': 0.07587, '''s''': 0.06327, '''t''': 0.09356, '''u''': 0.02758, '''v''': 0.00978, '''w''': 0.02560, '''x''': 0.00150, '''y''': 0.01994, '''z''': 0.00077, } else: # Custom frequencies dictionary a_ : Optional[Any] = frequencies_dict if not case_sensitive: a_ : Tuple = ciphertext.lower() # Chi squared statistic values a_ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(__A ) ): a_ : Union[str, Any] = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet a_ : Tuple = (alphabet_letters.index(letter.lower() ) - shift) % len( __A ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter a_ : int = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: a_ : List[Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message a_ : Tuple = decrypted_with_shift.lower().count(__A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies a_ : List[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula a_ : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message a_ : Optional[int] = decrypted_with_shift.count(__A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies a_ : Dict = frequencies[letter] * occurrences # Complete the chi squared statistic formula a_ : List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary a_ : Any = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__A : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] a_ : int = min( __A , key=__A , ) # Get all the data from the most likely cipher (key, decoded message) ( ( a_ ) , ( a_ ) , ) : Optional[int] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
666
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
1
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : str , __SCREAMING_SNAKE_CASE : CLIPSegForImageSegmentation , __SCREAMING_SNAKE_CASE : CLIPSegProcessor , __SCREAMING_SNAKE_CASE : AutoencoderKL , __SCREAMING_SNAKE_CASE : CLIPTextModel , __SCREAMING_SNAKE_CASE : CLIPTokenizer , __SCREAMING_SNAKE_CASE : UNetaDConditionModel , __SCREAMING_SNAKE_CASE : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __SCREAMING_SNAKE_CASE : StableDiffusionSafetyChecker , __SCREAMING_SNAKE_CASE : CLIPImageProcessor , ) -> Union[str, Any]: super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: a_ : int = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , __SCREAMING_SNAKE_CASE , standard_warn=__SCREAMING_SNAKE_CASE ) a_ : int = dict(scheduler.config ) a_ : List[str] = 1 a_ : List[Any] = FrozenDict(__SCREAMING_SNAKE_CASE ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: a_ : Union[str, Any] = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , __SCREAMING_SNAKE_CASE , standard_warn=__SCREAMING_SNAKE_CASE ) a_ : int = dict(scheduler.config ) a_ : List[str] = True a_ : Optional[int] = FrozenDict(__SCREAMING_SNAKE_CASE ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=__SCREAMING_SNAKE_CASE , segmentation_processor=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Union[str, int]] = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory a_ : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: self.enable_attention_slicing(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a_ : List[Any] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__SCREAMING_SNAKE_CASE , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, PIL.Image.Image] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 512 , __SCREAMING_SNAKE_CASE : int = 512 , __SCREAMING_SNAKE_CASE : int = 50 , __SCREAMING_SNAKE_CASE : float = 7.5 , __SCREAMING_SNAKE_CASE : Optional[Union[str, List[str]]] = None , __SCREAMING_SNAKE_CASE : Optional[int] = 1 , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : Optional[torch.Generator] = None , __SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , __SCREAMING_SNAKE_CASE : Optional[str] = "pil" , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __SCREAMING_SNAKE_CASE : int = 1 , **__SCREAMING_SNAKE_CASE : Dict , ) -> Dict: a_ : Dict = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) a_ : Optional[Any] = self.segmentation_model(**__SCREAMING_SNAKE_CASE ) a_ : Any = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() a_ : Union[str, Any] = self.numpy_to_pil(__SCREAMING_SNAKE_CASE )[0].resize(image.size ) # Run inpainting pipeline with the generated mask a_ : str = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , height=__SCREAMING_SNAKE_CASE , width=__SCREAMING_SNAKE_CASE , num_inference_steps=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , negative_prompt=__SCREAMING_SNAKE_CASE , num_images_per_prompt=__SCREAMING_SNAKE_CASE , eta=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , latents=__SCREAMING_SNAKE_CASE , output_type=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , callback=__SCREAMING_SNAKE_CASE , callback_steps=__SCREAMING_SNAKE_CASE , )
666
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Any=18 , __SCREAMING_SNAKE_CASE : Optional[Any]=30 , __SCREAMING_SNAKE_CASE : Union[str, Any]=400 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , ) -> List[str]: a_ : Dict = size if size is not None else {'''height''': 18, '''width''': 18} a_ : Optional[int] = parent a_ : Any = batch_size a_ : int = num_channels a_ : Dict = image_size a_ : Optional[int] = min_resolution a_ : Optional[Any] = max_resolution a_ : int = do_resize a_ : Dict = size a_ : str = apply_ocr def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Optional[int] = LayoutLMvaImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: a_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''apply_ocr''' ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: a_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) a_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: # Initialize image_processing a_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(encoding.boxes , __SCREAMING_SNAKE_CASE ) # Test batched a_ : Optional[Any] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: # Initialize image_processing a_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input a_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a_ : Dict = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: # Initialize image_processing a_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input a_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a_ : Union[str, Any] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: # with apply_OCR = True a_ : Union[str, Any] = LayoutLMvaImageProcessor() from datasets import load_dataset a_ : List[str] = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) a_ : Optional[int] = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) a_ : List[Any] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a_ : str = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 a_ : Dict = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __SCREAMING_SNAKE_CASE ) self.assertListEqual(encoding.boxes , __SCREAMING_SNAKE_CASE ) # with apply_OCR = False a_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=__SCREAMING_SNAKE_CASE ) a_ : str = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
666
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
1
'''simple docstring''' __lowerCAmelCase = [ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = ["pixel_values"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : int = 32 , __SCREAMING_SNAKE_CASE : str=PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : bool = True , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> None: a_ : Union[str, Any] = do_resize a_ : List[Any] = do_rescale a_ : Dict = size_divisor a_ : List[str] = resample super().__init__(**__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[ChannelDimension] = None , **__SCREAMING_SNAKE_CASE : int ) -> np.ndarray: a_ , a_ : List[Any] = get_image_size(__SCREAMING_SNAKE_CASE ) # Rounds the height and width down to the closest multiple of size_divisor a_ : Any = height // size_divisor * size_divisor a_ : List[str] = width // size_divisor * size_divisor a_ : Any = resize(__SCREAMING_SNAKE_CASE , (new_h, new_w) , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return image def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : Optional[ChannelDimension] = None , **__SCREAMING_SNAKE_CASE : List[Any] ) -> np.ndarray: return rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[Union[TensorType, str]] = None , __SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> BatchFeature: a_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize a_ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale a_ : Dict = size_divisor if size_divisor is not None else self.size_divisor a_ : Optional[Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) a_ : Dict = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. a_ : Optional[int] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for img in images] if do_resize: a_ : List[str] = [self.resize(__SCREAMING_SNAKE_CASE , size_divisor=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: a_ : int = [self.rescale(__SCREAMING_SNAKE_CASE , scale=1 / 255 ) for image in images] a_ : str = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] a_ : List[Any] = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): a_ : List[Any] = len(__A ) a_ : Optional[int] = len(__A ) a_ : int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] a_ : Any = True for i in range(__A ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: a_ : Tuple = True if a[i].islower(): a_ : List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
1
'''simple docstring''' from math import loga def _UpperCAmelCase ( __A : int ): if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__A , __A ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
1
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bart" snake_case__ = ["past_key_values"] snake_case__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : str , __SCREAMING_SNAKE_CASE : List[Any]=5_0265 , __SCREAMING_SNAKE_CASE : int=1024 , __SCREAMING_SNAKE_CASE : Tuple=12 , __SCREAMING_SNAKE_CASE : int=4096 , __SCREAMING_SNAKE_CASE : Union[str, Any]=16 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : Any=4096 , __SCREAMING_SNAKE_CASE : List[Any]=16 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : str=1024 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : str=0 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Dict=2 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> List[Any]: a_ : Tuple = vocab_size a_ : Dict = max_position_embeddings a_ : List[str] = d_model a_ : Optional[int] = encoder_ffn_dim a_ : Dict = encoder_layers a_ : List[str] = encoder_attention_heads a_ : int = decoder_ffn_dim a_ : Dict = decoder_layers a_ : Tuple = decoder_attention_heads a_ : str = dropout a_ : Any = attention_dropout a_ : int = activation_dropout a_ : Dict = activation_function a_ : Tuple = init_std a_ : Any = encoder_layerdrop a_ : Any = decoder_layerdrop a_ : int = classifier_dropout a_ : Tuple = use_cache a_ : List[str] = encoder_layers a_ : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , forced_eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __SCREAMING_SNAKE_CASE ): a_ : Dict = self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): @property def SCREAMING_SNAKE_CASE ( self : int ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: a_ : Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: a_ : List[Any] = {0: '''batch'''} a_ : Any = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: a_ : Dict = {0: '''batch''', 1: '''decoder_sequence'''} a_ : List[str] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. a_ : str = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: a_ , a_ : Any = self.num_layers for i in range(__SCREAMING_SNAKE_CASE ): a_ : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} a_ : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: a_ : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: a_ : str = super().outputs else: a_ : str = super(__SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: a_ , a_ : Union[str, Any] = self.num_layers for i in range(__SCREAMING_SNAKE_CASE ): a_ : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} a_ : Tuple = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: a_ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Generate decoder inputs a_ : List[str] = seq_length if not self.use_past else 1 a_ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[Any] = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} a_ : Optional[int] = dict(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : List[str] = common_inputs['''input_ids'''].shape a_ : Dict = common_inputs['''decoder_input_ids'''].shape[1] a_ , a_ : Tuple = self.num_attention_heads a_ : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) a_ : Dict = decoder_seq_length + 3 a_ : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) a_ : List[str] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] , dim=1 ) a_ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered a_ , a_ : List[str] = self.num_layers a_ : int = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : int = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) - min_num_layers a_ : int = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. a_ : Union[str, Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: a_ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Optional[int] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : Optional[Any] = seqlen + 2 a_ , a_ : str = self.num_layers a_ , a_ : Any = self.num_attention_heads a_ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) a_ : Dict = common_inputs['''attention_mask'''].dtype a_ : int = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) a_ : int = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(__SCREAMING_SNAKE_CASE ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a_ : Tuple = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a_ : Optional[Any] = tokenizer.num_special_tokens_to_add(__SCREAMING_SNAKE_CASE ) a_ : str = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence a_ : Any = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size a_ : int = dict(tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: a_ : List[str] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) elif self.task == "causal-lm": a_ : Any = self._generate_dummy_inputs_for_causal_lm( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) else: a_ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: a_ : Union[str, Any] = super()._flatten_past_key_values_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: a_ : Any = super(__SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : VQModel , __SCREAMING_SNAKE_CASE : UNetaDModel , __SCREAMING_SNAKE_CASE : DDIMScheduler ) -> Tuple: super().__init__() self.register_modules(vqvae=__SCREAMING_SNAKE_CASE , unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self : List[Any] , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : int = 50 , __SCREAMING_SNAKE_CASE : Optional[str] = "pil" , __SCREAMING_SNAKE_CASE : bool = True , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> Union[Tuple, ImagePipelineOutput]: a_ : List[str] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__SCREAMING_SNAKE_CASE , ) a_ : Tuple = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler a_ : Dict = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature a_ : Tuple = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a_ : Tuple = {} if accepts_eta: a_ : int = eta for t in self.progress_bar(self.scheduler.timesteps ): a_ : Union[str, Any] = self.scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # predict the noise residual a_ : Tuple = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample # compute the previous noisy sample x_t -> x_t-1 a_ : str = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample # decode the image latents with the VAE a_ : Tuple = self.vqvae.decode(__SCREAMING_SNAKE_CASE ).sample a_ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) a_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a_ : List[str] = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger('transformers.models.speecht5') def _UpperCAmelCase ( __A : Dict , __A : List[Any] , __A : List[Any] ): hf_model.apply_weight_norm() a_ : List[Any] = checkpoint['''input_conv.weight_g'''] a_ : Optional[Any] = checkpoint['''input_conv.weight_v'''] a_ : Dict = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): a_ : Optional[int] = checkpoint[f'upsamples.{i}.1.weight_g'] a_ : int = checkpoint[f'upsamples.{i}.1.weight_v'] a_ : Union[str, Any] = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a_ : Union[str, Any] = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] a_ : int = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] a_ : int = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] a_ : Any = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] a_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] a_ : Any = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] a_ : Union[str, Any] = checkpoint['''output_conv.1.weight_g'''] a_ : Optional[int] = checkpoint['''output_conv.1.weight_v'''] a_ : str = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _UpperCAmelCase ( __A : Any , __A : List[Any] , __A : Tuple , __A : Optional[int]=None , __A : Union[str, Any]=None , ): if config_path is not None: a_ : Dict = SpeechTaHifiGanConfig.from_pretrained(__A ) else: a_ : int = SpeechTaHifiGanConfig() a_ : Any = SpeechTaHifiGan(__A ) a_ : Optional[Any] = torch.load(__A ) load_weights(orig_checkpoint['''model''']['''generator'''] , __A , __A ) a_ : Union[str, Any] = np.load(__A ) a_ : str = stats[0].reshape(-1 ) a_ : Optional[Any] = stats[1].reshape(-1 ) a_ : Any = torch.from_numpy(__A ).float() a_ : str = torch.from_numpy(__A ).float() model.save_pretrained(__A ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def _UpperCAmelCase ( __A : Optional[int] , __A : Optional[int] ): a_ : Tuple = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) a_ : List[str] = DatasetInfosDict.from_directory(__A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def _UpperCAmelCase ( __A : List[str] , __A : DatasetInfo ): a_ : Union[str, Any] = str(__A ) dataset_info.write_to_directory(__A ) a_ : List[Any] = DatasetInfo.from_directory(__A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__A , '''dataset_info.json''' ) ) def _UpperCAmelCase ( ): a_ : Optional[int] = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) a_ : int = dataset_info._to_yaml_dict() assert sorted(__A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) a_ : Dict = yaml.safe_dump(__A ) a_ : Optional[int] = yaml.safe_load(__A ) assert dataset_info_yaml_dict == reloaded def _UpperCAmelCase ( ): a_ : List[Any] = DatasetInfo() a_ : Dict = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def _UpperCAmelCase ( __A : List[Any] , __A : DatasetInfosDict ): a_ : Union[str, Any] = str(__A ) dataset_infos_dict.write_to_directory(__A ) a_ : Optional[int] = DatasetInfosDict.from_directory(__A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): a_ : Any = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml a_ : Optional[int] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__A , '''README.md''' ) )
666
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __lowerCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether tp freeze the encoder."} ) snake_case__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) snake_case__ = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) snake_case__ = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) snake_case__ = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) snake_case__ = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) snake_case__ = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) snake_case__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Source language id for translation."} ) snake_case__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Target language id for translation."} ) snake_case__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "# num_beams to use for evaluation."} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def _UpperCAmelCase ( __A : int , __A : Dict , __A : Tuple ): logger.info(f'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(f' {key} = {metrics[key]}' ) save_json(__A , os.path.join(__A , f'{split}_results.json' ) ) def _UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a_ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ , a_ , a_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ , a_ , a_ : int = parser.parse_args_into_dataclasses() check_output_dir(__A ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a_ : List[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__A , __A , __A ): assert hasattr(__A , __A ), f'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(__A , __A , getattr(__A , __A ) ) a_ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__A , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__A , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: a_ : Dict = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__A , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__A , __A ): a_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: a_ : List[str] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__A ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) a_ : Any = SeqaSeqDataset # Get datasets a_ : str = ( dataset_class( __A , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) a_ : Union[str, Any] = ( dataset_class( __A , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) a_ : Union[str, Any] = ( dataset_class( __A , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer a_ : List[Any] = ( build_compute_metrics_fn(data_args.task , __A ) if training_args.predict_with_generate else None ) a_ : int = SeqaSeqTrainer( model=__A , args=__A , data_args=__A , train_dataset=__A , eval_dataset=__A , data_collator=SeqaSeqDataCollator( __A , __A , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__A , tokenizer=__A , ) a_ : Tuple = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) a_ : List[str] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) a_ : str = train_result.metrics a_ : List[Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , __A , training_args.output_dir ) all_metrics.update(__A ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) a_ : Any = trainer.evaluate(metric_key_prefix='''val''' ) a_ : List[Any] = data_args.n_val a_ : List[Any] = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , __A , training_args.output_dir ) all_metrics.update(__A ) if training_args.do_predict: logger.info('''*** Predict ***''' ) a_ : Union[str, Any] = trainer.predict(test_dataset=__A , metric_key_prefix='''test''' ) a_ : List[Any] = test_output.metrics a_ : int = data_args.n_test if trainer.is_world_process_zero(): a_ : Dict = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , __A , training_args.output_dir ) all_metrics.update(__A ) if training_args.predict_with_generate: a_ : List[Any] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__A , clean_up_tokenization_spaces=__A ) a_ : Dict = lmap(str.strip , __A ) write_txt_file(__A , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__A , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def _UpperCAmelCase ( __A : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
666
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = 42 snake_case__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = 42 snake_case__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
666
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
1
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping __lowerCAmelCase = tuple[int, int] class SCREAMING_SNAKE_CASE : def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : set[int] , __SCREAMING_SNAKE_CASE : Mapping[EdgeT, int] ) -> None: a_ : set[int] = vertices a_ : dict[EdgeT, int] = { (min(__SCREAMING_SNAKE_CASE ), max(__SCREAMING_SNAKE_CASE )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : EdgeT , __SCREAMING_SNAKE_CASE : int ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) a_ : Optional[Any] = weight def SCREAMING_SNAKE_CASE ( self : Any ) -> Graph: a_ : Graph = Graph({min(self.vertices )} , {} ) a_ : EdgeT a_ : int a_ : EdgeT a_ : int while len(subgraph.vertices ) < len(self.vertices ): a_ : List[Any] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a_ : Any = edge a_ : List[Any] = weight subgraph.add_edge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return subgraph def _UpperCAmelCase ( __A : str = "p107_network.txt" ): a_ : str = os.path.abspath(os.path.dirname(__A ) ) a_ : str = os.path.join(__A , __A ) a_ : dict[EdgeT, int] = {} a_ : list[str] a_ : int a_ : int with open(__A ) as f: a_ : str = f.read().strip().split('''\n''' ) a_ : List[Any] = [line.split(''',''' ) for line in data] for edgea in range(1 , len(__A ) ): for edgea in range(__A ): if adjaceny_matrix[edgea][edgea] != "-": a_ : Tuple = int(adjaceny_matrix[edgea][edgea] ) a_ : Graph = Graph(set(range(len(__A ) ) ) , __A ) a_ : Graph = graph.prims_algorithm() a_ : int = sum(graph.edges.values() ) a_ : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
666
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: a_ : Any = 1 a_ : Optional[Any] = 3 a_ : List[str] = (32, 32) a_ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__SCREAMING_SNAKE_CASE ) return image @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: torch.manual_seed(0 ) a_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def SCREAMING_SNAKE_CASE ( self : str ) -> str: torch.manual_seed(0 ) a_ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) a_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: def extract(*__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Tuple ): class SCREAMING_SNAKE_CASE : def __init__( self : Tuple ) -> List[str]: a_ : Optional[int] = torch.ones([0] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: self.pixel_values.to(__SCREAMING_SNAKE_CASE ) return self return Out() return extract def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: a_ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : List[Any] = self.dummy_cond_unet a_ : int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) a_ : Dict = self.dummy_vae a_ : int = self.dummy_text_encoder a_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk a_ : Dict = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : List[str] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = '''A painting of a squirrel eating a burger''' a_ : Any = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : List[str] = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) a_ : Union[str, Any] = output.images a_ : List[str] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Any = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] a_ : Any = image[0, -3:, -3:, -1] a_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a_ : Union[str, Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: a_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : str = self.dummy_cond_unet a_ : Any = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = self.dummy_vae a_ : Any = self.dummy_text_encoder a_ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk a_ : Optional[int] = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : List[str] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Any = '''A painting of a squirrel eating a burger''' a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Optional[int] = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) a_ : str = output.images a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Optional[Any] = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] a_ : List[Any] = image[0, -3:, -3:, -1] a_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a_ : List[str] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: a_ : Optional[Any] = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__SCREAMING_SNAKE_CASE ) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert isinstance(pipe.scheduler , __SCREAMING_SNAKE_CASE ) assert pipe.safety_checker is None a_ : Any = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = StableDiffusionPipeline.from_pretrained(__SCREAMING_SNAKE_CASE ) # sanity check that the pipeline still works assert pipe.safety_checker is None a_ : Optional[Any] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : str = self.dummy_cond_unet a_ : Optional[Any] = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) a_ : Dict = self.dummy_vae a_ : Optional[int] = self.dummy_text_encoder a_ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 a_ : int = unet.half() a_ : Optional[int] = vae.half() a_ : List[Any] = bert.half() # make sure here that pndm scheduler skips prk a_ : Union[str, Any] = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : Union[str, Any] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : List[str] = '''A painting of a squirrel eating a burger''' a_ : Dict = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Dict = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE ) a_ : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) a_ : str = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) a_ : Tuple = 40_0366_0346 a_ : Union[str, Any] = 7 # without safety guidance (sld_guidance_scale = 0) a_ : str = torch.manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) a_ : str = output.images a_ : Union[str, Any] = image[0, -3:, -3:, -1] a_ : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) a_ : int = torch.manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ : Union[str, Any] = output.images a_ : Optional[int] = image[0, -3:, -3:, -1] a_ : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: a_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE ) a_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) a_ : List[str] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = '''padme amidala taking a bath artwork, safe for work, no nudity''' a_ : Optional[Any] = 27_3497_1755 a_ : Optional[Any] = 7 a_ : Union[str, Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) a_ : Dict = output.images a_ : str = image[0, -3:, -3:, -1] a_ : Dict = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) a_ : List[str] = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ : Optional[int] = output.images a_ : int = image[0, -3:, -3:, -1] a_ : List[str] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: a_ : int = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) a_ : Optional[int] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Any = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) a_ : List[Any] = 10_4435_5234 a_ : List[Any] = 12 a_ : int = torch.manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Tuple = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) a_ : Optional[Any] = output.images a_ : Union[str, Any] = image[0, -3:, -3:, -1] a_ : List[str] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 a_ : Tuple = torch.manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Tuple = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ : List[Any] = output.images a_ : str = image[0, -3:, -3:, -1] a_ : Dict = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
1
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
1
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __lowerCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any=7 , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=18 , __SCREAMING_SNAKE_CASE : Union[str, Any]=30 , __SCREAMING_SNAKE_CASE : Union[str, Any]=400 , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=None , ) -> List[Any]: a_ : List[Any] = size if size is not None else {'''height''': 20, '''width''': 20} a_ : Optional[int] = parent a_ : List[str] = batch_size a_ : List[str] = num_channels a_ : str = image_size a_ : Any = min_resolution a_ : Dict = max_resolution a_ : List[str] = size a_ : str = do_normalize a_ : Optional[Any] = do_convert_rgb a_ : Any = [512, 1024, 2048, 4096] a_ : Dict = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: a_ : Tuple = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' a_ : List[str] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = PixaStructImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: a_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: a_ : Union[str, Any] = self.image_processor_tester.prepare_dummy_image() a_ : Tuple = self.image_processing_class(**self.image_processor_dict ) a_ : int = 2048 a_ : Tuple = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # Initialize image_processor a_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : Dict = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a_ : int = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a_ : List[Any] = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # Initialize image_processor a_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : List[str] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 a_ : Any = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__SCREAMING_SNAKE_CASE ): a_ : str = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches a_ : str = '''Hello''' a_ : Optional[int] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a_ : str = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: # Initialize image_processor a_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : List[Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a_ : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a_ : Union[str, Any] = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: # Initialize image_processor a_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input a_ : Any = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a_ : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a_ : Tuple = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: a_ : Optional[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) a_ : Tuple = 3 @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: # Initialize image_processor a_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : int = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a_ : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a_ : Dict = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
666
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
1
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : Optional[Any] = 0 @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): a_ : Any = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__SCREAMING_SNAKE_CASE ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): a_ : Optional[int] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__SCREAMING_SNAKE_CASE ) , 0 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: a_ : Optional[Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: a_ : List[Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: a_ : int = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Check that tokenizer_type ≠ model_type a_ : Optional[Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__SCREAMING_SNAKE_CASE , '''vocab.txt''' ) ) a_ : Optional[int] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , tokenizer_type='''bert''' , use_fast=__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__SCREAMING_SNAKE_CASE , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__SCREAMING_SNAKE_CASE , '''merges.txt''' ) ) a_ : List[Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , tokenizer_type='''gpt2''' , use_fast=__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__SCREAMING_SNAKE_CASE , '''vocab.txt''' ) ) a_ : Union[str, Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , tokenizer_type='''bert''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__SCREAMING_SNAKE_CASE , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__SCREAMING_SNAKE_CASE , '''merges.txt''' ) ) a_ : int = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , tokenizer_type='''gpt2''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: with pytest.raises(__SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: a_ : List[str] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __SCREAMING_SNAKE_CASE ) else: self.assertEqual(tokenizer.do_lower_case , __SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): a_ : Tuple = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai a_ : int = TOKENIZER_MAPPING.values() a_ : str = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__SCREAMING_SNAKE_CASE ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : str ) -> int: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , __SCREAMING_SNAKE_CASE ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: a_ : Optional[int] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__SCREAMING_SNAKE_CASE ) a_ : str = '''Hello, world. How are you?''' a_ : List[Any] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' , tokens[0] ) a_ : List[str] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: a_ : List[str] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : Optional[int] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: a_ : Dict = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # Check we can load the tokenizer config of an online model. a_ : int = get_tokenizer_config('''bert-base-cased''' ) a_ : Union[str, Any] = config.pop('''_commit_hash''' , __SCREAMING_SNAKE_CASE ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__SCREAMING_SNAKE_CASE , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. a_ : Dict = get_tokenizer_config(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. a_ : Optional[Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = get_tokenizer_config(__SCREAMING_SNAKE_CASE ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoTokenizer.register(__SCREAMING_SNAKE_CASE , slow_tokenizer_class=__SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoTokenizer.register(__SCREAMING_SNAKE_CASE , slow_tokenizer_class=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = CustomTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) # Can register in two steps AutoTokenizer.register(__SCREAMING_SNAKE_CASE , slow_tokenizer_class=__SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__SCREAMING_SNAKE_CASE , fast_tokenizer_class=__SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __SCREAMING_SNAKE_CASE , slow_tokenizer_class=__SCREAMING_SNAKE_CASE , fast_tokenizer_class=__SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoTokenizer.register(__SCREAMING_SNAKE_CASE , fast_tokenizer_class=__SCREAMING_SNAKE_CASE ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: a_ : Optional[int] = BertTokenizerFast.from_pretrained(__SCREAMING_SNAKE_CASE ) bert_tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = CustomTokenizerFast.from_pretrained(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__SCREAMING_SNAKE_CASE ): a_ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE ): a_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : str = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version a_ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = False class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = NewTokenizer snake_case__ = False try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoTokenizer.register(__SCREAMING_SNAKE_CASE , slow_tokenizer_class=__SCREAMING_SNAKE_CASE ) AutoTokenizer.register(__SCREAMING_SNAKE_CASE , fast_tokenizer_class=__SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local a_ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) a_ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. a_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) a_ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub a_ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) a_ : Optional[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: a_ : List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version a_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ): a_ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a_ : Optional[int] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: # Make sure we have cached the tokenizer. a_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: a_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
666
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
1
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def _UpperCAmelCase ( __A : Optional[Any] , __A : Any ): a_ : List[str] = int(__A ) assert noofclusters < len(__A ) # Find out the dimensionality a_ : Tuple = len(vectors[0] ) # Will help select random centroids from among the available vectors a_ : List[Any] = list(range(len(__A ) ) ) shuffle(__A ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. a_ : Dict = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION a_ : Optional[Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points a_ : Dict = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__A ) ] ##These nodes will assign the centroid Variables the appropriate ##values a_ : Optional[int] = tf.placeholder('''float64''' , [dim] ) a_ : str = [] for centroid in centroids: cent_assigns.append(tf.assign(__A , __A ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) a_ : Optional[Any] = [tf.Variable(0 ) for i in range(len(__A ) )] ##These nodes will assign an assignment Variable the appropriate ##value a_ : Union[str, Any] = tf.placeholder('''int32''' ) a_ : List[str] = [] for assignment in assignments: cluster_assigns.append(tf.assign(__A , __A ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input a_ : Optional[Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors a_ : Union[str, Any] = tf.reduce_mean(__A , 0 ) ##Node for computing Euclidean distances # Placeholders for input a_ : Tuple = tf.placeholder('''float''' , [dim] ) a_ : List[Any] = tf.placeholder('''float''' , [dim] ) a_ : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__A , __A ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input a_ : List[Any] = tf.placeholder('''float''' , [noofclusters] ) a_ : Union[str, Any] = tf.argmin(__A , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. a_ : str = tf.initialize_all_variables() # Initialize all variables sess.run(__A ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. a_ : Dict = 1_00 for _ in range(__A ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__A ) ): a_ : List[Any] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. a_ : Dict = [ sess.run(__A , feed_dict={va: vect, va: sess.run(__A )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input a_ : Dict = sess.run( __A , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__A ): # Collect all the vectors assigned to this cluster a_ : str = [ vectors[i] for i in range(len(__A ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location a_ : List[Any] = sess.run( __A , feed_dict={mean_input: array(__A )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments a_ : Any = sess.run(__A ) a_ : Tuple = sess.run(__A ) return centroids, assignments
666
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "imagegpt" snake_case__ = ["past_key_values"] snake_case__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : str=512 + 1 , __SCREAMING_SNAKE_CASE : int=32 * 32 , __SCREAMING_SNAKE_CASE : Dict=512 , __SCREAMING_SNAKE_CASE : List[str]=24 , __SCREAMING_SNAKE_CASE : Tuple=8 , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : str="quick_gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : int=1e-5 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Any: a_ : str = vocab_size a_ : Optional[int] = n_positions a_ : Any = n_embd a_ : Union[str, Any] = n_layer a_ : List[Any] = n_head a_ : str = n_inner a_ : int = activation_function a_ : Optional[int] = resid_pdrop a_ : Dict = embd_pdrop a_ : List[Any] = attn_pdrop a_ : Dict = layer_norm_epsilon a_ : List[str] = initializer_range a_ : Optional[Any] = scale_attn_weights a_ : str = use_cache a_ : Dict = scale_attn_by_inverse_layer_idx a_ : Optional[Any] = reorder_and_upcast_attn a_ : str = tie_word_embeddings super().__init__(tie_word_embeddings=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): @property def SCREAMING_SNAKE_CASE ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : "FeatureExtractionMixin" , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : int = 32 , __SCREAMING_SNAKE_CASE : int = 32 , ) -> Mapping[str, Any]: a_ : Tuple = self._generate_dummy_images(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = dict(preprocessor(images=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) ) return inputs
666
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
1
'''simple docstring''' from sklearn.metrics import fa_score import datasets __lowerCAmelCase = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' __lowerCAmelCase = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' __lowerCAmelCase = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : List[Any]="binary" , __SCREAMING_SNAKE_CASE : List[str]=None ) -> List[Any]: a_ : Optional[Any] = fa_score( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , pos_label=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE ) return {"f1": float(__SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
666
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _UpperCAmelCase ( __A : NDArray[floataa] , __A : NDArray[floataa] , __A : list[int] , __A : int , ): a_ , a_ : int = coefficient_matrix.shape a_ , a_ : Optional[Any] = constant_matrix.shape if rowsa != colsa: a_ : Dict = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(__A ) if colsa != 1: a_ : Tuple = f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(__A ) if rowsa != rowsa: a_ : List[Any] = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(__A ) if len(__A ) != rowsa: a_ : Tuple = ( '''Number of initial values must be equal to number of rows in coefficient ''' f'matrix but received {len(__A )} and {rowsa}' ) raise ValueError(__A ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) a_ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) a_ , a_ : Optional[Any] = table.shape strictly_diagonally_dominant(__A ) # Iterates the whole matrix for given number of times for _ in range(__A ): a_ : List[str] = [] for row in range(__A ): a_ : Optional[Any] = 0 for col in range(__A ): if col == row: a_ : Union[str, Any] = table[row][col] elif col == cols - 1: a_ : Union[str, Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] a_ : Tuple = (temp + val) / denom new_val.append(__A ) a_ : str = new_val return [float(__A ) for i in new_val] def _UpperCAmelCase ( __A : NDArray[floataa] ): a_ , a_ : Dict = table.shape a_ : int = True for i in range(0 , __A ): a_ : Optional[Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
1
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : dict ): a_ : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack a_ : set[int] = set() return any( node not in visited and depth_first_search(__A , __A , __A , __A ) for node in graph ) def _UpperCAmelCase ( __A : dict , __A : int , __A : set , __A : set ): visited.add(__A ) rec_stk.add(__A ) for node in graph[vertex]: if node not in visited: if depth_first_search(__A , __A , __A , __A ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__A ) return False if __name__ == "__main__": from doctest import testmod testmod()
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
'''simple docstring''' import random class SCREAMING_SNAKE_CASE : @staticmethod def SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE : str ) -> tuple[list[int], list[int]]: a_ : List[Any] = [ord(__SCREAMING_SNAKE_CASE ) for i in text] a_ : str = [] a_ : Dict = [] for i in plain: a_ : str = random.randint(1 , 300 ) a_ : Union[str, Any] = (i + k) * k cipher.append(__SCREAMING_SNAKE_CASE ) key.append(__SCREAMING_SNAKE_CASE ) return cipher, key @staticmethod def SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : list[int] ) -> str: a_ : List[Any] = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): a_ : Dict = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(__SCREAMING_SNAKE_CASE ) ) return "".join(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase , __lowerCAmelCase = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "openai-gpt" snake_case__ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=4_0478 , __SCREAMING_SNAKE_CASE : List[str]=512 , __SCREAMING_SNAKE_CASE : Any=768 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=12 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=1e-5 , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : int="cls_index" , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=0.1 , **__SCREAMING_SNAKE_CASE : List[str] , ) -> int: a_ : Optional[int] = vocab_size a_ : str = n_positions a_ : Tuple = n_embd a_ : Dict = n_layer a_ : Optional[Any] = n_head a_ : List[str] = afn a_ : str = resid_pdrop a_ : Tuple = embd_pdrop a_ : List[Any] = attn_pdrop a_ : List[Any] = layer_norm_epsilon a_ : Tuple = initializer_range a_ : Optional[Any] = summary_type a_ : List[str] = summary_use_proj a_ : List[str] = summary_activation a_ : List[str] = summary_first_dropout a_ : Optional[Any] = summary_proj_to_labels super().__init__(**__SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
1
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __lowerCAmelCase = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' __lowerCAmelCase = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def _UpperCAmelCase ( __A : Union[str, Any] ): def remove_articles(__A : Optional[Any] ): a_ : List[Any] = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(__A , ''' ''' , __A ) def white_space_fix(__A : Optional[int] ): return " ".join(text.split() ) def remove_punc(__A : List[Any] ): a_ : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__A : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) ) def _UpperCAmelCase ( __A : str , __A : Optional[Any] ): return int(normalize_answer(__A ) == normalize_answer(__A ) ) def _UpperCAmelCase ( __A : Optional[int] , __A : List[Any] ): a_ : str = [any(compute_exact(__A , __A ) for ref in refs ) for pred, refs in zip(__A , __A )] return (sum(__A ) / len(__A )) * 1_00 def _UpperCAmelCase ( __A : Optional[Any] , __A : Any , __A : Any , __A : List[Any] ): a_ : str = [rgram for rgrams in rgramslist for rgram in rgrams] a_ : Optional[int] = Counter(__A ) a_ : Dict = Counter(__A ) a_ : Tuple = Counter() for sgram, scount in sgramcounter.items(): a_ : Dict = scount * numref a_ : List[str] = Counter(__A ) a_ : Dict = Counter() for cgram, ccount in cgramcounter.items(): a_ : List[str] = ccount * numref # KEEP a_ : str = sgramcounter_rep & cgramcounter_rep a_ : int = keepgramcounter_rep & rgramcounter a_ : Tuple = sgramcounter_rep & rgramcounter a_ : Dict = 0 a_ : str = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a_ : List[str] = 1 a_ : str = 1 if len(__A ) > 0: a_ : List[Any] = keeptmpscorea / len(__A ) if len(__A ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) a_ : int = keeptmpscorea / sum(keepgramcounterall_rep.values() ) a_ : List[Any] = 0 if keepscore_precision > 0 or keepscore_recall > 0: a_ : str = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION a_ : Optional[int] = sgramcounter_rep - cgramcounter_rep a_ : Dict = delgramcounter_rep - rgramcounter a_ : Optional[Any] = sgramcounter_rep - rgramcounter a_ : int = 0 a_ : Any = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a_ : int = 1 if len(__A ) > 0: a_ : Tuple = deltmpscorea / len(__A ) # ADDITION a_ : Optional[Any] = set(__A ) - set(__A ) a_ : Optional[int] = set(__A ) & set(__A ) a_ : Any = set(__A ) - set(__A ) a_ : str = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a_ : List[str] = 1 a_ : Optional[Any] = 1 if len(__A ) > 0: a_ : Optional[int] = addtmpscore / len(__A ) if len(__A ) > 0: a_ : Dict = addtmpscore / len(__A ) a_ : str = 0 if addscore_precision > 0 or addscore_recall > 0: a_ : List[Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _UpperCAmelCase ( __A : Optional[Any] , __A : List[str] , __A : Optional[Any] ): a_ : Tuple = len(__A ) a_ : List[str] = ssent.split(''' ''' ) a_ : Optional[Any] = csent.split(''' ''' ) a_ : Dict = [] a_ : Dict = [] a_ : List[str] = [] a_ : Any = [] a_ : int = [] a_ : int = [] a_ : int = [] a_ : List[str] = [] a_ : int = [] a_ : str = [] for rsent in rsents: a_ : int = rsent.split(''' ''' ) a_ : Union[str, Any] = [] a_ : Dict = [] a_ : Any = [] ragramslist.append(__A ) for i in range(0 , len(__A ) - 1 ): if i < len(__A ) - 1: a_ : Dict = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(__A ) if i < len(__A ) - 2: a_ : Tuple = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(__A ) if i < len(__A ) - 3: a_ : Any = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(__A ) ragramslist.append(__A ) ragramslist.append(__A ) ragramslist.append(__A ) for i in range(0 , len(__A ) - 1 ): if i < len(__A ) - 1: a_ : Dict = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(__A ) if i < len(__A ) - 2: a_ : Optional[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(__A ) if i < len(__A ) - 3: a_ : Optional[int] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(__A ) for i in range(0 , len(__A ) - 1 ): if i < len(__A ) - 1: a_ : Optional[int] = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(__A ) if i < len(__A ) - 2: a_ : Union[str, Any] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(__A ) if i < len(__A ) - 3: a_ : List[Any] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(__A ) ((a_) , (a_) , (a_)) : str = SARIngram(__A , __A , __A , __A ) ((a_) , (a_) , (a_)) : List[str] = SARIngram(__A , __A , __A , __A ) ((a_) , (a_) , (a_)) : Union[str, Any] = SARIngram(__A , __A , __A , __A ) ((a_) , (a_) , (a_)) : Optional[Any] = SARIngram(__A , __A , __A , __A ) a_ : Tuple = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 a_ : List[str] = sum([delascore, delascore, delascore, delascore] ) / 4 a_ : Union[str, Any] = sum([addascore, addascore, addascore, addascore] ) / 4 a_ : Union[str, Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _UpperCAmelCase ( __A : Any , __A : bool = True , __A : str = "13a" , __A : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: a_ : Optional[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: a_ : Dict = sacrebleu.metrics.bleu._get_tokenizer(__A )()(__A ) else: a_ : Union[str, Any] = sacrebleu.TOKENIZERS[tokenizer]()(__A ) elif tokenizer == "moses": a_ : Dict = sacremoses.MosesTokenizer().tokenize(__A , return_str=__A , escape=__A ) elif tokenizer == "penn": a_ : Tuple = sacremoses.MosesTokenizer().penn_tokenize(__A , return_str=__A ) else: a_ : Any = sentence if not return_str: a_ : Optional[Any] = normalized_sent.split() return normalized_sent def _UpperCAmelCase ( __A : Dict , __A : int , __A : Optional[Any] ): if not (len(__A ) == len(__A ) == len(__A )): raise ValueError('''Sources length must match predictions and references lengths.''' ) a_ : Optional[Any] = 0 for src, pred, refs in zip(__A , __A , __A ): sari_score += SARIsent(normalize(__A ) , normalize(__A ) , [normalize(__A ) for sent in refs] ) a_ : str = sari_score / len(__A ) return 1_00 * sari_score def _UpperCAmelCase ( __A : Dict , __A : str , __A : str="exp" , __A : int=None , __A : int=False , __A : Union[str, Any]=False , __A : str=False , ): a_ : Optional[Any] = len(references[0] ) if any(len(__A ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) a_ : Dict = [[refs[i] for refs in references] for i in range(__A )] a_ : List[str] = sacrebleu.corpus_bleu( __A , __A , smooth_method=__A , smooth_value=__A , force=__A , lowercase=__A , use_effective_order=__A , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: a_ : Any = {} result.update({'''sari''': compute_sari(sources=__SCREAMING_SNAKE_CASE , predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE )} ) result.update({'''exact''': compute_em(predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE )} ) return result
666
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
1
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __lowerCAmelCase = 'bert-base-cased' __lowerCAmelCase = 'google/pegasus-xsum' __lowerCAmelCase = [' Sam ate lunch today.', 'Sams lunch ingredients.'] __lowerCAmelCase = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] __lowerCAmelCase = 'patrickvonplaten/t5-tiny-random' __lowerCAmelCase = 'sshleifer/bart-tiny-random' __lowerCAmelCase = 'sshleifer/tiny-mbart' __lowerCAmelCase = 'sshleifer/tiny-marian-en-de' def _UpperCAmelCase ( __A : Path , __A : list ): a_ : Optional[int] = '''\n'''.join(__A ) Path(__A ).open('''w''' ).writelines(__A ) def _UpperCAmelCase ( __A : str ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__A , f'{split}.source' ) , __A ) _dump_articles(os.path.join(__A , f'{split}.target' ) , __A ) return tmp_dir class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: a_ : Any = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) a_ : Tuple = max(len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) for a in ARTICLES ) a_ : str = max(len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) for a in SUMMARIES ) a_ : List[Any] = 4 a_ : List[str] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated a_ , a_ : List[str] = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. a_ : List[str] = SeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=__SCREAMING_SNAKE_CASE , type_path='''train''' , max_source_length=__SCREAMING_SNAKE_CASE , max_target_length=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , ) a_ : List[str] = DataLoader(__SCREAMING_SNAKE_CASE , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place a_ : List[Any] = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict ) -> Any: a_ : Tuple = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) a_ : Any = max(len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) for a in ARTICLES ) a_ : Union[str, Any] = max(len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) for a in SUMMARIES ) a_ : int = 4 a_ : Optional[int] = LegacySeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=__SCREAMING_SNAKE_CASE , type_path='''train''' , max_source_length=20 , max_target_length=__SCREAMING_SNAKE_CASE , ) a_ : Optional[int] = DataLoader(__SCREAMING_SNAKE_CASE , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: a_ : Optional[int] = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) a_ : Union[str, Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) a_ : int = tmp_dir.joinpath('''train.source''' ).open().readlines() a_ : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 128 , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {x.name for x in tmp_dir.iterdir()} a_ : List[Any] = {x.name for x in save_dir.iterdir()} a_ : List[Any] = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__SCREAMING_SNAKE_CASE ) < len(__SCREAMING_SNAKE_CASE ) assert len(__SCREAMING_SNAKE_CASE ) == 1 assert len(packed_examples[0] ) == sum(len(__SCREAMING_SNAKE_CASE ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: if not FAIRSEQ_AVAILABLE: return a_ , a_ , a_ : Optional[Any] = self._get_dataset(max_len=64 ) a_ : Union[str, Any] = 64 a_ : int = ds.make_dynamic_sampler(__SCREAMING_SNAKE_CASE , required_batch_size_multiple=__SCREAMING_SNAKE_CASE ) a_ : Dict = [len(__SCREAMING_SNAKE_CASE ) for x in batch_sampler] assert len(set(__SCREAMING_SNAKE_CASE ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) # no dropped or added examples a_ : List[str] = DataLoader(__SCREAMING_SNAKE_CASE , batch_sampler=__SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn , num_workers=2 ) a_ : Tuple = [] a_ : List[str] = [] for batch in data_loader: a_ : Union[str, Any] = batch['''input_ids'''].shape a_ : Dict = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple a_ : List[str] = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(__SCREAMING_SNAKE_CASE ) if num_src_tokens > (max_tokens * 1.1): failures.append(__SCREAMING_SNAKE_CASE ) assert num_src_per_batch[0] == max(__SCREAMING_SNAKE_CASE ) if failures: raise AssertionError(f'too many tokens in {len(__SCREAMING_SNAKE_CASE )} batches' ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: a_ , a_ , a_ : Tuple = self._get_dataset(max_len=512 ) a_ : Union[str, Any] = 2 a_ : List[Any] = ds.make_sortish_sampler(__SCREAMING_SNAKE_CASE , shuffle=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = DataLoader(__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn , num_workers=2 ) a_ : Optional[Any] = DataLoader(__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn , num_workers=2 , sampler=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.pad_token_id def count_pad_tokens(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any]="input_ids" ): return [batch[k].eq(__SCREAMING_SNAKE_CASE ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__SCREAMING_SNAKE_CASE , k='''labels''' ) ) < sum(count_pad_tokens(__SCREAMING_SNAKE_CASE , k='''labels''' ) ) assert sum(count_pad_tokens(__SCREAMING_SNAKE_CASE ) ) < sum(count_pad_tokens(__SCREAMING_SNAKE_CASE ) ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : Optional[int]=1000 , __SCREAMING_SNAKE_CASE : Union[str, Any]=128 ) -> Optional[int]: if os.getenv('''USE_REAL_DATA''' , __SCREAMING_SNAKE_CASE ): a_ : int = '''examples/seq2seq/wmt_en_ro''' a_ : Tuple = max_len * 2 * 64 if not Path(__SCREAMING_SNAKE_CASE ).joinpath('''train.len''' ).exists(): save_len_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: a_ : Optional[int] = '''examples/seq2seq/test_data/wmt_en_ro''' a_ : Tuple = max_len * 4 save_len_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : int = SeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=__SCREAMING_SNAKE_CASE , type_path='''train''' , max_source_length=__SCREAMING_SNAKE_CASE , max_target_length=__SCREAMING_SNAKE_CASE , n_obs=__SCREAMING_SNAKE_CASE , ) return ds, max_tokens, tokenizer def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ , a_ , a_ : Union[str, Any] = self._get_dataset() a_ : Optional[Any] = set(DistributedSortishSampler(__SCREAMING_SNAKE_CASE , 256 , num_replicas=2 , rank=0 , add_extra_examples=__SCREAMING_SNAKE_CASE ) ) a_ : int = set(DistributedSortishSampler(__SCREAMING_SNAKE_CASE , 256 , num_replicas=2 , rank=1 , add_extra_examples=__SCREAMING_SNAKE_CASE ) ) assert idsa.intersection(__SCREAMING_SNAKE_CASE ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: a_ : Tuple = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE ) if tok_name == MBART_TINY: a_ : Union[str, Any] = SeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) a_ : Optional[int] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: a_ : int = SeqaSeqDataset( __SCREAMING_SNAKE_CASE , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) a_ : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__SCREAMING_SNAKE_CASE ) == 1 if tok_name == BART_TINY else len(__SCREAMING_SNAKE_CASE ) == 0
666
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
1
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "mask2former" snake_case__ = ["swin"] snake_case__ = {"hidden_size": "hidden_dim"} def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Dict] = None , __SCREAMING_SNAKE_CASE : int = 256 , __SCREAMING_SNAKE_CASE : int = 256 , __SCREAMING_SNAKE_CASE : int = 256 , __SCREAMING_SNAKE_CASE : int = 1024 , __SCREAMING_SNAKE_CASE : str = "relu" , __SCREAMING_SNAKE_CASE : int = 6 , __SCREAMING_SNAKE_CASE : int = 10 , __SCREAMING_SNAKE_CASE : int = 8 , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : int = 2048 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : int = 4 , __SCREAMING_SNAKE_CASE : int = 255 , __SCREAMING_SNAKE_CASE : int = 100 , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : float = 2.0 , __SCREAMING_SNAKE_CASE : float = 5.0 , __SCREAMING_SNAKE_CASE : float = 5.0 , __SCREAMING_SNAKE_CASE : int = 1_2544 , __SCREAMING_SNAKE_CASE : float = 3.0 , __SCREAMING_SNAKE_CASE : float = 0.75 , __SCREAMING_SNAKE_CASE : float = 0.02 , __SCREAMING_SNAKE_CASE : float = 1.0 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : List[int] = [4, 8, 16, 32] , __SCREAMING_SNAKE_CASE : bool = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> int: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) a_ : Union[str, Any] = CONFIG_MAPPING['''swin''']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__SCREAMING_SNAKE_CASE , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a_ : List[Any] = backbone_config.pop('''model_type''' ) a_ : Any = CONFIG_MAPPING[backbone_model_type] a_ : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) a_ : Optional[int] = backbone_config a_ : List[str] = feature_size a_ : Optional[Any] = mask_feature_size a_ : Dict = hidden_dim a_ : List[str] = encoder_feedforward_dim a_ : Dict = activation_function a_ : Tuple = encoder_layers a_ : int = decoder_layers a_ : Any = num_attention_heads a_ : Optional[int] = dropout a_ : Optional[int] = dim_feedforward a_ : Any = pre_norm a_ : Optional[int] = enforce_input_projection a_ : int = common_stride a_ : int = ignore_value a_ : str = num_queries a_ : str = no_object_weight a_ : List[str] = class_weight a_ : Union[str, Any] = mask_weight a_ : str = dice_weight a_ : List[Any] = train_num_points a_ : str = oversample_ratio a_ : int = importance_sample_ratio a_ : str = init_std a_ : Dict = init_xavier_std a_ : Optional[Any] = use_auxiliary_loss a_ : Optional[Any] = feature_strides a_ : Optional[Any] = output_auxiliary_logits a_ : Dict = decoder_layers super().__init__(**__SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] , __SCREAMING_SNAKE_CASE : PretrainedConfig , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: return cls( backbone_config=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict[str, any]: a_ : List[str] = copy.deepcopy(self.__dict__ ) a_ : Optional[Any] = self.backbone_config.to_dict() a_ : List[str] = self.__class__.model_type return output
666
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : int , __A : int ): a_ : List[Any] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): a_ : List[Any] = n - k # Calculate C(n,k) for i in range(__A ): result *= n - i result //= i + 1 return result def _UpperCAmelCase ( __A : int ): return binomial_coefficient(2 * node_count , __A ) // (node_count + 1) def _UpperCAmelCase ( __A : int ): if n < 0: raise ValueError('''factorial() not defined for negative values''' ) a_ : Dict = 1 for i in range(1 , n + 1 ): result *= i return result def _UpperCAmelCase ( __A : int ): return catalan_number(__A ) * factorial(__A ) if __name__ == "__main__": __lowerCAmelCase = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
666
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> Any: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple ) -> int: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> Dict: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ): return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def _UpperCAmelCase ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): @require_beam def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: a_ : Union[str, Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: a_ : Any = DummyBeamDataset(cache_dir=__SCREAMING_SNAKE_CASE , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) a_ : List[Any] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __SCREAMING_SNAKE_CASE ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: import apache_beam as beam a_ : str = beam.io.parquetio.WriteToParquet a_ : Dict = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: a_ : Union[str, Any] = DummyBeamDataset(cache_dir=__SCREAMING_SNAKE_CASE , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: a_ : Optional[Any] = partial(__SCREAMING_SNAKE_CASE , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( __SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) a_ : Union[str, Any] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __SCREAMING_SNAKE_CASE ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __SCREAMING_SNAKE_CASE ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: with tempfile.TemporaryDirectory() as tmp_cache_dir: a_ : int = DummyBeamDataset(cache_dir=__SCREAMING_SNAKE_CASE ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: a_ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: a_ : int = NestedBeamDataset(cache_dir=__SCREAMING_SNAKE_CASE , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) a_ : List[str] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __SCREAMING_SNAKE_CASE ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "transfo-xl" snake_case__ = ["mems"] snake_case__ = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=26_7735 , __SCREAMING_SNAKE_CASE : List[str]=[2_0000, 4_0000, 20_0000] , __SCREAMING_SNAKE_CASE : Any=1024 , __SCREAMING_SNAKE_CASE : int=1024 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : Tuple=64 , __SCREAMING_SNAKE_CASE : Any=4096 , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=18 , __SCREAMING_SNAKE_CASE : List[Any]=1600 , __SCREAMING_SNAKE_CASE : Any=1000 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : Optional[int]=-1 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[Any]="normal" , __SCREAMING_SNAKE_CASE : Optional[Any]=0.01 , __SCREAMING_SNAKE_CASE : Dict=0.01 , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : Dict=1e-5 , __SCREAMING_SNAKE_CASE : List[str]=0 , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: a_ : Union[str, Any] = vocab_size a_ : Dict = [] self.cutoffs.extend(__SCREAMING_SNAKE_CASE ) if proj_share_all_but_first: a_ : Tuple = [False] + [True] * len(self.cutoffs ) else: a_ : int = [False] + [False] * len(self.cutoffs ) a_ : Dict = d_model a_ : Tuple = d_embed a_ : Union[str, Any] = d_head a_ : Optional[int] = d_inner a_ : Union[str, Any] = div_val a_ : int = pre_lnorm a_ : List[Any] = n_layer a_ : List[Any] = n_head a_ : Dict = mem_len a_ : List[Any] = same_length a_ : Dict = attn_type a_ : Dict = clamp_len a_ : Union[str, Any] = sample_softmax a_ : Dict = adaptive a_ : Optional[Any] = dropout a_ : str = dropatt a_ : Optional[Any] = untie_r a_ : str = init a_ : Optional[Any] = init_range a_ : int = proj_init_std a_ : Union[str, Any] = init_std a_ : List[str] = layer_norm_epsilon super().__init__(eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
666
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} __lowerCAmelCase = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } __lowerCAmelCase = { 'allenai/longformer-base-4096': 4_096, 'allenai/longformer-large-4096': 4_096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCAmelCase ( ): a_ : int = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) a_ : List[str] = bs[:] a_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 a_ : str = [chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def _UpperCAmelCase ( __A : Optional[int] ): a_ : int = set() a_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a_ : Optional[int] = char return pairs class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]="replace" , __SCREAMING_SNAKE_CASE : Any="<s>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="</s>" , __SCREAMING_SNAKE_CASE : int="</s>" , __SCREAMING_SNAKE_CASE : Optional[int]="<s>" , __SCREAMING_SNAKE_CASE : int="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : int="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Any]=False , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: a_ : Dict = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else bos_token a_ : Any = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else eos_token a_ : Optional[int] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else sep_token a_ : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cls_token a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else unk_token a_ : Any = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a_ : str = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( errors=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as vocab_handle: a_ : Optional[Any] = json.load(__SCREAMING_SNAKE_CASE ) a_ : str = {v: k for k, v in self.encoder.items()} a_ : Union[str, Any] = errors # how to handle errors in decoding a_ : int = bytes_to_unicode() a_ : int = {v: k for k, v in self.byte_encoder.items()} with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as merges_handle: a_ : Optional[int] = merges_handle.read().split('''\n''' )[1:-1] a_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] a_ : Dict = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Dict = {} a_ : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a_ : str = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[str] ) -> Tuple: if token in self.cache: return self.cache[token] a_ : Tuple = tuple(__SCREAMING_SNAKE_CASE ) a_ : Dict = get_pairs(__SCREAMING_SNAKE_CASE ) if not pairs: return token while True: a_ : Dict = min(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break a_ , a_ : Optional[Any] = bigram a_ : List[Any] = [] a_ : Union[str, Any] = 0 while i < len(__SCREAMING_SNAKE_CASE ): try: a_ : Optional[Any] = word.index(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a_ : List[Any] = j if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a_ : List[Any] = tuple(__SCREAMING_SNAKE_CASE ) a_ : Dict = new_word if len(__SCREAMING_SNAKE_CASE ) == 1: break else: a_ : Union[str, Any] = get_pairs(__SCREAMING_SNAKE_CASE ) a_ : str = ''' '''.join(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = word return word def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int: a_ : int = [] for token in re.findall(self.pat , __SCREAMING_SNAKE_CASE ): a_ : Dict = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__SCREAMING_SNAKE_CASE ).split(''' ''' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ) -> Any: return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]: return self.decoder.get(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: a_ : Tuple = ''''''.join(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__SCREAMING_SNAKE_CASE , ensure_ascii=__SCREAMING_SNAKE_CASE ) + '''\n''' ) a_ : int = 0 with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) a_ : Tuple = token_index writer.write(''' '''.join(__SCREAMING_SNAKE_CASE ) + '''\n''' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : Optional[Any] = [self.cls_token_id] a_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : Union[str, Any] = [self.sep_token_id] a_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False , **__SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: a_ : Dict = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__SCREAMING_SNAKE_CASE ) > 0 and not text[0].isspace()): a_ : Any = ''' ''' + text return (text, kwargs)
666
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
1
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _UpperCAmelCase ( __A : List[Any] , __A : Tuple=10 ): a_ : List[str] = [] for _ in range(__A ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _UpperCAmelCase ( __A : Dict , __A : Tuple=10 ): a_ : Dict = [] for step in range(__A ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a_ : Tuple = os.path.join(__A , '''schedule.bin''' ) torch.save(scheduler.state_dict() , __A ) a_ : List[Any] = torch.load(__A ) scheduler.load_state_dict(__A ) return lrs @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for a, b in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , delta=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: a_ : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) a_ : Dict = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a_ : Any = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): a_ : int = criterion(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__SCREAMING_SNAKE_CASE ) a_ : Dict = torch.tensor([0.4, 0.2, -0.5] ) a_ : int = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a_ : Union[str, Any] = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=__SCREAMING_SNAKE_CASE , scale_parameter=__SCREAMING_SNAKE_CASE , warmup_init=__SCREAMING_SNAKE_CASE , ) for _ in range(1000 ): a_ : Tuple = criterion(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ = nn.Linear(50 , 50 ) if is_torch_available() else None snake_case__ = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None snake_case__ = 10 def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any]=None ) -> Dict: self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for a, b in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , delta=__SCREAMING_SNAKE_CASE , msg=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: a_ : List[str] = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a_ : Union[str, Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): a_ , a_ : str = data a_ : Dict = scheduler_func(self.optimizer , **__SCREAMING_SNAKE_CASE ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) a_ : Optional[Any] = unwrap_schedule(__SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListAlmostEqual( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'failed for {scheduler_func} in normal scheduler' , ) a_ : Optional[int] = scheduler_func(self.optimizer , **__SCREAMING_SNAKE_CASE ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule a_ : Optional[int] = unwrap_and_save_reload_schedule(__SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , msg=f'failed for {scheduler_func} in save and reload' ) class SCREAMING_SNAKE_CASE : def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Any: a_ : List[str] = fn def __call__( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: return self.fn(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int ) -> Dict: a_ : str = list(map(self , scheduler.lr_lambdas ) )
666
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def _UpperCAmelCase ( __A : int , __A : str , __A : Optional[int] , __A : List[str] , __A : Optional[int] , __A : str , __A : List[str] , __A : int , __A : List[Any] , __A : Union[str, Any] , __A : str , __A : List[Any] , ): a_ : Union[str, Any] = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } a_ , a_ : List[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: a_ : Union[str, Any] = f'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) assert base_extractor.is_extractable(__A ) a_ : Optional[Any] = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(__A , __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name a_ : str = file_path.read_text(encoding='''utf-8''' ) else: a_ : str = output_path.read_text(encoding='''utf-8''' ) a_ : Tuple = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def _UpperCAmelCase ( __A : Dict , __A : int , __A : str , __A : Optional[Any] , __A : List[Any] , __A : Optional[int] , __A : List[str] , __A : Any , __A : Optional[int] , __A : Dict , __A : List[str] , __A : Union[str, Any] , ): a_ : Optional[Any] = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } a_ : Optional[int] = input_paths[compression_format] if input_path is None: a_ : List[Any] = f'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) a_ : Optional[int] = Extractor.infer_extractor_format(__A ) assert extractor_format is not None a_ : Tuple = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(__A , __A , __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name a_ : str = file_path.read_text(encoding='''utf-8''' ) else: a_ : Any = output_path.read_text(encoding='''utf-8''' ) a_ : List[Any] = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def _UpperCAmelCase ( __A : List[Any] , __A : Dict ): import tarfile a_ : Tuple = tmp_path / '''data_dot_dot''' directory.mkdir() a_ : List[str] = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(__A , '''w''' ) as f: f.add(__A , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def _UpperCAmelCase ( __A : Optional[int] ): import tarfile a_ : List[Any] = tmp_path / '''data_sym_link''' directory.mkdir() a_ : Any = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=__A ) with tarfile.TarFile(__A , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def _UpperCAmelCase ( __A : List[Any] , __A : Tuple , __A : Optional[int] , __A : Optional[int] , __A : Any , __A : Union[str, Any] ): a_ : int = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } a_ : int = insecure_tar_files[insecure_tar_file] a_ : Tuple = tmp_path / '''extracted''' TarExtractor.extract(__A , __A ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _UpperCAmelCase ( __A : Tuple ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number a_ : int = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 a_ : int = ( B'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' B'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' B'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' B'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(__A ) assert zipfile.is_zipfile(str(__A ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__A ) # but we're right
666
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: a_ : int = None a_ : int = None a_ : List[str] = graph self._normalize_graph(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = len(__SCREAMING_SNAKE_CASE ) a_ : int = None def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: if sources is int: a_ : Optional[int] = [sources] if sinks is int: a_ : Optional[int] = [sinks] if len(__SCREAMING_SNAKE_CASE ) == 0 or len(__SCREAMING_SNAKE_CASE ) == 0: return a_ : List[Any] = sources[0] a_ : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__SCREAMING_SNAKE_CASE ) > 1 or len(__SCREAMING_SNAKE_CASE ) > 1: a_ : List[str] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) a_ : Tuple = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: a_ : Tuple = max_input_flow a_ : List[Any] = 0 a_ : int = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: a_ : Any = max_input_flow a_ : str = size - 1 def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: a_ : Any = algorithm(self ) class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: a_ : Dict = flow_network a_ : Tuple = flow_network.verticesCount a_ : Tuple = flow_network.sourceIndex a_ : List[Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that a_ : Dict = flow_network.graph a_ : str = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: if not self.executed: self._algorithm() a_ : Any = True def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: pass class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Dict ) -> Dict: super().__init__(__SCREAMING_SNAKE_CASE ) # use this to save your result a_ : Dict = -1 def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: super().__init__(__SCREAMING_SNAKE_CASE ) a_ : List[str] = [[0] * self.verticies_count for i in range(self.verticies_count )] a_ : Dict = [0] * self.verticies_count a_ : Any = [0] * self.verticies_count def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: a_ : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule a_ : Optional[int] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list a_ : List[Any] = 0 while i < len(__SCREAMING_SNAKE_CASE ): a_ : Optional[int] = vertices_list[i] a_ : Optional[Any] = self.heights[vertex_index] self.process_vertex(__SCREAMING_SNAKE_CASE ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__SCREAMING_SNAKE_CASE ) ) a_ : Dict = 0 else: i += 1 a_ : Dict = sum(self.preflow[self.source_index] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.relabel(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Tuple: a_ : str = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: a_ : List[str] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): a_ : Optional[Any] = self.heights[to_index] if min_height is not None: a_ : Union[str, Any] = min_height + 1 if __name__ == "__main__": __lowerCAmelCase = [0] __lowerCAmelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
666
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None @staticmethod def SCREAMING_SNAKE_CASE ( ) -> Any: raise NotImplementedError def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Dict ) -> Tuple: raise NotImplementedError def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: raise NotImplementedError def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: if not self.is_available(): raise RuntimeError( f'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] ) -> Any: return f'`pip install {cls.pip_package or cls.name}`' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "optuna" @staticmethod def SCREAMING_SNAKE_CASE ( ) -> Tuple: return is_optuna_available() def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: return run_hp_search_optuna(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> int: return default_hp_space_optuna(__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "ray" snake_case__ = "'ray[tune]'" @staticmethod def SCREAMING_SNAKE_CASE ( ) -> List[str]: return is_ray_available() def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: return run_hp_search_ray(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int ) -> Optional[int]: return default_hp_space_ray(__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "sigopt" @staticmethod def SCREAMING_SNAKE_CASE ( ) -> List[Any]: return is_sigopt_available() def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> int: return run_hp_search_sigopt(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> List[str]: return default_hp_space_sigopt(__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "wandb" @staticmethod def SCREAMING_SNAKE_CASE ( ) -> List[Any]: return is_wandb_available() def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: return run_hp_search_wandb(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Tuple ) -> Dict: return default_hp_space_wandb(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _UpperCAmelCase ( ): a_ : Optional[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__A ) > 0: a_ : List[Any] = available_backends[0].name if len(__A ) > 1: logger.info( f'{len(__A )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
666
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
1
'''simple docstring''' __lowerCAmelCase = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609344, "knot": 1.852, } __lowerCAmelCase = { "km/h": 1.0, "m/s": 0.277777778, "mph": 0.621371192, "knot": 0.539956803, } def _UpperCAmelCase ( __A : float , __A : str , __A : str ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: a_ : int = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(__A )}' ) raise ValueError(__A ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): # This function is recursive a_ : Any = len(__A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a_ : Optional[int] = array[0] a_ : Union[str, Any] = False a_ : List[Any] = 1 a_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: a_ : Optional[int] = True a_ : Dict = [element for element in array[i:] if element >= array[i]] a_ : Any = longest_subsequence(__A ) if len(__A ) > len(__A ): a_ : Tuple = temp_array else: i += 1 a_ : str = [element for element in array[1:] if element >= pivot] a_ : Optional[int] = [pivot, *longest_subsequence(__A )] if len(__A ) > len(__A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) set_seed(770) __lowerCAmelCase = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } __lowerCAmelCase = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } __lowerCAmelCase = os.path.dirname(os.path.abspath(__file__)) __lowerCAmelCase = os.path.join(os.path.expanduser('~'), '.cache') __lowerCAmelCase = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def _UpperCAmelCase ( __A : Dict , __A : List[Any]=False ): a_ : List[Any] = model_type if use_small: key += "_small" return os.path.join(__A , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def _UpperCAmelCase ( __A : List[str] , __A : str ): os.makedirs(__A , exist_ok=__A ) hf_hub_download(repo_id=__A , filename=__A , local_dir=__A ) def _UpperCAmelCase ( __A : Optional[Any] , __A : str , __A : List[Any]=False , __A : str="text" ): if model_type == "text": a_ : Any = BarkSemanticModel a_ : Optional[int] = BarkSemanticConfig a_ : Tuple = BarkSemanticGenerationConfig elif model_type == "coarse": a_ : Union[str, Any] = BarkCoarseModel a_ : Union[str, Any] = BarkCoarseConfig a_ : List[Any] = BarkCoarseGenerationConfig elif model_type == "fine": a_ : List[str] = BarkFineModel a_ : Any = BarkFineConfig a_ : Any = BarkFineGenerationConfig else: raise NotImplementedError() a_ : Optional[Any] = f'{model_type}_small' if use_small else model_type a_ : Tuple = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__A ): logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) a_ : Union[str, Any] = torch.load(__A , map_location=__A ) # this is a hack a_ : List[str] = checkpoint['''model_args'''] if "input_vocab_size" not in model_args: a_ : Optional[int] = model_args['''vocab_size'''] a_ : Optional[Any] = model_args['''vocab_size'''] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments a_ : List[str] = model_args.pop('''n_head''' ) a_ : List[str] = model_args.pop('''n_embd''' ) a_ : Any = model_args.pop('''n_layer''' ) a_ : Optional[int] = ConfigClass(**checkpoint['''model_args'''] ) a_ : List[Any] = ModelClass(config=__A ) a_ : int = GenerationConfigClass() a_ : Tuple = model_generation_config a_ : Tuple = checkpoint['''model'''] # fixup checkpoint a_ : Any = '''_orig_mod.''' for k, v in list(state_dict.items() ): if k.startswith(__A ): # replace part of the key with corresponding layer name in HF implementation a_ : Optional[int] = k[len(__A ) :] for old_layer_name in new_layer_name_dict: a_ : Optional[Any] = new_k.replace(__A , new_layer_name_dict[old_layer_name] ) a_ : Union[str, Any] = state_dict.pop(__A ) a_ : Optional[int] = set(state_dict.keys() ) - set(model.state_dict().keys() ) a_ : Optional[int] = {k for k in extra_keys if not k.endswith('''.attn.bias''' )} a_ : int = set(model.state_dict().keys() ) - set(state_dict.keys() ) a_ : Tuple = {k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(__A ) != 0: raise ValueError(f'extra keys found: {extra_keys}' ) if len(__A ) != 0: raise ValueError(f'missing keys: {missing_keys}' ) model.load_state_dict(__A , strict=__A ) a_ : Union[str, Any] = model.num_parameters(exclude_embeddings=__A ) a_ : List[str] = checkpoint['''best_val_loss'''].item() logger.info(f'model loaded: {round(n_params/1E6 , 1 )}M params, {round(__A , 3 )} loss' ) model.eval() model.to(__A ) del checkpoint, state_dict return model def _UpperCAmelCase ( __A : List[str] , __A : Tuple=False , __A : Optional[Any]="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() a_ : Optional[int] = '''cpu''' # do conversion on cpu a_ : Tuple = _get_ckpt_path(__A , use_small=__A ) a_ : Any = _load_model(__A , __A , model_type=__A , use_small=__A ) # load bark initial model a_ : int = _bark_load_model(__A , '''cpu''' , model_type=__A , use_small=__A ) if model_type == "text": a_ : Dict = bark_model['''model'''] if model.num_parameters(exclude_embeddings=__A ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model a_ : List[str] = 5 a_ : List[Any] = 10 if model_type in ["text", "coarse"]: a_ : Union[str, Any] = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) a_ : Union[str, Any] = bark_model(__A )[0] a_ : List[str] = model(__A ) # take last logits a_ : Optional[Any] = output_new_model_total.logits[:, [-1], :] else: a_ : Tuple = 3 a_ : Tuple = 8 a_ : Any = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) a_ : int = model(__A , __A ) a_ : List[Any] = bark_model(__A , __A ) a_ : Optional[int] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('''initial and new outputs are not equal''' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) def _UpperCAmelCase ( __A : Dict , __A : Optional[Any] , __A : Tuple , __A : Dict , __A : Tuple , __A : int , ): a_ : Union[str, Any] = os.path.join(__A , __A ) a_ : Tuple = BarkSemanticConfig.from_pretrained(os.path.join(__A , '''config.json''' ) ) a_ : str = BarkCoarseConfig.from_pretrained(os.path.join(__A , '''config.json''' ) ) a_ : Dict = BarkFineConfig.from_pretrained(os.path.join(__A , '''config.json''' ) ) a_ : Union[str, Any] = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) a_ : List[str] = BarkSemanticModel.from_pretrained(__A ) a_ : List[str] = BarkCoarseModel.from_pretrained(__A ) a_ : str = BarkFineModel.from_pretrained(__A ) a_ : Optional[int] = EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) a_ : Tuple = BarkConfig.from_sub_model_configs( __A , __A , __A , __A ) a_ : Dict = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) a_ : List[Any] = BarkModel(__A ) a_ : str = semantic a_ : Any = coarseAcoustic a_ : List[str] = fineAcoustic a_ : Dict = codec a_ : Tuple = bark_generation_config Path(__A ).mkdir(exist_ok=__A ) bark.save_pretrained(__A , repo_id=__A , push_to_hub=__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') __lowerCAmelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
666
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Optional[NestedDataStructureLike[PathLike]] = None , __SCREAMING_SNAKE_CASE : Optional[NamedSplit] = None , __SCREAMING_SNAKE_CASE : Optional[Features] = None , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> Optional[Any]: a_ : List[str] = path_or_paths a_ : int = split if split or isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else '''train''' a_ : Optional[int] = features a_ : List[Any] = cache_dir a_ : int = keep_in_memory a_ : int = streaming a_ : List[Any] = num_proc a_ : str = kwargs @abstractmethod def SCREAMING_SNAKE_CASE ( self : str ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Optional[Features] = None , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : Any , ) -> Tuple: a_ : List[Any] = features a_ : Any = cache_dir a_ : Optional[Any] = keep_in_memory a_ : Tuple = streaming a_ : int = num_proc a_ : Dict = kwargs @abstractmethod def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[Dataset, IterableDataset]: pass
666
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = ["input_features", "attention_mask"] def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict=80 , __SCREAMING_SNAKE_CASE : Optional[int]=1_6000 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : str=10 , __SCREAMING_SNAKE_CASE : Optional[Any]=25 , __SCREAMING_SNAKE_CASE : List[str]="hamming_window" , __SCREAMING_SNAKE_CASE : Any=3_2768.0 , __SCREAMING_SNAKE_CASE : List[Any]=0.97 , __SCREAMING_SNAKE_CASE : Any=1.0 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> List[Any]: super().__init__(feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = feature_size a_ : Optional[Any] = sampling_rate a_ : int = padding_value a_ : Optional[int] = hop_length a_ : Dict = win_length a_ : Tuple = frame_signal_scale a_ : str = preemphasis_coeff a_ : Optional[Any] = mel_floor a_ : Tuple = normalize_means a_ : int = normalize_vars a_ : List[Any] = win_function a_ : int = return_attention_mask a_ : List[Any] = win_length * sampling_rate // 1000 a_ : Optional[Any] = hop_length * sampling_rate // 1000 a_ : Optional[Any] = optimal_fft_length(self.sample_size ) a_ : Optional[int] = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray: if self.win_function == "hamming_window": a_ : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=__SCREAMING_SNAKE_CASE ) else: a_ : int = window_function(window_length=self.sample_size , name=self.win_function ) a_ : List[str] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) a_ : int = spectrogram( one_waveform * self.frame_signal_scale , window=__SCREAMING_SNAKE_CASE , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__SCREAMING_SNAKE_CASE , preemphasis=self.preemphasis_coeff , mel_filters=__SCREAMING_SNAKE_CASE , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: # make sure we normalize float32 arrays if self.normalize_means: a_ : Optional[int] = x[:input_length].mean(axis=0 ) a_ : Tuple = np.subtract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.normalize_vars: a_ : Optional[Any] = x[:input_length].std(axis=0 ) a_ : List[Any] = np.divide(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: a_ : List[str] = padding_value # make sure array is in float32 a_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : List[np.ndarray] , __SCREAMING_SNAKE_CASE : Optional[np.ndarray] = None ) -> List[np.ndarray]: a_ : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.padding_value ) for x, n in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] def __call__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) a_ : str = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) a_ : Tuple = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ : Tuple = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): a_ : Optional[Any] = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a_ : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a_ : Dict = [raw_speech] # extract fbank features a_ : int = [self._extract_mfsc_features(__SCREAMING_SNAKE_CASE ) for one_waveform in raw_speech] # convert into correct format for padding a_ : List[Any] = BatchFeature({'''input_features''': features} ) a_ : Union[str, Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) # make sure list is in array format a_ : int = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): a_ : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] a_ : str = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: a_ : List[Any] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: a_ : List[str] = ( np.array(__SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) a_ : int = self.normalize( padded_inputs['''input_features'''] , attention_mask=__SCREAMING_SNAKE_CASE ) if return_tensors is not None: a_ : int = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]=13 , __SCREAMING_SNAKE_CASE : Union[str, Any]=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : str=99 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : List[str]=4 , __SCREAMING_SNAKE_CASE : Optional[int]=37 , __SCREAMING_SNAKE_CASE : Tuple="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=512 , __SCREAMING_SNAKE_CASE : Optional[Any]=16 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : str=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : str=0 , ) -> Optional[int]: a_ : Union[str, Any] = parent a_ : Tuple = batch_size a_ : str = seq_length a_ : List[str] = is_training a_ : List[str] = use_input_mask a_ : int = use_token_type_ids a_ : Optional[Any] = use_labels a_ : List[Any] = vocab_size a_ : Any = hidden_size a_ : str = num_hidden_layers a_ : List[Any] = num_attention_heads a_ : str = intermediate_size a_ : Tuple = hidden_act a_ : int = hidden_dropout_prob a_ : Any = attention_probs_dropout_prob a_ : Optional[Any] = max_position_embeddings a_ : Union[str, Any] = type_vocab_size a_ : List[Any] = type_sequence_label_size a_ : Optional[Any] = initializer_range a_ : Optional[int] = num_labels a_ : Optional[Any] = num_choices a_ : int = scope a_ : Tuple = projection_dim def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: a_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Any = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py a_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a_ : int = None if self.use_token_type_ids: a_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : Tuple = None a_ : str = None a_ : Optional[Any] = None if self.use_labels: a_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) a_ : str = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) a_ : List[Any] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> str: a_ : Optional[Any] = TFDPRContextEncoder(config=__SCREAMING_SNAKE_CASE ) a_ : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int ) -> List[str]: a_ : List[Any] = TFDPRQuestionEncoder(config=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple ) -> int: a_ : List[str] = TFDPRReader(config=__SCREAMING_SNAKE_CASE ) a_ : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : Optional[int] = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : List[str] = config_and_inputs a_ : int = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) snake_case__ = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: a_ : Any = TFDPRModelTester(self ) a_ : int = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[Any] = TFDPRContextEncoder.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Any = TFDPRContextEncoder.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[Any] = TFDPRQuestionEncoder.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[str] = TFDPRReader.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : int ) -> int: a_ : int = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) a_ : Any = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] a_ : Optional[int] = model(__SCREAMING_SNAKE_CASE )[0] # embedding shape = (1, 768) # compare the actual values for a slice. a_ : Optional[int] = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( __A : Union[str, Any] , __A : Tuple , __A : Optional[Any] , __A : List[str] ): # Initialise PyTorch model a_ : List[str] = FunnelConfig.from_json_file(__A ) print(f'Building PyTorch model from configuration: {config}' ) a_ : Any = FunnelBaseModel(__A ) if base_model else FunnelModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__A , __A , __A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) __lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
666
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
1
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if config is None: assert isinstance(self.model , __SCREAMING_SNAKE_CASE ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f' {self.model.__class__}' ) a_ : int = self.model.config else: a_ : Optional[int] = config a_ : Dict = data_args a_ : Optional[Any] = self.config.tgt_vocab_size if isinstance(self.config , __SCREAMING_SNAKE_CASE ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ''' padding..''' ) if self.args.label_smoothing == 0: a_ : Optional[int] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a_ : Dict = label_smoothed_nll_loss def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: if self.optimizer is None: a_ : Any = ['''bias''', '''LayerNorm.weight'''] a_ : Any = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] a_ : Tuple = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a_ : Union[str, Any] = Adafactor a_ : List[str] = {'''scale_parameter''': False, '''relative_step''': False} else: a_ : List[Any] = AdamW a_ : Optional[int] = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } a_ : Any = self.args.learning_rate if self.sharded_ddp: a_ : Any = OSS( params=__SCREAMING_SNAKE_CASE , optim=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: a_ : int = optimizer_cls(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if self.lr_scheduler is None: a_ : Optional[int] = self._get_lr_scheduler(__SCREAMING_SNAKE_CASE ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> List[str]: a_ : str = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a_ : Tuple = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a_ : Dict = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: a_ : Any = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__SCREAMING_SNAKE_CASE ) return scheduler def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a_ : Optional[Any] = model(**__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )[0] a_ : Optional[int] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models a_ , a_ : List[Any] = model(**__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )[:2] else: # compute label smoothed loss a_ : Optional[Any] = model(**__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )[0] a_ : Any = torch.nn.functional.log_softmax(__SCREAMING_SNAKE_CASE , dim=-1 ) a_ , a_ : Any = self.loss_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: a_ : Tuple = inputs.pop('''labels''' ) a_ , a_ : Union[str, Any] = self._compute_loss(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return loss def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : nn.Module , __SCREAMING_SNAKE_CASE : Dict[str, Union[torch.Tensor, Any]] , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: a_ : Optional[int] = self._prepare_inputs(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a_ : str = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **__SCREAMING_SNAKE_CASE , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a_ : Dict = self._pad_tensors_to_max_len(__SCREAMING_SNAKE_CASE , gen_kwargs['''max_length'''] ) a_ : Tuple = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data a_ , a_ : Union[str, Any] = self._compute_loss(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : str = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a_ : Optional[int] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a_ : Union[str, Any] = self._pad_tensors_to_max_len(__SCREAMING_SNAKE_CASE , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: # If PAD token is not defined at least EOS token has to be defined a_ : Optional[int] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f' padded to `max_length`={max_length}' ) a_ : List[str] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) a_ : Any = tensor return padded_tensor
666
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
1
'''simple docstring''' __lowerCAmelCase = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __lowerCAmelCase = [{'type': 'code', 'content': INSTALL_CONTENT}] __lowerCAmelCase = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
666
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowerCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __lowerCAmelCase = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( __A : str ): with open(__A , '''rb''' ) as f: a_ : Optional[int] = Image.open(__A ) return im.convert('''RGB''' ) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) snake_case__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "A folder containing the training data."} ) snake_case__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "A folder containing the validation data."} ) snake_case__ = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(SCREAMING_SNAKE_CASE_ )} , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) snake_case__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Name or path of preprocessor config."} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _UpperCAmelCase ( __A : Dict ): a_ : List[str] = torch.stack([example['''pixel_values'''] for example in examples] ) a_ : Dict = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a_ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ , a_ , a_ : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ , a_ , a_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , __A , __A ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a_ : Any = training_args.get_process_log_level() logger.setLevel(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. a_ : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: a_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: a_ : str = {} if data_args.train_dir is not None: a_ : Optional[Any] = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: a_ : str = os.path.join(data_args.validation_dir , '''**''' ) a_ : Dict = load_dataset( '''imagefolder''' , data_files=__A , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. a_ : Tuple = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __A ) and data_args.train_val_split > 0.0: a_ : Tuple = dataset['''train'''].train_test_split(data_args.train_val_split ) a_ : Tuple = split['''train'''] a_ : Any = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. a_ : Union[str, Any] = dataset['''train'''].features['''labels'''].names a_ , a_ : Tuple = {}, {} for i, label in enumerate(__A ): a_ : str = str(__A ) a_ : str = label # Load the accuracy metric from the datasets package a_ : List[Any] = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : Any ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) a_ : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__A ) , labelaid=__A , idalabel=__A , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a_ : Any = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) a_ : Union[str, Any] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: a_ : int = image_processor.size['''shortest_edge'''] else: a_ : Dict = (image_processor.size['''height'''], image_processor.size['''width''']) a_ : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) a_ : int = Compose( [ RandomResizedCrop(__A ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) a_ : Union[str, Any] = Compose( [ Resize(__A ), CenterCrop(__A ), ToTensor(), normalize, ] ) def train_transforms(__A : Optional[int] ): a_ : Any = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(__A : Optional[Any] ): a_ : Dict = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: a_ : Tuple = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__A ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: a_ : List[str] = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__A ) # Initalize our trainer a_ : Optional[Any] = Trainer( model=__A , args=__A , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: a_ : Optional[Any] = None if training_args.resume_from_checkpoint is not None: a_ : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: a_ : str = last_checkpoint a_ : Optional[Any] = trainer.train(resume_from_checkpoint=__A ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a_ : Any = trainer.evaluate() trainer.log_metrics('''eval''' , __A ) trainer.save_metrics('''eval''' , __A ) # Write model card and (optionally) push to hub a_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) if __name__ == "__main__": main()
666
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
666
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bert-generation" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Dict=5_0358 , __SCREAMING_SNAKE_CASE : Optional[int]=1024 , __SCREAMING_SNAKE_CASE : List[str]=24 , __SCREAMING_SNAKE_CASE : Optional[Any]=16 , __SCREAMING_SNAKE_CASE : str=4096 , __SCREAMING_SNAKE_CASE : Optional[int]="gelu" , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Any=512 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : Any=1e-12 , __SCREAMING_SNAKE_CASE : Any=0 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[str]="absolute" , __SCREAMING_SNAKE_CASE : Tuple=True , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Tuple: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : List[str] = vocab_size a_ : List[Any] = hidden_size a_ : Optional[int] = num_hidden_layers a_ : Dict = num_attention_heads a_ : Union[str, Any] = hidden_act a_ : Dict = intermediate_size a_ : List[str] = hidden_dropout_prob a_ : Optional[Any] = attention_probs_dropout_prob a_ : Optional[Any] = max_position_embeddings a_ : Optional[int] = initializer_range a_ : Optional[int] = layer_norm_eps a_ : Tuple = position_embedding_type a_ : Dict = use_cache
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "git_vision_model" def __init__( self : int , __SCREAMING_SNAKE_CASE : Any=768 , __SCREAMING_SNAKE_CASE : int=3072 , __SCREAMING_SNAKE_CASE : Tuple=12 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : str=3 , __SCREAMING_SNAKE_CASE : Dict=224 , __SCREAMING_SNAKE_CASE : Optional[Any]=16 , __SCREAMING_SNAKE_CASE : List[Any]="quick_gelu" , __SCREAMING_SNAKE_CASE : str=1e-5 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> str: super().__init__(**__SCREAMING_SNAKE_CASE ) a_ : Tuple = hidden_size a_ : Dict = intermediate_size a_ : Any = num_hidden_layers a_ : Tuple = num_attention_heads a_ : Dict = num_channels a_ : Tuple = patch_size a_ : Optional[int] = image_size a_ : Union[str, Any] = initializer_range a_ : Optional[int] = attention_dropout a_ : List[str] = layer_norm_eps a_ : int = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : int , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : str ) -> "PretrainedConfig": cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) a_ , a_ : Optional[int] = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": a_ : List[str] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "git" def __init__( self : str , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=3_0522 , __SCREAMING_SNAKE_CASE : List[Any]=768 , __SCREAMING_SNAKE_CASE : str=6 , __SCREAMING_SNAKE_CASE : List[str]=12 , __SCREAMING_SNAKE_CASE : str=3072 , __SCREAMING_SNAKE_CASE : Optional[int]="gelu" , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=1024 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : str=1e-12 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Any="absolute" , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Any=101 , __SCREAMING_SNAKE_CASE : Tuple=102 , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Optional[Any]: super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if vision_config is None: a_ : List[Any] = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) a_ : str = GitVisionConfig(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = vocab_size a_ : Any = hidden_size a_ : Any = num_hidden_layers a_ : int = num_attention_heads a_ : List[Any] = hidden_act a_ : Dict = intermediate_size a_ : Optional[Any] = hidden_dropout_prob a_ : Union[str, Any] = attention_probs_dropout_prob a_ : Dict = max_position_embeddings a_ : Any = initializer_range a_ : Optional[int] = layer_norm_eps a_ : str = position_embedding_type a_ : Union[str, Any] = use_cache a_ : Any = tie_word_embeddings a_ : str = num_image_with_embedding a_ : int = bos_token_id a_ : Optional[int] = eos_token_id def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: a_ : List[Any] = copy.deepcopy(self.__dict__ ) a_ : Tuple = self.vision_config.to_dict() a_ : Union[str, Any] = self.__class__.model_type return output
666
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
1
'''simple docstring''' from __future__ import annotations class SCREAMING_SNAKE_CASE : def __init__( self : str , __SCREAMING_SNAKE_CASE : int = 0 ) -> Optional[int]: a_ : str = key def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> list[str]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__SCREAMING_SNAKE_CASE ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> list[str]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__SCREAMING_SNAKE_CASE ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 0 ) -> str: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a_ : List[Any] = '''''' for ch in content: ans += chr(ord(__SCREAMING_SNAKE_CASE ) ^ key ) return ans def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 0 ) -> str: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Any = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a_ : Any = '''''' for ch in content: ans += chr(ord(__SCREAMING_SNAKE_CASE ) ^ key ) return ans def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 0 ) -> bool: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) try: with open(__SCREAMING_SNAKE_CASE ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) except OSError: return False return True def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) try: with open(__SCREAMING_SNAKE_CASE ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
666
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : int ): assert isinstance(__A , __A ), f'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: a_ : str = f'The input value of [n={number}] has to be > 0' raise ValueError(__A ) else: a_ : List[str] = sylvester(number - 1 ) a_ : Optional[Any] = num - 1 a_ : Union[str, Any] = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
666
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
1
'''simple docstring''' from collections.abc import Iterable from typing import Any class SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int | None = None ) -> Optional[int]: a_ : Optional[int] = value a_ : Node | None = None # Added in order to delete a node easier a_ : Node | None = None a_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'{self.value}': (self.left, self.right)} , indent=1 ) class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Node | None = None ) -> Tuple: a_ : Optional[int] = root def __str__( self : Optional[int] ) -> str: return str(self.root ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Node , __SCREAMING_SNAKE_CASE : Node | None ) -> None: if new_children is not None: # reset its kids a_ : Union[str, Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(__SCREAMING_SNAKE_CASE ): # If it is the right children a_ : Dict = new_children else: a_ : Tuple = new_children else: a_ : List[Any] = new_children def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Node ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def SCREAMING_SNAKE_CASE ( self : str ) -> bool: return self.root is None def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> None: a_ : Union[str, Any] = Node(__SCREAMING_SNAKE_CASE ) # create a new Node if self.empty(): # if Tree is empty a_ : Union[str, Any] = new_node # set its root else: # Tree is not empty a_ : Dict = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: a_ : List[Any] = new_node # We insert the new node in a leaf break else: a_ : Optional[Any] = parent_node.left else: if parent_node.right is None: a_ : Dict = new_node break else: a_ : str = parent_node.right a_ : Dict = parent_node def SCREAMING_SNAKE_CASE ( self : Dict , *__SCREAMING_SNAKE_CASE : List[str] ) -> None: for value in values: self.__insert(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Node | None: if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: a_ : Any = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: a_ : Any = node.left if value < node.value else node.right return node def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Node | None = None ) -> Node | None: if node is None: if self.root is None: return None a_ : Union[str, Any] = self.root if not self.empty(): while node.right is not None: a_ : Tuple = node.right return node def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Node | None = None ) -> Node | None: if node is None: a_ : str = self.root if self.root is None: return None if not self.empty(): a_ : Any = self.root while node.left is not None: a_ : Optional[Any] = node.left return node def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> None: a_ : Union[str, Any] = self.search(__SCREAMING_SNAKE_CASE ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif node.left is None: # Has only right children self.__reassign_nodes(__SCREAMING_SNAKE_CASE , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__SCREAMING_SNAKE_CASE , node.left ) else: a_ : Dict = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore a_ : List[str] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Node | None ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : List[str]=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Node | None ) -> None: if node: self.inorder(__SCREAMING_SNAKE_CASE , node.left ) arr.append(node.value ) self.inorder(__SCREAMING_SNAKE_CASE , node.right ) def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Node ) -> int: a_ : list[int] = [] self.inorder(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # append all values to list using inorder traversal return arr[k - 1] def _UpperCAmelCase ( __A : Node | None ): a_ : Optional[Any] = [] if curr_node is not None: a_ : Optional[int] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _UpperCAmelCase ( ): a_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) a_ : int = BinarySearchTree() for i in testlist: t.insert(__A ) # Prints all the elements of the list in order traversal print(__A ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(__A ) print(__A ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
666
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
1
'''simple docstring''' import math def _UpperCAmelCase ( __A : list , __A : int = 0 , __A : int = 0 ): a_ : Dict = end or len(__A ) for i in range(__A , __A ): a_ : Union[str, Any] = i a_ : List[str] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: a_ : Tuple = array[temp_index - 1] temp_index -= 1 a_ : Optional[Any] = temp_index_value return array def _UpperCAmelCase ( __A : list , __A : int , __A : int ): # Max Heap a_ : int = index a_ : str = 2 * index + 1 # Left Node a_ : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: a_ : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: a_ : Any = right_index if largest != index: a_ , a_ : Tuple = array[largest], array[index] heapify(__A , __A , __A ) def _UpperCAmelCase ( __A : list ): a_ : Union[str, Any] = len(__A ) for i in range(n // 2 , -1 , -1 ): heapify(__A , __A , __A ) for i in range(n - 1 , 0 , -1 ): a_ , a_ : Any = array[0], array[i] heapify(__A , 0 , __A ) return array def _UpperCAmelCase ( __A : list , __A : int , __A : int , __A : int ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def _UpperCAmelCase ( __A : list , __A : int , __A : int , __A : int ): a_ : str = low a_ : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i a_ , a_ : Union[str, Any] = array[j], array[i] i += 1 def _UpperCAmelCase ( __A : list ): if len(__A ) == 0: return array a_ : List[str] = 2 * math.ceil(math.loga(len(__A ) ) ) a_ : Optional[Any] = 16 return intro_sort(__A , 0 , len(__A ) , __A , __A ) def _UpperCAmelCase ( __A : list , __A : int , __A : int , __A : int , __A : int ): while end - start > size_threshold: if max_depth == 0: return heap_sort(__A ) max_depth -= 1 a_ : Optional[int] = median_of_a(__A , __A , start + ((end - start) // 2) + 1 , end - 1 ) a_ : List[str] = partition(__A , __A , __A , __A ) intro_sort(__A , __A , __A , __A , __A ) a_ : Optional[Any] = p return insertion_sort(__A , __A , __A ) if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = input('Enter numbers separated by a comma : ').strip() __lowerCAmelCase = [float(item) for item in user_input.split(',')] print(sort(unsorted))
666
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
1
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __lowerCAmelCase = datasets.utils.logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( folder_based_builder.FolderBasedBuilderConfig ): snake_case__ = None snake_case__ = None class SCREAMING_SNAKE_CASE ( folder_based_builder.FolderBasedBuilder ): snake_case__ = datasets.Audio() snake_case__ = "audio" snake_case__ = AudioFolderConfig snake_case__ = 42 # definition at the bottom of the script snake_case__ = AudioClassification(audio_column="audio" , label_column="label" ) __lowerCAmelCase = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] __lowerCAmelCase = AUDIO_EXTENSIONS
666
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
1
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _UpperCAmelCase ( *__A : List[Any] , __A : Optional[Union[Dict, Any]] = None , __A : List[str]=True , __A : List[Any]=2 ): from .. import __version__ a_ : Tuple = take_from a_ : Optional[int] = () if not isinstance(args[0] , __A ): a_ : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__A ).base_version ) >= version.parse(__A ): raise ValueError( f'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' f' version {__version__} is >= {version_name}' ) a_ : List[Any] = None if isinstance(__A , __A ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__A ),) a_ : Any = f'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(__A , __A ): values += (getattr(__A , __A ),) a_ : List[Any] = f'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: a_ : str = f'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: a_ : Dict = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __A , stacklevel=__A ) if isinstance(__A , __A ) and len(__A ) > 0: a_ : Optional[int] = inspect.getouterframes(inspect.currentframe() )[1] a_ : Optional[int] = call_frame.filename a_ : List[str] = call_frame.lineno a_ : List[str] = call_frame.function a_ , a_ : str = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(__A ) == 0: return elif len(__A ) == 1: return values[0] return values
666
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = '▁' __lowerCAmelCase = {'vocab_file': 'spiece.model'} __lowerCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } __lowerCAmelCase = { 'google/pegasus-xsum': 512, } __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict="<pad>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : Any="<unk>" , __SCREAMING_SNAKE_CASE : Dict="<mask_2>" , __SCREAMING_SNAKE_CASE : Dict="<mask_1>" , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Tuple=103 , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> None: a_ : List[str] = offset if additional_special_tokens is not None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError( f'additional_special_tokens should be of type {type(__SCREAMING_SNAKE_CASE )}, but is' f' {type(__SCREAMING_SNAKE_CASE )}' ) a_ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(__SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(__SCREAMING_SNAKE_CASE ) ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) a_ : Dict = additional_special_tokens_extended else: a_ : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] a_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token_sent=__SCREAMING_SNAKE_CASE , offset=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Optional[int] = mask_token_sent a_ : Union[str, Any] = vocab_file a_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict a_ : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) a_ : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return len(self.sp_model ) + self.offset def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict[str, int]: a_ : Any = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> List[str]: a_ : str = self.__dict__.copy() a_ : Tuple = None return state def __setstate__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: a_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : str = {} a_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] a_ : Tuple = self.sp_model.piece_to_id(__SCREAMING_SNAKE_CASE ) return sp_id + self.offset def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: a_ : List[Any] = self.sp_model.IdToPiece(index - self.offset ) return token def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple ) -> Any: a_ : int = [] a_ : List[str] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : List[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False ) -> Tuple: return 1 def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: a_ : Optional[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : List , __SCREAMING_SNAKE_CASE : Optional[List] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(__SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(__SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Any = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _UpperCAmelCase ( __A : int ): a_ : Tuple = botoa.client('''iam''' ) a_ : Tuple = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__A , AssumeRolePolicyDocument=json.dumps(__A , indent=2 ) ) a_ : Optional[Any] = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=__A , PolicyName=f'{role_name}_policy_permission' , PolicyDocument=json.dumps(__A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'role {role_name} already exists. Using existing one' ) def _UpperCAmelCase ( __A : Tuple ): a_ : Optional[Any] = botoa.client('''iam''' ) return iam_client.get_role(RoleName=__A )["Role"]["Arn"] def _UpperCAmelCase ( ): a_ : Union[str, Any] = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , __A , ) a_ : Optional[int] = None if credentials_configuration == 0: a_ : int = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) a_ : int = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) a_ : List[str] = _ask_field('''AWS Access Key ID: ''' ) a_ : Optional[int] = aws_access_key_id a_ : int = _ask_field('''AWS Secret Access Key: ''' ) a_ : Optional[int] = aws_secret_access_key a_ : Dict = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) a_ : Dict = aws_region a_ : List[Any] = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , __A , ) if role_management == 0: a_ : Union[str, Any] = _ask_field('''Enter your IAM role name: ''' ) else: a_ : List[str] = '''accelerate_sagemaker_execution_role''' print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials' ) _create_iam_role_for_sagemaker(__A ) a_ : List[str] = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__A , error_message='''Please enter yes or no.''' , ) a_ : Union[str, Any] = None if is_custom_docker_image: a_ : Union[str, Any] = _ask_field('''Enter your Docker image: ''' , lambda __A : str(__A ).lower() ) a_ : Optional[Any] = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__A , error_message='''Please enter yes or no.''' , ) a_ : Tuple = None if is_sagemaker_inputs_enabled: a_ : Optional[int] = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda __A : str(__A ).lower() , ) a_ : Optional[int] = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__A , error_message='''Please enter yes or no.''' , ) a_ : Optional[int] = None if is_sagemaker_metrics_enabled: a_ : List[Any] = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda __A : str(__A ).lower() , ) a_ : Optional[int] = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) a_ : Tuple = {} a_ : Optional[Any] = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=__A , error_message='''Please enter yes or no.''' , ) if use_dynamo: a_ : str = '''dynamo_''' a_ : List[str] = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) a_ : Dict = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__A , error_message='''Please enter yes or no.''' , ) if use_custom_options: a_ : int = _ask_options( '''Which mode do you want to use?''' , __A , lambda __A : TORCH_DYNAMO_MODES[int(__A )] , default='''default''' , ) a_ : str = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__A , error_message='''Please enter yes or no.''' , ) a_ : str = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__A , error_message='''Please enter yes or no.''' , ) a_ : Optional[int] = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: a_ : Optional[Any] = _ask_options( __A , __A , lambda __A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" a_ : List[Any] = _ask_field(__A , lambda __A : str(__A ).lower() , default='''ml.p3.2xlarge''' ) a_ : List[Any] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): a_ : Tuple = _ask_field( '''How many machines do you want use? [1]: ''' , __A , default=1 , ) a_ : Dict = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=__A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__A , use_cpu=__A , dynamo_config=__A , eca_instance_type=__A , profile=__A , region=__A , iam_role_name=__A , mixed_precision=__A , num_machines=__A , sagemaker_inputs_file=__A , sagemaker_metrics_file=__A , )
666
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Dict , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : int ) -> None: warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
1
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __lowerCAmelCase = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) __lowerCAmelCase = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __lowerCAmelCase = BeautifulSoup(res.text, 'html.parser') __lowerCAmelCase = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
666
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __lowerCAmelCase = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __lowerCAmelCase = 'UperNetConfig' class SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[int, Tuple[int, int]] , __SCREAMING_SNAKE_CASE : Union[int, Tuple[int, int], str] = 0 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Union[int, Tuple[int, int]] = 1 , ) -> None: super().__init__() a_ : Optional[Any] = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) a_ : Any = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = nn.ReLU() def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> torch.Tensor: a_ : Any = self.conv(__SCREAMING_SNAKE_CASE ) a_ : Dict = self.batch_norm(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = self.activation(__SCREAMING_SNAKE_CASE ) return output class SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None: super().__init__() a_ : Union[str, Any] = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> torch.Tensor: a_ : str = input for layer in self.layers: a_ : List[Any] = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple[int, ...] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool ) -> None: super().__init__() a_ : Optional[int] = pool_scales a_ : Any = align_corners a_ : Optional[int] = in_channels a_ : int = channels a_ : Dict = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ): a_ : Any = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE ) self.blocks.append(__SCREAMING_SNAKE_CASE ) self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> List[torch.Tensor]: a_ : List[Any] = [] for ppm in self.blocks: a_ : str = ppm(__SCREAMING_SNAKE_CASE ) a_ : Dict = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__SCREAMING_SNAKE_CASE ) return ppm_outs class SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: super().__init__() a_ : Optional[Any] = config a_ : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) a_ : str = in_channels a_ : Optional[int] = config.hidden_size a_ : str = False a_ : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module a_ : Optional[Any] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) a_ : Optional[Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module a_ : Tuple = nn.ModuleList() a_ : Any = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer a_ : Dict = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) a_ : List[Any] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__SCREAMING_SNAKE_CASE ) self.fpn_convs.append(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : str ) -> Any: if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: a_ : Tuple = inputs[-1] a_ : List[str] = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) ) a_ : Dict = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) a_ : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE ) return output def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> torch.Tensor: # build laterals a_ : Dict = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) ) # build top-down path a_ : Any = len(__SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a_ : Optional[Any] = laterals[i - 1].shape[2:] a_ : List[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs a_ : Tuple = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a_ : str = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) a_ : List[Any] = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) a_ : List[str] = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE ) a_ : str = self.classifier(__SCREAMING_SNAKE_CASE ) return output class SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() a_ : Any = config a_ : Optional[Any] = config.auxiliary_in_channels a_ : Optional[Any] = config.auxiliary_channels a_ : Tuple = config.auxiliary_num_convs a_ : Tuple = config.auxiliary_concat_input a_ : Dict = in_index a_ : str = (kernel_size // 2) * dilation a_ : List[str] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: a_ : Optional[int] = nn.Identity() else: a_ : Optional[int] = nn.Sequential(*__SCREAMING_SNAKE_CASE ) if self.concat_input: a_ : str = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) a_ : int = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> torch.Tensor: # just take the relevant feature maps a_ : str = encoder_hidden_states[self.in_index] a_ : Optional[int] = self.convs(__SCREAMING_SNAKE_CASE ) if self.concat_input: a_ : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) a_ : str = self.classifier(__SCREAMING_SNAKE_CASE ) return output class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = UperNetConfig snake_case__ = "pixel_values" snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=False ) -> str: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a_ : Optional[Any] = value __lowerCAmelCase = r'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowerCAmelCase = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: super().__init__(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) a_ : List[str] = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) a_ : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: a_ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict a_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ : List[str] = output_attentions if output_attentions is not None else self.config.output_attentions a_ : Union[str, Any] = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = outputs.feature_maps a_ : Optional[Any] = self.decode_head(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) a_ : Any = None if self.auxiliary_head is not None: a_ : Optional[int] = self.auxiliary_head(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) a_ : str = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss a_ : List[str] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) a_ : List[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: a_ : Union[str, Any] = (logits,) + outputs[1:] else: a_ : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
666
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict=13 , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : int=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Dict=[2, 2, 3, 2] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : int=37 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : Dict=10 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=["stage2", "stage3", "stage4"] , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : str=None , ) -> int: a_ : Any = parent a_ : Tuple = batch_size a_ : Tuple = image_size a_ : Union[str, Any] = num_channels a_ : Any = num_stages a_ : str = hidden_sizes a_ : Optional[Any] = depths a_ : List[Any] = is_training a_ : List[str] = use_labels a_ : List[Any] = intermediate_size a_ : Union[str, Any] = hidden_act a_ : Tuple = type_sequence_label_size a_ : str = initializer_range a_ : Tuple = out_features a_ : Optional[Any] = num_labels a_ : List[str] = scope a_ : Optional[Any] = num_stages def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Optional[int] = None if self.use_labels: a_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Optional[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__SCREAMING_SNAKE_CASE , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=__SCREAMING_SNAKE_CASE , loss_ignore_index=255 , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: a_ : str = UperNetForSemanticSegmentation(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : List[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: a_ : Any = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ) : Dict = config_and_inputs a_ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () snake_case__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: a_ : Union[str, Any] = UperNetModelTester(self ) a_ : Dict = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: return def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: a_ , a_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : int = model_class(__SCREAMING_SNAKE_CASE ) a_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Tuple = [*signature.parameters.keys()] a_ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: pass def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ): a_ : int = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): a_ : Any = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) a_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a_ , a_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Union[str, Any] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : int = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a_ : Tuple = _config_zero_init(__SCREAMING_SNAKE_CASE ) a_ : Any = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: a_ : Optional[Any] = model_class(config=__SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: pass @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ): a_ : List[str] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) a_ : Tuple = Image.open(__A ).convert('''RGB''' ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: a_ : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) a_ : List[Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = prepare_img() a_ : Union[str, Any] = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): a_ : Tuple = model(**__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: a_ : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) a_ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(__SCREAMING_SNAKE_CASE ) a_ : int = prepare_img() a_ : str = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): a_ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) a_ : List[Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) a_ : str = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
666
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = ["image_processor", "tokenizer"] snake_case__ = "BlipImageProcessor" snake_case__ = "AutoTokenizer" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # add QFormer tokenizer a_ : Dict = qformer_tokenizer def __call__( self : Optional[int] , __SCREAMING_SNAKE_CASE : ImageInput = None , __SCREAMING_SNAKE_CASE : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False , __SCREAMING_SNAKE_CASE : Union[bool, str, TruncationStrategy] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , **__SCREAMING_SNAKE_CASE : str , ) -> BatchFeature: if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) a_ : List[str] = BatchFeature() if text is not None: a_ : str = self.tokenizer( text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_overflowing_tokens=__SCREAMING_SNAKE_CASE , return_special_tokens_mask=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_length=__SCREAMING_SNAKE_CASE , verbose=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) encoding.update(__SCREAMING_SNAKE_CASE ) a_ : Any = self.qformer_tokenizer( text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_overflowing_tokens=__SCREAMING_SNAKE_CASE , return_special_tokens_mask=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_length=__SCREAMING_SNAKE_CASE , verbose=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) a_ : str = qformer_text_encoding.pop('''input_ids''' ) a_ : str = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: a_ : List[str] = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) encoding.update(__SCREAMING_SNAKE_CASE ) return encoding def SCREAMING_SNAKE_CASE ( self : Any , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: a_ : Any = self.tokenizer.model_input_names a_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : Any ) -> Dict: if os.path.isfile(__SCREAMING_SNAKE_CASE ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) return super().save_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , __SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: a_ : Any = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder='''qformer_tokenizer''' ) a_ : List[Any] = cls._get_arguments_from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) args.append(__SCREAMING_SNAKE_CASE ) return cls(*__SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=7 , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : int=18 , __SCREAMING_SNAKE_CASE : int=30 , __SCREAMING_SNAKE_CASE : Optional[Any]=400 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]=[0.4814_5466, 0.457_8275, 0.4082_1073] , __SCREAMING_SNAKE_CASE : Any=[0.2686_2954, 0.2613_0258, 0.2757_7711] , __SCREAMING_SNAKE_CASE : Optional[int]=True , ) -> str: a_ : Dict = size if size is not None else {'''height''': 224, '''width''': 224} a_ : str = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} a_ : Dict = parent a_ : Optional[int] = batch_size a_ : Optional[Any] = num_channels a_ : Optional[int] = image_size a_ : List[Any] = min_resolution a_ : Tuple = max_resolution a_ : Union[str, Any] = do_resize a_ : Tuple = size a_ : Any = do_center_crop a_ : Optional[int] = crop_size a_ : Optional[int] = do_normalize a_ : Optional[int] = image_mean a_ : Union[str, Any] = image_std a_ : Optional[int] = do_convert_rgb def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Any=False ) -> Optional[Any]: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: a_ : Dict = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: a_ : Optional[int] = [] for i in range(self.batch_size ): a_ , a_ : Union[str, Any] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension a_ : List[str] = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] if torchify: a_ : Union[str, Any] = [torch.from_numpy(__SCREAMING_SNAKE_CASE ) for x in image_inputs] return image_inputs @require_torch @require_vision class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: a_ : Dict = ChineseCLIPImageProcessingTester(self , do_center_crop=__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: a_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_center_crop''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''center_crop''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: a_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) a_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: # Initialize image_processing a_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Dict = self.image_processor_tester.prepare_inputs(equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched a_ : List[Any] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: # Initialize image_processing a_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ : int = self.image_processor_tester.prepare_inputs(equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input a_ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched a_ : int = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: # Initialize image_processing a_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input a_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched a_ : Union[str, Any] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: a_ : Optional[int] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = 3 @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_center_crop''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''center_crop''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: pass def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: # Initialize image_processing a_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : List[str] = self.image_processor_tester.prepare_inputs(equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched a_ : List[Any] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
1