code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import json from tqdm import tqdm def _UpperCAmelCase ( ): a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__A , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__A , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__A , help='''where to store parsed gold_data_path file''' , ) a_ : str = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: a_ : str = json.load(__A ) for dpr_record in tqdm(__A ): a_ : str = dpr_record['''question'''] a_ : Tuple = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__A ) + '''\n''' ) if __name__ == "__main__": main()
666
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "nllb-moe" snake_case__ = ["past_key_values"] snake_case__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=12_8112 , __SCREAMING_SNAKE_CASE : List[str]=1024 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : Optional[Any]=4096 , __SCREAMING_SNAKE_CASE : List[Any]=16 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Dict=4096 , __SCREAMING_SNAKE_CASE : Dict=16 , __SCREAMING_SNAKE_CASE : Dict=0.05 , __SCREAMING_SNAKE_CASE : int=0.05 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Optional[int]="relu" , __SCREAMING_SNAKE_CASE : int=1024 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]="float32" , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=128 , __SCREAMING_SNAKE_CASE : str=64 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : List[str]=0.001 , __SCREAMING_SNAKE_CASE : str=0.001 , __SCREAMING_SNAKE_CASE : str="all" , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]=1.0 , __SCREAMING_SNAKE_CASE : List[Any]=0.2 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : Any=0 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Tuple=False , **__SCREAMING_SNAKE_CASE : Any , ) -> int: a_ : List[Any] = vocab_size a_ : List[str] = max_position_embeddings a_ : Any = d_model a_ : Optional[Any] = encoder_ffn_dim a_ : int = encoder_layers a_ : Optional[Any] = encoder_attention_heads a_ : int = decoder_ffn_dim a_ : Optional[int] = decoder_layers a_ : Optional[Any] = decoder_attention_heads a_ : Optional[Any] = dropout a_ : List[Any] = attention_dropout a_ : int = activation_dropout a_ : str = activation_function a_ : List[Any] = init_std a_ : Optional[int] = encoder_layerdrop a_ : Optional[int] = decoder_layerdrop a_ : Any = use_cache a_ : Any = encoder_layers a_ : int = scale_embedding # scale factor will be sqrt(d_model) if True a_ : Optional[Any] = router_z_loss_coef a_ : Tuple = router_aux_loss_coef a_ : List[str] = decoder_sparse_step a_ : List[Any] = encoder_sparse_step a_ : str = num_experts a_ : Union[str, Any] = expert_capacity a_ : Optional[int] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) a_ : List[Any] = router_dtype a_ : int = router_ignore_padding_tokens a_ : str = batch_prioritized_routing a_ : int = second_expert_policy a_ : List[Any] = normalize_router_prob_before_dropping a_ : List[str] = moe_eval_capacity_token_fraction a_ : Any = moe_token_dropout a_ : List[Any] = output_router_logits super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
666
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : int , __A : list ): _enforce_args(__A , __A ) if n == 0: return 0 a_ : List[str] = float('''-inf''' ) for i in range(1 , n + 1 ): a_ : Dict = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def _UpperCAmelCase ( __A : int , __A : list ): _enforce_args(__A , __A ) a_ : List[str] = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def _UpperCAmelCase ( __A : int , __A : list , __A : list ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: a_ : int = float('''-inf''' ) for i in range(1 , n + 1 ): a_ : List[str] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) a_ : Optional[int] = max_revenue return max_rev[n] def _UpperCAmelCase ( __A : int , __A : list ): _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. a_ : Any = [float('''-inf''' ) for _ in range(n + 1 )] a_ : int = 0 for i in range(1 , n + 1 ): a_ : Union[str, Any] = max_rev[i] for j in range(1 , i + 1 ): a_ : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] ) a_ : int = max_revenue_i return max_rev[n] def _UpperCAmelCase ( __A : int , __A : list ): if n < 0: a_ : List[str] = f'n must be greater than or equal to 0. Got n = {n}' raise ValueError(__A ) if n > len(__A ): a_ : str = ( '''Each integral piece of rod must have a corresponding price. ''' f'Got n = {n} but length of prices = {len(__A )}' ) raise ValueError(__A ) def _UpperCAmelCase ( ): a_ : str = [6, 10, 12, 15, 20, 23] a_ : Tuple = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. a_ : Optional[int] = 36 a_ : Optional[Any] = top_down_cut_rod(__A , __A ) a_ : List[str] = bottom_up_cut_rod(__A , __A ) a_ : List[Any] = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
666
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: a_ : List[Any] = GenerationConfig( do_sample=__SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE , config_name=__SCREAMING_SNAKE_CASE ) a_ : str = GenerationConfig.from_pretrained(__SCREAMING_SNAKE_CASE , config_name=__SCREAMING_SNAKE_CASE ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __SCREAMING_SNAKE_CASE ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: a_ : str = AutoConfig.from_pretrained('''gpt2''' ) a_ : str = GenerationConfig.from_model_config(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: a_ : Tuple = GenerationConfig() a_ : List[Any] = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } a_ : Union[str, Any] = copy.deepcopy(__SCREAMING_SNAKE_CASE ) a_ : Any = generation_config.update(**__SCREAMING_SNAKE_CASE ) # update_kwargs was not modified (no side effects) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__SCREAMING_SNAKE_CASE , {'''foo''': '''bar'''} ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : Optional[int] = GenerationConfig() a_ : List[str] = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = GenerationConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) a_ : Union[str, Any] = GenerationConfig.from_model_config(__SCREAMING_SNAKE_CASE ) assert not hasattr(__SCREAMING_SNAKE_CASE , '''foo''' ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: a_ : Dict = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , __SCREAMING_SNAKE_CASE ) self.assertEqual(default_config.num_beams , 1 ) a_ : Optional[Any] = GenerationConfig( do_sample=__SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , __SCREAMING_SNAKE_CASE ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = GenerationConfig.from_pretrained(__SCREAMING_SNAKE_CASE , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , __SCREAMING_SNAKE_CASE ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] ) -> Union[str, Any]: a_ : List[str] = TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE ( cls : int ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: a_ : List[Any] = GenerationConfig( do_sample=__SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) a_ : int = GenerationConfig.from_pretrained(f'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id='''test-generation-config''' , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token ) a_ : List[Any] = GenerationConfig.from_pretrained(f'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: a_ : Optional[int] = GenerationConfig( do_sample=__SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) a_ : str = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token ) a_ : int = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
666
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
1
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = get_tests_dir('fixtures/dummy-config.json') class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: a_ : Any = 0 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Optional[int] = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: a_ : str = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: a_ : Optional[Any] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: a_ : str = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. a_ : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE , '''fake-roberta''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) a_ : List[str] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(type(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) # Wrong model type will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoConfig.register('''model''' , __SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoConfig.register('''bert''' , __SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API a_ : str = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ): a_ : List[Any] = AutoConfig.from_pretrained('''bert-base''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a_ : Optional[int] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): a_ : Tuple = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__SCREAMING_SNAKE_CASE ): a_ : Union[str, Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE ): a_ : Tuple = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "new-model" try: AutoConfig.register('''new-model''' , __SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local a_ : Optional[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. a_ : str = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub a_ : Optional[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
666
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
1
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = CLIPConfig snake_case__ = ["CLIPEncoderLayer"] def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : CLIPConfig ) -> Dict: super().__init__(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = CLIPVisionModelWithProjection(config.vision_config ) a_ : List[Any] = nn.Linear(config.vision_config.projection_dim , 1 ) a_ : Any = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any=0.5 , __SCREAMING_SNAKE_CASE : List[str]=0.5 ) -> List[str]: a_ : Any = self.vision_model(__SCREAMING_SNAKE_CASE )[0] a_ : Optional[int] = self.p_head(__SCREAMING_SNAKE_CASE ) a_ : str = nsfw_detected.flatten() a_ : Dict = nsfw_detected > p_threshold a_ : str = nsfw_detected.tolist() if any(__SCREAMING_SNAKE_CASE ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(__SCREAMING_SNAKE_CASE ): if nsfw_detected_: a_ : Dict = np.zeros(images[idx].shape ) a_ : List[str] = self.w_head(__SCREAMING_SNAKE_CASE ) a_ : Dict = watermark_detected.flatten() a_ : Union[str, Any] = watermark_detected > w_threshold a_ : List[str] = watermark_detected.tolist() if any(__SCREAMING_SNAKE_CASE ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(__SCREAMING_SNAKE_CASE ): if watermark_detected_: a_ : Optional[Any] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = 'The Nymphenburg Palace is a beautiful palace in Munich!' def _UpperCAmelCase ( __A : str , __A : str ): a_ : Dict = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } a_ : Tuple = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py a_ : Optional[Any] = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=__A , output_all_encodings=__A , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , __A ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later a_ : Optional[Any] = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab a_ : Dict = os.path.join(get_home_dir() , '''models''' ) a_ : List[Any] = _load_vocab(__A , __A , __A , cls=__A ) a_ : str = nlp.model.BERTModel( __A , len(__A ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=__A , use_token_type_embed=__A , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=__A , use_decoder=__A , ) original_bort.load_parameters(__A , cast_dtype=__A , ignore_extra=__A ) a_ : Union[str, Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 a_ : List[Any] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(__A ), } a_ : List[str] = BertConfig.from_dict(__A ) a_ : Dict = BertForMaskedLM(__A ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__A : List[Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__A : str , __A : Tuple ): a_ : Tuple = hf_param.shape a_ : int = to_torch(params[gluon_param] ) a_ : Union[str, Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param a_ : Any = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) a_ : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) a_ : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) a_ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) a_ : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): a_ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention a_ : BertSelfAttention = layer.attention.self a_ : Union[str, Any] = check_and_map_params( self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) a_ : Union[str, Any] = check_and_map_params( self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) a_ : Optional[int] = check_and_map_params( self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) a_ : Tuple = check_and_map_params( self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) a_ : Any = check_and_map_params( self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) a_ : Union[str, Any] = check_and_map_params( self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output a_ : BertSelfOutput = layer.attention.output a_ : List[Any] = check_and_map_params( self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' ) a_ : List[Any] = check_and_map_params( self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' ) a_ : Optional[int] = check_and_map_params( self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' ) a_ : Dict = check_and_map_params( self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate a_ : BertIntermediate = layer.intermediate a_ : str = check_and_map_params( intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) a_ : Optional[Any] = check_and_map_params( intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output a_ : BertOutput = layer.output a_ : Union[str, Any] = check_and_map_params( bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) a_ : Union[str, Any] = check_and_map_params( bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) a_ : str = check_and_map_params( bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) a_ : str = check_and_map_params( bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models a_ : int = RobertaTokenizer.from_pretrained('''roberta-base''' ) a_ : Union[str, Any] = tokenizer.encode_plus(__A )['''input_ids'''] # Get gluon output a_ : int = mx.nd.array([input_ids] ) a_ : List[str] = original_bort(inputs=__A , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__A ) a_ : Optional[Any] = BertModel.from_pretrained(__A ) hf_bort_model.eval() a_ : int = tokenizer.encode_plus(__A , return_tensors='''pt''' ) a_ : Union[str, Any] = hf_bort_model(**__A )[0] a_ : Tuple = output_gluon[0].asnumpy() a_ : Optional[Any] = output_hf[0].detach().numpy() a_ : Optional[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() a_ : Dict = np.allclose(__A , __A , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , __A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
666
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
1
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__A , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _UpperCAmelCase ( __A : Tuple , __A : Optional[Any] ): a_ : str = _distribute_shards(**__A ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def _UpperCAmelCase ( __A : Optional[int] , __A : Tuple , __A : List[str] ): a_ : Tuple = _split_gen_kwargs(__A , __A ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def _UpperCAmelCase ( __A : List[str] , __A : Union[str, Any] ): if expected is RuntimeError: with pytest.raises(__A ): _number_of_shards_in_gen_kwargs(__A ) else: a_ : Union[str, Any] = _number_of_shards_in_gen_kwargs(__A ) assert out == expected
666
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
1
'''simple docstring''' import math def _UpperCAmelCase ( __A : int ): a_ : Dict = [] a_ : str = 2 a_ : int = int(math.sqrt(__A ) ) # Size of every segment a_ : List[str] = [True] * (end + 1) a_ : Optional[int] = [] while start <= end: if temp[start] is True: in_prime.append(__A ) for i in range(start * start , end + 1 , __A ): a_ : Dict = False start += 1 prime += in_prime a_ : int = end + 1 a_ : Tuple = min(2 * end , __A ) while low <= n: a_ : List[str] = [True] * (high - low + 1) for each in in_prime: a_ : Union[str, Any] = math.floor(low / each ) * each if t < low: t += each for j in range(__A , high + 1 , __A ): a_ : Tuple = False for j in range(len(__A ) ): if temp[j] is True: prime.append(j + low ) a_ : int = high + 1 a_ : int = min(high + end , __A ) return prime print(sieve(10**6))
666
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : str , __A : str ): a_ : List[str] = get_failure_array(__A ) # 2) Step through text searching for pattern a_ , a_ : List[str] = 0, 0 # index into text, pattern while i < len(__A ): if pattern[j] == text[i]: if j == (len(__A ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: a_ : Tuple = failure[j - 1] continue i += 1 return False def _UpperCAmelCase ( __A : str ): a_ : List[Any] = [0] a_ : int = 0 a_ : Tuple = 1 while j < len(__A ): if pattern[i] == pattern[j]: i += 1 elif i > 0: a_ : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(__A ) return failure if __name__ == "__main__": # Test 1) __lowerCAmelCase = 'abc1abc12' __lowerCAmelCase = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __lowerCAmelCase = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __lowerCAmelCase = 'ABABX' __lowerCAmelCase = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __lowerCAmelCase = 'AAAB' __lowerCAmelCase = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __lowerCAmelCase = 'abcdabcy' __lowerCAmelCase = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __lowerCAmelCase = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
666
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
1
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( ): # Get the sagemaker specific mp parameters from smp_options variable. a_ : Union[str, Any] = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. a_ : Optional[Any] = json.loads(__A ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. a_ : str = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". a_ : Tuple = json.loads(__A ) if not mpi_options.get('''sagemaker_mpi_enabled''' , __A ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , __SCREAMING_SNAKE_CASE , ) @cached_property def SCREAMING_SNAKE_CASE ( self : Any ) -> "torch.device": logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: a_ : List[str] = torch.device('''cpu''' ) a_ : Any = 0 elif is_sagemaker_model_parallel_available(): a_ : str = smp.local_rank() a_ : Dict = torch.device('''cuda''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) a_ : Union[str, Any] = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) a_ : Any = torch.device('''cuda''' , self.local_rank ) a_ : Union[str, Any] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 a_ : Optional[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. a_ : Tuple = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) a_ : Optional[Any] = torch.device('''cuda''' , self.local_rank ) a_ : Tuple = 1 if device.type == "cuda": torch.cuda.set_device(__SCREAMING_SNAKE_CASE ) return device @property def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: return False
666
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
1
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __lowerCAmelCase = parse(importlib.metadata.version('torch')) def _UpperCAmelCase ( __A : Union[str, Version] , __A : str , __A : str ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) a_ : Any = STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): a_ : int = parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def _UpperCAmelCase ( __A : str , __A : str ): return compare_versions(__A , __A , __A )
666
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
1
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __lowerCAmelCase = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _UpperCAmelCase ( __A : List[Any] , __A : int , __A : List[Any] , __A : Dict , __A : List[str] ): for attribute in key.split('''.''' ): a_ : Optional[int] = getattr(__A , __A ) if weight_type is not None: a_ : str = getattr(__A , __A ).shape else: a_ : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": a_ : str = value elif weight_type == "weight_g": a_ : Tuple = value elif weight_type == "weight_v": a_ : str = value elif weight_type == "bias": a_ : List[Any] = value else: a_ : str = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : Any = [] a_ : Dict = fairseq_model.state_dict() a_ : Dict = hf_model.feature_extractor for name, value in fairseq_dict.items(): a_ : List[Any] = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) a_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: a_ : Optional[int] = True if "*" in mapped_key: a_ : Optional[int] = name.split(__A )[0].split('''.''' )[-2] a_ : Tuple = mapped_key.replace('''*''' , __A ) if "weight_g" in name: a_ : List[str] = '''weight_g''' elif "weight_v" in name: a_ : List[Any] = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: a_ : Optional[Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a_ : Any = '''weight''' else: a_ : List[str] = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f'Unused weights: {unused_weights}' ) def _UpperCAmelCase ( __A : Optional[Any] , __A : Union[str, Any] , __A : Any , __A : Optional[int] , __A : Union[str, Any] ): a_ : Optional[Any] = full_name.split('''conv_layers.''' )[-1] a_ : Union[str, Any] = name.split('''.''' ) a_ : Optional[int] = int(items[0] ) a_ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a_ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a_ : Dict = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) a_ : str = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) a_ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__A ) @torch.no_grad() def _UpperCAmelCase ( __A : Optional[int] , __A : Union[str, Any] , __A : int=None ): # load the pre-trained checkpoints a_ : Dict = torch.load(__A ) a_ : List[str] = WavLMConfigOrig(checkpoint['''cfg'''] ) a_ : Any = WavLMOrig(__A ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: a_ : Optional[int] = WavLMConfig.from_pretrained(__A ) else: a_ : List[Any] = WavLMConfig() a_ : str = WavLMModel(__A ) recursively_load_weights(__A , __A ) hf_wavlm.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __lowerCAmelCase = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
666
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : str , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : int ) -> None: warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
1
'''simple docstring''' import math class SCREAMING_SNAKE_CASE : def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int]=0 ) -> int: # a graph with Node 0,1,...,N-1 a_ : Union[str, Any] = n a_ : List[Any] = [ [math.inf for j in range(0 , __SCREAMING_SNAKE_CASE )] for i in range(0 , __SCREAMING_SNAKE_CASE ) ] # adjacency matrix for weight a_ : List[str] = [ [math.inf for j in range(0 , __SCREAMING_SNAKE_CASE )] for i in range(0 , __SCREAMING_SNAKE_CASE ) ] # dp[i][j] stores minimum distance from i to j def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: a_ : str = w def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): a_ : str = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return self.dp[u][v] if __name__ == "__main__": __lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
666
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
1
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' __lowerCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' __lowerCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def _UpperCAmelCase ( __A : Any , __A : str ): return float((preds == labels).mean() ) def _UpperCAmelCase ( __A : List[Any] , __A : Optional[Any] , __A : str="binary" ): a_ : Dict = simple_accuracy(__A , __A ) a_ : Tuple = float(fa_score(y_true=__A , y_pred=__A , average=__A ) ) return { "accuracy": acc, "f1": fa, } def _UpperCAmelCase ( __A : Union[str, Any] , __A : Dict ): a_ : Dict = {} for id_pred, label in zip(__A , __A ): a_ : int = f'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' a_ : int = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: a_ : List[Any] = [(pred, label)] a_ , a_ : Dict = [], [] for question, preds_labels in question_map.items(): a_ , a_ : List[Any] = zip(*__A ) a_ : List[str] = fa_score(y_true=__A , y_pred=__A , average='''macro''' ) fas.append(__A ) a_ : Any = int(sum(pred == label for pred, label in preds_labels ) == len(__A ) ) ems.append(__A ) a_ : str = float(sum(__A ) / len(__A ) ) a_ : int = sum(__A ) / len(__A ) a_ : Dict = float(fa_score(y_true=__A , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ) -> str: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , fa_avg='''macro''' ) elif self.config_name == "record": a_ : Optional[int] = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] a_ : List[Any] = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
666
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowerCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = ["pixel_values"] def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : bool = True , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> None: super().__init__(**__SCREAMING_SNAKE_CASE ) a_ : str = size if size is not None else {'''shortest_edge''': 224} a_ : Optional[Any] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} a_ : Dict = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) a_ : int = do_resize a_ : int = size a_ : Union[str, Any] = resample a_ : Any = do_center_crop a_ : Optional[Any] = crop_size a_ : Any = do_rescale a_ : Optional[Any] = rescale_factor a_ : Dict = do_normalize a_ : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a_ : Any = image_std if image_std is not None else OPENAI_CLIP_STD a_ : int = do_convert_rgb def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Any , ) -> np.ndarray: a_ : Optional[Any] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) a_ : Union[str, Any] = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Any , ) -> np.ndarray: a_ : int = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[int, float] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Tuple: return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : str , ) -> np.ndarray: return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : int = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[ChannelDimension] = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : Any , ) -> PIL.Image.Image: a_ : Tuple = do_resize if do_resize is not None else self.do_resize a_ : str = size if size is not None else self.size a_ : Tuple = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''size''' , default_to_square=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = resample if resample is not None else self.resample a_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop a_ : Tuple = crop_size if crop_size is not None else self.crop_size a_ : Dict = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' , default_to_square=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale a_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : str = do_normalize if do_normalize is not None else self.do_normalize a_ : Optional[int] = image_mean if image_mean is not None else self.image_mean a_ : Any = image_std if image_std is not None else self.image_std a_ : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a_ : List[str] = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: a_ : int = [convert_to_rgb(__SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. a_ : List[str] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: a_ : Union[str, Any] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: a_ : Dict = [self.center_crop(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: a_ : Any = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: a_ : int = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] a_ : Dict = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] a_ : Dict = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _UpperCAmelCase ( __A : Union[str, Any] , __A : List[Any]=0.999 , __A : Optional[Any]="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__A : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__A : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) a_ : Any = [] for i in range(__A ): a_ : List[Any] = i / num_diffusion_timesteps a_ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__A ) / alpha_bar_fn(__A ) , __A ) ) return torch.tensor(__A , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): snake_case__ = [e.name for e in KarrasDiffusionSchedulers] snake_case__ = 2 @register_to_config def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : int = 1000 , __SCREAMING_SNAKE_CASE : float = 0.0_0085 , __SCREAMING_SNAKE_CASE : float = 0.012 , __SCREAMING_SNAKE_CASE : str = "linear" , __SCREAMING_SNAKE_CASE : Optional[Union[np.ndarray, List[float]]] = None , __SCREAMING_SNAKE_CASE : str = "epsilon" , __SCREAMING_SNAKE_CASE : str = "linspace" , __SCREAMING_SNAKE_CASE : int = 0 , ) -> Optional[Any]: if trained_betas is not None: a_ : List[str] = torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.floataa ) elif beta_schedule == "linear": a_ : Optional[int] = torch.linspace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a_ : Any = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __SCREAMING_SNAKE_CASE , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a_ : Any = betas_for_alpha_bar(__SCREAMING_SNAKE_CASE ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) a_ : str = 1.0 - self.betas a_ : Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=None ) -> str: if schedule_timesteps is None: a_ : Any = self.timesteps a_ : str = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: a_ : List[str] = 1 if len(__SCREAMING_SNAKE_CASE ) > 1 else 0 else: a_ : List[str] = timestep.cpu().item() if torch.is_tensor(__SCREAMING_SNAKE_CASE ) else timestep a_ : Union[str, Any] = self._index_counter[timestep_int] return indices[pos].item() @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: a_ : Tuple = self.index_for_timestep(__SCREAMING_SNAKE_CASE ) if self.state_in_first_order: a_ : int = self.sigmas[step_index] else: a_ : str = self.sigmas_interpol[step_index] a_ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, torch.device] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , ) -> str: a_ : List[Any] = num_inference_steps a_ : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": a_ : Optional[int] = np.linspace(0 , num_train_timesteps - 1 , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )[::-1].copy() elif self.config.timestep_spacing == "leading": a_ : Optional[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a_ : int = (np.arange(0 , __SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1].copy().astype(__SCREAMING_SNAKE_CASE ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": a_ : int = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a_ : Optional[int] = (np.arange(__SCREAMING_SNAKE_CASE , 0 , -step_ratio )).round().copy().astype(__SCREAMING_SNAKE_CASE ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) a_ : List[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) a_ : Optional[Any] = torch.from_numpy(np.log(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Dict = np.interp(__SCREAMING_SNAKE_CASE , np.arange(0 , len(__SCREAMING_SNAKE_CASE ) ) , __SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) a_ : List[Any] = torch.from_numpy(__SCREAMING_SNAKE_CASE ).to(device=__SCREAMING_SNAKE_CASE ) # interpolate sigmas a_ : List[Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() a_ : List[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) a_ : Dict = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): # mps does not support float64 a_ : List[str] = torch.from_numpy(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE , dtype=torch.floataa ) else: a_ : str = torch.from_numpy(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) # interpolate timesteps a_ : int = self.sigma_to_t(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE , dtype=timesteps.dtype ) a_ : Optional[int] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() a_ : Tuple = torch.cat([timesteps[:1], interleaved_timesteps] ) a_ : List[str] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter a_ : int = defaultdict(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str ) -> Dict: # get log sigma a_ : Optional[Any] = sigma.log() # get distribution a_ : Union[str, Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range a_ : Any = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) a_ : List[str] = low_idx + 1 a_ : Tuple = self.log_sigmas[low_idx] a_ : str = self.log_sigmas[high_idx] # interpolate sigmas a_ : int = (low - log_sigma) / (low - high) a_ : Optional[Any] = w.clamp(0 , 1 ) # transform interpolation to time range a_ : int = (1 - w) * low_idx + w * high_idx a_ : str = t.view(sigma.shape ) return t @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: return self.sample is None def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, np.ndarray] , __SCREAMING_SNAKE_CASE : Union[float, torch.FloatTensor] , __SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, np.ndarray] , __SCREAMING_SNAKE_CASE : bool = True , ) -> Union[SchedulerOutput, Tuple]: a_ : Dict = self.index_for_timestep(__SCREAMING_SNAKE_CASE ) # advance index counter by 1 a_ : int = timestep.cpu().item() if torch.is_tensor(__SCREAMING_SNAKE_CASE ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: a_ : List[Any] = self.sigmas[step_index] a_ : Optional[Any] = self.sigmas_interpol[step_index + 1] a_ : Optional[Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method a_ : List[Any] = self.sigmas[step_index - 1] a_ : List[str] = self.sigmas_interpol[step_index] a_ : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API a_ : Union[str, Any] = 0 a_ : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": a_ : Tuple = sigma_hat if self.state_in_first_order else sigma_interpol a_ : List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": a_ : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_interpol a_ : Dict = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order a_ : Tuple = (sample - pred_original_sample) / sigma_hat # 3. delta timestep a_ : Union[str, Any] = sigma_interpol - sigma_hat # store for 2nd order step a_ : Dict = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order a_ : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep a_ : int = sigma_next - sigma_hat a_ : List[str] = self.sample a_ : str = None a_ : Dict = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples a_ : Optional[int] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__SCREAMING_SNAKE_CASE ): # mps does not support float64 a_ : List[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) a_ : List[str] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: a_ : Any = self.timesteps.to(original_samples.device ) a_ : Union[str, Any] = timesteps.to(original_samples.device ) a_ : Any = [self.index_for_timestep(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for t in timesteps] a_ : Dict = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): a_ : Union[str, Any] = sigma.unsqueeze(-1 ) a_ : Optional[Any] = original_samples + noise * sigma return noisy_samples def __len__( self : str ) -> Optional[int]: return self.config.num_train_timesteps
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' from math import isqrt def _UpperCAmelCase ( __A : int ): a_ : Dict = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __A , __A ): a_ : str = False return [i for i in range(2 , __A ) if is_prime[i]] def _UpperCAmelCase ( __A : int = 10**8 ): a_ : Tuple = calculate_prime_numbers(max_number // 2 ) a_ : Union[str, Any] = 0 a_ : Any = 0 a_ : Optional[Any] = len(__A ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"""{solution() = }""")
666
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
1
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore __lowerCAmelCase = namedtuple('covid_data', 'cases deaths recovered') def _UpperCAmelCase ( __A : str = "https://www.worldometers.info/coronavirus/" ): a_ : Union[str, Any] = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__A ).content ).xpath(__A ) ) __lowerCAmelCase = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
666
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
1
'''simple docstring''' __lowerCAmelCase = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __lowerCAmelCase = [{'type': 'code', 'content': INSTALL_CONTENT}] __lowerCAmelCase = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
666
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __lowerCAmelCase = r'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "rag" snake_case__ = True def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Tuple=" / " , __SCREAMING_SNAKE_CASE : Any=" // " , __SCREAMING_SNAKE_CASE : List[str]=5 , __SCREAMING_SNAKE_CASE : Dict=300 , __SCREAMING_SNAKE_CASE : Dict=768 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : int="wiki_dpr" , __SCREAMING_SNAKE_CASE : Optional[int]="train" , __SCREAMING_SNAKE_CASE : Union[str, Any]="compressed" , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> List[Any]: super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , forced_eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , prefix=__SCREAMING_SNAKE_CASE , vocab_size=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" a_ : Any = kwargs.pop('''question_encoder''' ) a_ : Dict = question_encoder_config.pop('''model_type''' ) a_ : Optional[int] = kwargs.pop('''generator''' ) a_ : str = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig a_ : List[str] = AutoConfig.for_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Tuple = AutoConfig.for_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : List[str] = reduce_loss a_ : Any = label_smoothing a_ : Any = exclude_bos_score a_ : Union[str, Any] = do_marginalize a_ : Dict = title_sep a_ : Union[str, Any] = doc_sep a_ : Optional[Any] = n_docs a_ : Tuple = max_combined_length a_ : Dict = dataset a_ : List[str] = dataset_split a_ : int = index_name a_ : int = retrieval_vector_size a_ : int = retrieval_batch_size a_ : int = passages_path a_ : Optional[int] = index_path a_ : List[str] = use_dummy_dataset a_ : Optional[int] = output_retrieved a_ : Any = do_deduplication a_ : str = use_cache if self.forced_eos_token_id is None: a_ : Optional[Any] = getattr(self.generator , '''forced_eos_token_id''' , __SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : PretrainedConfig , **__SCREAMING_SNAKE_CASE : List[Any] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: a_ : List[str] = copy.deepcopy(self.__dict__ ) a_ : List[str] = self.question_encoder.to_dict() a_ : str = self.generator.to_dict() a_ : Dict = self.__class__.model_type return output
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : int , __A : int ): if b == 0: return (1, 0) ((a_) , (a_)) : Union[str, Any] = extended_euclid(__A , a % b ) a_ : Any = a // b return (y, x - k * y) def _UpperCAmelCase ( __A : int , __A : int , __A : int , __A : int ): ((a_) , (a_)) : Tuple = extended_euclid(__A , __A ) a_ : str = na * na a_ : Optional[Any] = ra * x * na + ra * y * na return (n % m + m) % m def _UpperCAmelCase ( __A : int , __A : int ): ((a_) , (a_)) : Union[str, Any] = extended_euclid(__A , __A ) if b < 0: a_ : Union[str, Any] = (b % n + n) % n return b def _UpperCAmelCase ( __A : int , __A : int , __A : int , __A : int ): a_ , a_ : Tuple = invert_modulo(__A , __A ), invert_modulo(__A , __A ) a_ : Dict = na * na a_ : Dict = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
666
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __lowerCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) snake_case__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "The input training data file (a text file)."} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: if self.train_file is not None: a_ : Tuple = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: a_ : List[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = True snake_case__ = None snake_case__ = None def __call__( self : Dict , __SCREAMING_SNAKE_CASE : str ) -> Tuple: a_ : str = '''label''' if '''label''' in features[0].keys() else '''labels''' a_ : str = [feature.pop(__SCREAMING_SNAKE_CASE ) for feature in features] a_ : List[Any] = len(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = len(features[0]['''input_ids'''] ) a_ : Optional[int] = [ [{k: v[i] for k, v in feature.items()} for i in range(__SCREAMING_SNAKE_CASE )] for feature in features ] a_ : Union[str, Any] = list(chain(*__SCREAMING_SNAKE_CASE ) ) a_ : Tuple = self.tokenizer.pad( __SCREAMING_SNAKE_CASE , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten a_ : Union[str, Any] = {k: v.view(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , -1 ) for k, v in batch.items()} # Add back labels a_ : List[str] = torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.intaa ) return batch def _UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ , a_ , a_ : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ , a_ , a_ : Any = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , __A , __A ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a_ : Any = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. a_ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: a_ : Any = {} if data_args.train_file is not None: a_ : List[str] = data_args.train_file if data_args.validation_file is not None: a_ : Tuple = data_args.validation_file a_ : int = data_args.train_file.split('''.''' )[-1] a_ : Any = load_dataset( __A , data_files=__A , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. a_ : Any = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a_ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a_ : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. a_ : Optional[int] = [f'ending{i}' for i in range(4 )] a_ : Union[str, Any] = '''sent1''' a_ : Union[str, Any] = '''sent2''' if data_args.max_seq_length is None: a_ : Dict = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) a_ : Optional[int] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) a_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__A : Any ): a_ : Tuple = [[context] * 4 for context in examples[context_name]] a_ : Optional[Any] = examples[question_header_name] a_ : Any = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(__A ) ] # Flatten out a_ : Optional[Any] = list(chain(*__A ) ) a_ : int = list(chain(*__A ) ) # Tokenize a_ : List[Any] = tokenizer( __A , __A , truncation=__A , max_length=__A , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__A ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) a_ : Optional[Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: a_ : Tuple = min(len(__A ) , data_args.max_train_samples ) a_ : Tuple = train_dataset.select(range(__A ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): a_ : Any = train_dataset.map( __A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) a_ : Optional[Any] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: a_ : List[str] = min(len(__A ) , data_args.max_eval_samples ) a_ : Union[str, Any] = eval_dataset.select(range(__A ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): a_ : int = eval_dataset.map( __A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator a_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__A , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__A : Any ): a_ , a_ : Optional[Any] = eval_predictions a_ : Tuple = np.argmax(__A , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer a_ : Tuple = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__A , data_collator=__A , compute_metrics=__A , ) # Training if training_args.do_train: a_ : Tuple = None if training_args.resume_from_checkpoint is not None: a_ : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: a_ : Optional[int] = last_checkpoint a_ : List[Any] = trainer.train(resume_from_checkpoint=__A ) trainer.save_model() # Saves the tokenizer too for easy upload a_ : Optional[int] = train_result.metrics a_ : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) a_ : Tuple = min(__A , len(__A ) ) trainer.log_metrics('''train''' , __A ) trainer.save_metrics('''train''' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) a_ : Any = trainer.evaluate() a_ : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) a_ : Union[str, Any] = min(__A , len(__A ) ) trainer.log_metrics('''eval''' , __A ) trainer.save_metrics('''eval''' , __A ) a_ : Tuple = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def _UpperCAmelCase ( __A : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
666
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
1
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _UpperCAmelCase ( __A : List[str] ): a_ : Optional[int] = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__A , __A ) def _UpperCAmelCase ( __A : str ): a_ , a_ : Dict = emb.weight.shape a_ : Optional[Any] = nn.Linear(__A , __A , bias=__A ) a_ : Dict = emb.weight.data return lin_layer def _UpperCAmelCase ( __A : Any ): a_ : List[str] = torch.load(__A , map_location='''cpu''' ) a_ : Optional[int] = Namespace(**checkpoint['''cfg''']['''model'''] ) a_ : Tuple = checkpoint['''model'''] remove_ignore_keys_(__A ) a_ : str = state_dict['''decoder.embed_tokens.weight'''].shape[0] a_ : str = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} a_ : List[str] = XGLMConfig( vocab_size=__A , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) a_ : Tuple = XGLMForCausalLM(__A ) a_ : Any = model.load_state_dict(__A , strict=__A ) print(__A ) a_ : List[str] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
666
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCAmelCase = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
1
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup __lowerCAmelCase = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def _UpperCAmelCase ( __A : Optional[Any] ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') __lowerCAmelCase = parser.parse_args() if args.check_lib: __lowerCAmelCase = importlib.import_module('transformers') __lowerCAmelCase = Path(transformers_module.__file__).parent else: __lowerCAmelCase = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
666
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : str ): a_ : Tuple = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) a_ : List[str] = hex_num[0] == '''-''' if is_negative: a_ : Dict = hex_num[1:] try: a_ : str = int(__A , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) a_ : Dict = '''''' while int_num > 0: a_ : List[str] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __lowerCAmelCase = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: a_ : Dict = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) a_ : List[str] = self.diffusers_dir shutil.copy( os.path.join(__SCREAMING_SNAKE_CASE , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: a_ : str = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int=None ) -> Optional[int]: a_ : str = comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: a_ : Tuple = comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result a_ : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) a_ : List[Any] = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(__SCREAMING_SNAKE_CASE , '''w''' , newline='''\n''' ) as f: f.write(__SCREAMING_SNAKE_CASE ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__SCREAMING_SNAKE_CASE ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: self.assertTrue(f.read() , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: a_ : List[str] = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , __SCREAMING_SNAKE_CASE , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , __SCREAMING_SNAKE_CASE ) , ) # Copy consistency with a really long name a_ : List[Any] = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , f'{long_class_name}SchedulerOutput' , re.sub('''Bert''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , __SCREAMING_SNAKE_CASE , overwrite_result=re.sub('''DDPM''' , '''Test''' , __SCREAMING_SNAKE_CASE ) , )
666
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
1
'''simple docstring''' __lowerCAmelCase = {str(digit): digit**5 for digit in range(10)} def _UpperCAmelCase ( __A : int ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__A ) ) def _UpperCAmelCase ( ): return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(__A ) ) if __name__ == "__main__": print(solution())
666
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __get__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict=None ) -> Dict: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) a_ : str = '''__cached_''' + self.fget.__name__ a_ : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if cached is None: a_ : List[Any] = self.fget(__SCREAMING_SNAKE_CASE ) setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return cached def _UpperCAmelCase ( __A : Any ): a_ : Union[str, Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def _UpperCAmelCase ( __A : List[Any] ): if is_torch_fx_proxy(__A ): return True if is_torch_available(): import torch if isinstance(__A , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__A , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__A , (jnp.ndarray, Tracer) ): return True return isinstance(__A , np.ndarray ) def _UpperCAmelCase ( __A : Any ): return isinstance(__A , np.ndarray ) def _UpperCAmelCase ( __A : Tuple ): return _is_numpy(__A ) def _UpperCAmelCase ( __A : Tuple ): import torch return isinstance(__A , torch.Tensor ) def _UpperCAmelCase ( __A : Tuple ): return False if not is_torch_available() else _is_torch(__A ) def _UpperCAmelCase ( __A : List[Any] ): import torch return isinstance(__A , torch.device ) def _UpperCAmelCase ( __A : Optional[int] ): return False if not is_torch_available() else _is_torch_device(__A ) def _UpperCAmelCase ( __A : int ): import torch if isinstance(__A , __A ): if hasattr(__A , __A ): a_ : Any = getattr(__A , __A ) else: return False return isinstance(__A , torch.dtype ) def _UpperCAmelCase ( __A : str ): return False if not is_torch_available() else _is_torch_dtype(__A ) def _UpperCAmelCase ( __A : List[Any] ): import tensorflow as tf return isinstance(__A , tf.Tensor ) def _UpperCAmelCase ( __A : Optional[Any] ): return False if not is_tf_available() else _is_tensorflow(__A ) def _UpperCAmelCase ( __A : int ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__A , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(__A ) return type(__A ) == tf.Tensor def _UpperCAmelCase ( __A : Dict ): return False if not is_tf_available() else _is_tf_symbolic_tensor(__A ) def _UpperCAmelCase ( __A : Optional[Any] ): import jax.numpy as jnp # noqa: F811 return isinstance(__A , jnp.ndarray ) def _UpperCAmelCase ( __A : Optional[int] ): return False if not is_flax_available() else _is_jax(__A ) def _UpperCAmelCase ( __A : List[str] ): if isinstance(__A , (dict, UserDict) ): return {k: to_py_obj(__A ) for k, v in obj.items()} elif isinstance(__A , (list, tuple) ): return [to_py_obj(__A ) for o in obj] elif is_tf_tensor(__A ): return obj.numpy().tolist() elif is_torch_tensor(__A ): return obj.detach().cpu().tolist() elif is_jax_tensor(__A ): return np.asarray(__A ).tolist() elif isinstance(__A , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _UpperCAmelCase ( __A : Dict ): if isinstance(__A , (dict, UserDict) ): return {k: to_numpy(__A ) for k, v in obj.items()} elif isinstance(__A , (list, tuple) ): return np.array(__A ) elif is_tf_tensor(__A ): return obj.numpy() elif is_torch_tensor(__A ): return obj.detach().cpu().numpy() elif is_jax_tensor(__A ): return np.asarray(__A ) else: return obj class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: a_ : Dict = fields(self ) # Safety and consistency checks if not len(__SCREAMING_SNAKE_CASE ): raise ValueError(f'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.' ) a_ : List[str] = getattr(self , class_fields[0].name ) a_ : Union[str, Any] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a_ : Any = first_field.items() a_ : int = True else: try: a_ : str = iter(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = True except TypeError: a_ : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__SCREAMING_SNAKE_CASE ): if ( not isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) or not len(__SCREAMING_SNAKE_CASE ) == 2 or not isinstance(element[0] , __SCREAMING_SNAKE_CASE ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute a_ : List[Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: a_ : Optional[int] = element[1] elif first_field is not None: a_ : Any = first_field else: for field in class_fields: a_ : Optional[int] = getattr(self , field.name ) if v is not None: a_ : Any = v def __delitem__( self : Any , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def SCREAMING_SNAKE_CASE ( self : List[Any] , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def SCREAMING_SNAKE_CASE ( self : List[str] , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]: raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def SCREAMING_SNAKE_CASE ( self : Any , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self : Tuple , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a_ : Optional[int] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) super().__setattr__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __setitem__( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any ) -> str: # Will raise a KeyException if needed super().__setitem__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , __SCREAMING_SNAKE_CASE : Dict ) -> Any: raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "longest" snake_case__ = "max_length" snake_case__ = "do_not_pad" class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "pt" snake_case__ = "tf" snake_case__ = "np" snake_case__ = "jax" class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : List[ContextManager] ) -> Any: a_ : List[Any] = context_managers a_ : str = ExitStack() def __enter__( self : str ) -> int: for context_manager in self.context_managers: self.stack.enter_context(__SCREAMING_SNAKE_CASE ) def __exit__( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Tuple ) -> Any: self.stack.__exit__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( __A : Optional[int] ): a_ : int = infer_framework(__A ) if framework == "tf": a_ : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": a_ : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: a_ : str = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _UpperCAmelCase ( __A : Optional[int] ): a_ : List[str] = model_class.__name__ a_ : Optional[int] = infer_framework(__A ) if framework == "tf": a_ : List[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": a_ : int = inspect.signature(model_class.forward ) # PyTorch models else: a_ : List[Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _UpperCAmelCase ( __A : MutableMapping , __A : str = "" , __A : str = "." ): def _flatten_dict(__A : List[str] , __A : List[Any]="" , __A : List[str]="." ): for k, v in d.items(): a_ : Optional[Any] = str(__A ) + delimiter + str(__A ) if parent_key else k if v and isinstance(__A , __A ): yield from flatten_dict(__A , __A , delimiter=__A ).items() else: yield key, v return dict(_flatten_dict(__A , __A , __A ) ) @contextmanager def _UpperCAmelCase ( __A : Dict , __A : bool = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _UpperCAmelCase ( __A : Union[str, Any] , __A : Tuple=None ): if is_numpy_array(__A ): return np.transpose(__A , axes=__A ) elif is_torch_tensor(__A ): return array.T if axes is None else array.permute(*__A ) elif is_tf_tensor(__A ): import tensorflow as tf return tf.transpose(__A , perm=__A ) elif is_jax_tensor(__A ): return jnp.transpose(__A , axes=__A ) else: raise ValueError(f'Type not supported for transpose: {type(__A )}.' ) def _UpperCAmelCase ( __A : List[Any] , __A : Optional[Any] ): if is_numpy_array(__A ): return np.reshape(__A , __A ) elif is_torch_tensor(__A ): return array.reshape(*__A ) elif is_tf_tensor(__A ): import tensorflow as tf return tf.reshape(__A , __A ) elif is_jax_tensor(__A ): return jnp.reshape(__A , __A ) else: raise ValueError(f'Type not supported for reshape: {type(__A )}.' ) def _UpperCAmelCase ( __A : Optional[Any] , __A : Union[str, Any]=None ): if is_numpy_array(__A ): return np.squeeze(__A , axis=__A ) elif is_torch_tensor(__A ): return array.squeeze() if axis is None else array.squeeze(dim=__A ) elif is_tf_tensor(__A ): import tensorflow as tf return tf.squeeze(__A , axis=__A ) elif is_jax_tensor(__A ): return jnp.squeeze(__A , axis=__A ) else: raise ValueError(f'Type not supported for squeeze: {type(__A )}.' ) def _UpperCAmelCase ( __A : List[Any] , __A : List[str] ): if is_numpy_array(__A ): return np.expand_dims(__A , __A ) elif is_torch_tensor(__A ): return array.unsqueeze(dim=__A ) elif is_tf_tensor(__A ): import tensorflow as tf return tf.expand_dims(__A , axis=__A ) elif is_jax_tensor(__A ): return jnp.expand_dims(__A , axis=__A ) else: raise ValueError(f'Type not supported for expand_dims: {type(__A )}.' ) def _UpperCAmelCase ( __A : Tuple ): if is_numpy_array(__A ): return np.size(__A ) elif is_torch_tensor(__A ): return array.numel() elif is_tf_tensor(__A ): import tensorflow as tf return tf.size(__A ) elif is_jax_tensor(__A ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(__A )}.' ) def _UpperCAmelCase ( __A : Tuple , __A : str ): for key, value in auto_map.items(): if isinstance(__A , (tuple, list) ): a_ : Union[str, Any] = [f'{repo_id}--{v}' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: a_ : Any = f'{repo_id}--{value}' return auto_map def _UpperCAmelCase ( __A : Tuple ): for base_class in inspect.getmro(__A ): a_ : Union[str, Any] = base_class.__module__ a_ : List[Any] = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
666
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
1
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Model type selected in the list: " + ", ".join(SCREAMING_SNAKE_CASE_ )} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) snake_case__ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) snake_case__ = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) snake_case__ = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) snake_case__ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) snake_case__ = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) snake_case__ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) snake_case__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "train" snake_case__ = "dev" class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : SquadDataTrainingArguments , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Union[str, Split] = Split.train , __SCREAMING_SNAKE_CASE : Optional[bool] = False , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = "pt" , ) -> int: a_ : List[str] = args a_ : Optional[int] = is_language_sensitive a_ : Union[str, Any] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): try: a_ : List[Any] = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) a_ : Tuple = mode # Load data features from cache or dataset file a_ : List[str] = '''v2''' if args.version_2_with_negative else '''v1''' a_ : Dict = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a_ : Tuple = cached_features_file + '''.lock''' with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: a_ : Tuple = time.time() a_ : str = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. a_ : Optional[int] = self.old_features['''features'''] a_ : Tuple = self.old_features.get('''dataset''' , __SCREAMING_SNAKE_CASE ) a_ : Tuple = self.old_features.get('''examples''' , __SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' ''' future run''' ) else: if mode == Split.dev: a_ : Dict = self.processor.get_dev_examples(args.data_dir ) else: a_ : Tuple = self.processor.get_train_examples(args.data_dir ) a_ , a_ : Tuple = squad_convert_examples_to_features( examples=self.examples , tokenizer=__SCREAMING_SNAKE_CASE , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__SCREAMING_SNAKE_CASE , ) a_ : str = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , __SCREAMING_SNAKE_CASE , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : str ) -> str: return len(self.features ) def __getitem__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset a_ : str = self.features[i] a_ : List[str] = torch.tensor(feature.input_ids , dtype=torch.long ) a_ : Optional[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) a_ : Optional[Any] = torch.tensor(feature.token_type_ids , dtype=torch.long ) a_ : Tuple = torch.tensor(feature.cls_index , dtype=torch.long ) a_ : str = torch.tensor(feature.p_mask , dtype=torch.float ) a_ : List[str] = torch.tensor(feature.is_impossible , dtype=torch.float ) a_ : List[Any] = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: a_ : Optional[int] = torch.tensor(feature.start_position , dtype=torch.long ) a_ : List[str] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
666
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
1
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCAmelCase ( __A : int ): a_ : Dict = prime_factors(__A ) if is_square_free(__A ): return -1 if len(__A ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): snake_case__ = 1 @register_to_config def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=2000 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=20 , __SCREAMING_SNAKE_CASE : List[Any]=1e-3 ) -> Dict: a_ : Any = None a_ : str = None a_ : Tuple = None def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, torch.device] = None ) -> Union[str, Any]: a_ : Optional[Any] = torch.linspace(1 , self.config.sampling_eps , __SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=None ) -> List[Any]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score a_ : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) a_ : List[str] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) a_ : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): a_ : Dict = std.unsqueeze(-1 ) a_ : Dict = -score / std # compute a_ : Any = -1.0 / len(self.timesteps ) a_ : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) a_ : int = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): a_ : Any = beta_t.unsqueeze(-1 ) a_ : Union[str, Any] = -0.5 * beta_t * x a_ : str = torch.sqrt(__SCREAMING_SNAKE_CASE ) a_ : List[str] = drift - diffusion**2 * score a_ : Dict = x + drift * dt # add noise a_ : Dict = randn_tensor(x.shape , layout=x.layout , generator=__SCREAMING_SNAKE_CASE , device=x.device , dtype=x.dtype ) a_ : Optional[Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[Any] ) -> List[str]: return self.config.num_train_timesteps
666
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
1
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'vocab.txt'} __lowerCAmelCase = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } __lowerCAmelCase = { 'openbmb/cpm-ant-10b': 1_024, } def _UpperCAmelCase ( __A : Any ): a_ : Union[str, Any] = collections.OrderedDict() with open(__A , '''r''' , encoding='''utf-8''' ) as reader: a_ : Optional[Any] = reader.readlines() for index, token in enumerate(__A ): a_ : Optional[Any] = token.rstrip('''\n''' ) a_ : str = index return vocab class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]="<unk>" , __SCREAMING_SNAKE_CASE : Optional[int]=200 ) -> Dict: a_ : int = vocab a_ : str = unk_token a_ : int = max_input_chars_per_word def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Dict ) -> int: a_ : List[str] = list(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > self.max_input_chars_per_word: return [self.unk_token] a_ : Any = 0 a_ : Any = [] while start < len(__SCREAMING_SNAKE_CASE ): a_ : Tuple = len(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = None while start < end: a_ : Dict = ''''''.join(chars[start:end] ) if substr in self.vocab: a_ : List[Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = end return sub_tokens class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] snake_case__ = False def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict="<d>" , __SCREAMING_SNAKE_CASE : int="</d>" , __SCREAMING_SNAKE_CASE : Optional[int]="<s>" , __SCREAMING_SNAKE_CASE : Tuple="</s>" , __SCREAMING_SNAKE_CASE : List[Any]="<pad>" , __SCREAMING_SNAKE_CASE : int="<unk>" , __SCREAMING_SNAKE_CASE : Tuple="</n>" , __SCREAMING_SNAKE_CASE : str="</_>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="left" , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Union[str, Any]: requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=__SCREAMING_SNAKE_CASE , eod_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , line_token=__SCREAMING_SNAKE_CASE , space_token=__SCREAMING_SNAKE_CASE , padding_side=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) a_ : Union[str, Any] = bod_token a_ : str = eod_token a_ : int = load_vocab(__SCREAMING_SNAKE_CASE ) a_ : Any = self.encoder[space_token] a_ : List[Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] a_ : Tuple = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __SCREAMING_SNAKE_CASE : x[1] ) ) a_ : List[Any] = {v: k for k, v in self.encoder.items()} a_ : Tuple = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: return self.encoder[self.bod_token] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: return self.encoder[self.eod_token] @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: return self.encoder["\n"] @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: a_ : Tuple = [] for x in jieba.cut(__SCREAMING_SNAKE_CASE , cut_all=__SCREAMING_SNAKE_CASE ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) ) return output_tokens def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[str] ) -> Tuple: a_ : Any = [i for i in token_ids if i >= 0] a_ : Optional[Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: return token in self.encoder def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[str] ) -> str: return "".join(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int ) -> Dict: return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if os.path.isdir(__SCREAMING_SNAKE_CASE ): a_ : List[Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: a_ : Dict = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory a_ : Optional[int] = 0 if " " in self.encoder: a_ : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: a_ : str = self.encoder['''\n'''] del self.encoder["\n"] a_ : Dict = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __SCREAMING_SNAKE_CASE : x[1] ) ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) a_ : int = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : List[int] = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(__SCREAMING_SNAKE_CASE ))
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _UpperCAmelCase ( __A : Optional[int] ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _UpperCAmelCase ( ): with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" a_ : Optional[int] = [1, 2, 3] with pytest.raises(__A ): with parallel_backend('''unsupported backend''' ): map_nested(__A , __A , num_proc=2 ) with pytest.raises(__A ): with parallel_backend('''unsupported backend''' ): map_nested(__A , __A , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def _UpperCAmelCase ( __A : Optional[Any] ): a_ : List[Any] = [1, 2] a_ : List[Any] = {'''a''': 1, '''b''': 2} a_ : Union[str, Any] = {'''a''': [1, 2], '''b''': [3, 4]} a_ : Any = {'''a''': {'''1''': 1}, '''b''': 2} a_ : Union[str, Any] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} a_ : str = [2, 3] a_ : Optional[int] = {'''a''': 2, '''b''': 3} a_ : List[Any] = {'''a''': [2, 3], '''b''': [4, 5]} a_ : List[str] = {'''a''': {'''1''': 2}, '''b''': 3} a_ : Optional[int] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
666
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , ) -> Optional[int]: a_ : Dict = parent a_ : Union[str, Any] = 13 a_ : int = 7 a_ : List[Any] = True a_ : Optional[Any] = True a_ : Union[str, Any] = True a_ : Union[str, Any] = 99 a_ : Tuple = 32 a_ : Dict = 2 a_ : Optional[Any] = 4 a_ : Union[str, Any] = 37 a_ : Dict = '''gelu''' a_ : Union[str, Any] = 0.1 a_ : int = 0.1 a_ : Dict = 512 a_ : Optional[Any] = 16 a_ : List[Any] = 2 a_ : Optional[Any] = 0.02 a_ : Any = 3 a_ : Tuple = 4 a_ : Union[str, Any] = None def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : int = None if self.use_input_mask: a_ : str = random_attention_mask([self.batch_size, self.seq_length] ) a_ : Union[str, Any] = None a_ : Union[str, Any] = None a_ : Optional[Any] = None if self.use_labels: a_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : int = ids_tensor([self.batch_size] , self.num_choices ) a_ : Optional[Any] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : int = self.prepare_config_and_inputs() a_ : int = True a_ : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: a_ : str = TFEsmModel(config=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} a_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) a_ : int = [input_ids, input_mask] a_ : Optional[int] = model(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , ) -> int: a_ : Any = True a_ : Union[str, Any] = TFEsmModel(config=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } a_ : Dict = model(__SCREAMING_SNAKE_CASE ) a_ : str = [input_ids, input_mask] a_ : Any = model(__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE ) # Also check the case where encoder outputs are not passed a_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: a_ : Optional[int] = TFEsmForMaskedLM(config=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: a_ : str = self.num_labels a_ : int = TFEsmForTokenClassification(config=__SCREAMING_SNAKE_CASE ) a_ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} a_ : str = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : List[Any] = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Union[str, Any] = config_and_inputs a_ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Any = TFEsmModelTester(self ) a_ : Union[str, Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: a_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[Any] = TFEsmModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: a_ , a_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer a_ : Dict = model.get_bias() assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for k, v in name.items(): assert isinstance(__SCREAMING_SNAKE_CASE , tf.Variable ) else: a_ : Union[str, Any] = model.get_output_embeddings() assert x is None a_ : List[Any] = model.get_bias() assert name is None @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: a_ : str = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) a_ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) a_ : List[str] = model(__SCREAMING_SNAKE_CASE )[0] a_ : Optional[Any] = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , __SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. a_ : List[Any] = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: a_ : List[str] = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) a_ : Any = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) a_ : Tuple = model(__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. a_ : str = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
666
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : List[Any] , __A : str=False , __A : List[str]=False ): a_ : str = '''backbone.''' if is_semantic else '''''' a_ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'{prefix}blocks.{i}.norm1.weight', f'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm1.bias', f'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.weight', f'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.bias', f'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.weight', f'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.bias', f'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.weight', f'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.bias', f'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.weight', f'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.bias', f'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (f'{prefix}cls_token', '''beit.embeddings.cls_token'''), (f'{prefix}patch_embed.proj.weight', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'{prefix}patch_embed.proj.bias', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'{prefix}pos_embed', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _UpperCAmelCase ( __A : int , __A : Dict , __A : Optional[int]=False , __A : Tuple=False ): for i in range(config.num_hidden_layers ): a_ : List[str] = '''backbone.''' if is_semantic else '''''' # queries, keys and values a_ : Union[str, Any] = state_dict.pop(f'{prefix}blocks.{i}.attn.qkv.weight' ) a_ : Any = state_dict.pop(f'{prefix}blocks.{i}.attn.q_bias' ) a_ : Any = state_dict.pop(f'{prefix}blocks.{i}.attn.v_bias' ) a_ : int = in_proj_weight[ : config.hidden_size, : ] a_ : Union[str, Any] = q_bias a_ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] a_ : Dict = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained a_ : str = state_dict.pop(f'{prefix}blocks.{i}.gamma_1' ) a_ : Optional[Any] = state_dict.pop(f'{prefix}blocks.{i}.gamma_2' ) a_ : Union[str, Any] = gamma_a a_ : int = gamma_a def _UpperCAmelCase ( __A : Union[str, Any] , __A : Any , __A : List[Any] ): a_ : Optional[Any] = dct.pop(__A ) a_ : List[str] = val def _UpperCAmelCase ( ): a_ : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : Tuple = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : Tuple , __A : Any , __A : List[Any]=False ): a_ : Optional[Any] = False if '''rvlcdip''' in checkpoint_url else True a_ : Tuple = BeitConfig(use_absolute_position_embeddings=__A , use_mask_token=__A ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: a_ : Dict = 10_24 a_ : int = 40_96 a_ : Tuple = 24 a_ : str = 16 # labels if "rvlcdip" in checkpoint_url: a_ : Tuple = 16 a_ : List[Any] = '''huggingface/label-files''' a_ : int = '''rvlcdip-id2label.json''' a_ : Tuple = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) a_ : int = {int(__A ): v for k, v in idalabel.items()} a_ : Dict = idalabel a_ : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys a_ : str = torch.hub.load_state_dict_from_url(__A , map_location='''cpu''' )['''model'''] a_ : Any = create_rename_keys(__A , has_lm_head=__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A , has_lm_head=__A ) # load HuggingFace model a_ : int = BeitForMaskedImageModeling(__A ) if has_lm_head else BeitForImageClassification(__A ) model.eval() model.load_state_dict(__A ) # Check outputs on an image a_ : Tuple = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__A ) a_ : List[str] = prepare_img() a_ : Union[str, Any] = image_processor(images=__A , return_tensors='''pt''' ) a_ : List[str] = encoding['''pixel_values'''] a_ : Optional[int] = model(__A ) a_ : str = outputs.logits # verify logits a_ : Union[str, Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__A ), "Shape of logits not as expected" Path(__A ).mkdir(exist_ok=__A ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__A ) if push_to_hub: if has_lm_head: a_ : str = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: a_ : int = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=__A , ) model.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=__A , ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) __lowerCAmelCase = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
666
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig __lowerCAmelCase = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "tapas" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Any=3_0522 , __SCREAMING_SNAKE_CASE : Tuple=768 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : Dict=12 , __SCREAMING_SNAKE_CASE : int=3072 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Dict=1024 , __SCREAMING_SNAKE_CASE : Dict=[3, 256, 256, 2, 256, 256, 10] , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : Any=1e-12 , __SCREAMING_SNAKE_CASE : int=0 , __SCREAMING_SNAKE_CASE : int=10.0 , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : Any=1.0 , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : List[str]=1.0 , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Tuple=1.0 , __SCREAMING_SNAKE_CASE : Optional[int]=1.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : List[Any]="ratio" , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Optional[int]=64 , __SCREAMING_SNAKE_CASE : str=32 , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> str: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) a_ : Union[str, Any] = vocab_size a_ : Optional[Any] = hidden_size a_ : str = num_hidden_layers a_ : Dict = num_attention_heads a_ : Any = hidden_act a_ : Dict = intermediate_size a_ : Optional[int] = hidden_dropout_prob a_ : str = attention_probs_dropout_prob a_ : Tuple = max_position_embeddings a_ : int = type_vocab_sizes a_ : Tuple = initializer_range a_ : Any = layer_norm_eps # Fine-tuning task hyperparameters a_ : Any = positive_label_weight a_ : int = num_aggregation_labels a_ : Union[str, Any] = aggregation_loss_weight a_ : List[str] = use_answer_as_supervision a_ : Any = answer_loss_importance a_ : int = use_normalized_answer_loss a_ : Optional[int] = huber_loss_delta a_ : List[str] = temperature a_ : Union[str, Any] = aggregation_temperature a_ : str = use_gumbel_for_cells a_ : List[Any] = use_gumbel_for_aggregation a_ : Optional[Any] = average_approximation_function a_ : Dict = cell_selection_preference a_ : str = answer_loss_cutoff a_ : Union[str, Any] = max_num_rows a_ : Optional[int] = max_num_columns a_ : str = average_logits_per_cell a_ : Tuple = select_one_column a_ : List[str] = allow_empty_column_selection a_ : List[str] = init_cell_selection_weights_to_zero a_ : Union[str, Any] = reset_position_index_per_cell a_ : Dict = disable_per_token_loss # Aggregation hyperparameters a_ : List[str] = aggregation_labels a_ : Dict = no_aggregation_label_index if isinstance(self.aggregation_labels , __SCREAMING_SNAKE_CASE ): a_ : str = {int(__SCREAMING_SNAKE_CASE ): v for k, v in aggregation_labels.items()}
666
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCAmelCase ( __A : int , __A : int , __A : int , __A : int , __A : int , __A : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: a_ : int = ksize + 1 a_ : str = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__A ): for x in range(__A ): # distance from center a_ : Dict = x - ksize // 2 a_ : Any = y - ksize // 2 # degree to radiant a_ : Optional[int] = theta / 1_80 * np.pi a_ : List[Any] = np.cos(_theta ) a_ : Optional[int] = np.sin(_theta ) # get kernel x a_ : Tuple = cos_theta * px + sin_theta * py # get kernel y a_ : List[Any] = -sin_theta * px + cos_theta * py # fill kernel a_ : List[str] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCAmelCase = imread('../image_data/lena.jpg') # turn image in gray scale value __lowerCAmelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCAmelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __lowerCAmelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCAmelCase = out / out.max() * 255 __lowerCAmelCase = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
666
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
1
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def _UpperCAmelCase ( __A : int ): if not isinstance(__A , __A ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) a_ : Optional[int] = precision a_ : Any = ceil(precision / 14 ) a_ : Optional[Any] = 42_68_80 * Decimal(1_00_05 ).sqrt() a_ : List[str] = 1 a_ : Optional[Any] = 13_59_14_09 a_ : Any = Decimal(__A ) for k in range(1 , __A ): a_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(__A ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __lowerCAmelCase = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
666
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
1
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } __lowerCAmelCase = { 'junnyu/roformer_chinese_small': 1_536, 'junnyu/roformer_chinese_base': 1_536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } __lowerCAmelCase = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = RoFormerTokenizer def __init__( self : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[str]="[UNK]" , __SCREAMING_SNAKE_CASE : List[str]="[SEP]" , __SCREAMING_SNAKE_CASE : Union[str, Any]="[PAD]" , __SCREAMING_SNAKE_CASE : List[str]="[CLS]" , __SCREAMING_SNAKE_CASE : Optional[Any]="[MASK]" , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[Any]=None , **__SCREAMING_SNAKE_CASE : Dict , ) -> Dict: super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) a_ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents ): a_ : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) a_ : Tuple = do_lower_case a_ : int = strip_accents a_ : List[str] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) a_ : Dict = do_lower_case def __getstate__( self : str ) -> Tuple: a_ : List[Any] = self.__dict__.copy() a_ : Tuple = BertPreTokenizer() return state def __setstate__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: a_ : int = d a_ : Optional[Any] = self.__dict__['''_tokenizer'''].get_vocab() a_ : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any]=None ) -> Union[str, Any]: a_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: a_ : List[str] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[Any]=False , **__SCREAMING_SNAKE_CASE : Any , ) -> str: a_ : Any = BertPreTokenizer() return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
1
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
666
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
1
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _UpperCAmelCase ( __A : Optional[Any] ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _UpperCAmelCase ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _UpperCAmelCase ( ): a_ : Any = '''mock-s3-bucket''' a_ : List[Any] = f's3://{mock_bucket}' a_ : List[Any] = extract_path_from_uri(__A ) assert dataset_path.startswith('''s3://''' ) is False a_ : int = '''./local/path''' a_ : Dict = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def _UpperCAmelCase ( __A : Optional[int] ): a_ : List[str] = is_remote_filesystem(__A ) assert is_remote is True a_ : str = fsspec.filesystem('''file''' ) a_ : Union[str, Any] = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __A ) def _UpperCAmelCase ( __A : List[Any] , __A : Any , __A : List[Any] , __A : Dict , __A : Optional[Any] , __A : int , __A : Union[str, Any] ): a_ : str = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} a_ : str = input_paths[compression_fs_class.protocol] if input_path is None: a_ : List[str] = f'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) a_ : Tuple = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) a_ : List[str] = os.path.basename(__A ) a_ : Optional[int] = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__A , '''r''' , encoding='''utf-8''' ) as f, open(__A , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def _UpperCAmelCase ( __A : List[str] , __A : Optional[Any] , __A : List[str] ): a_ : int = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} a_ : List[Any] = compressed_file_paths[protocol] a_ : Dict = '''dataset.jsonl''' a_ : List[str] = f'{protocol}://{member_file_path}::{compressed_file_path}' a_ , *a_ : Optional[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def _UpperCAmelCase ( __A : int , __A : Optional[Any] , __A : str , __A : Optional[int] ): a_ : Dict = hf_api.dataset_info(__A , token=__A ) a_ : int = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__A ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def _UpperCAmelCase ( ): a_ : str = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f'A filesystem protocol was already set for {protocol} and will be overwritten.' )
666
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE : def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : int=99 , __SCREAMING_SNAKE_CASE : List[Any]=32 , __SCREAMING_SNAKE_CASE : Tuple=5 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=37 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=512 , __SCREAMING_SNAKE_CASE : List[str]=16 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : List[str]=None , ) -> Optional[int]: a_ : str = parent a_ : List[str] = batch_size a_ : Tuple = seq_length a_ : Optional[Any] = is_training a_ : List[Any] = use_token_type_ids a_ : Dict = use_labels a_ : Dict = vocab_size a_ : Tuple = hidden_size a_ : List[str] = num_hidden_layers a_ : List[str] = num_attention_heads a_ : Any = intermediate_size a_ : Dict = hidden_act a_ : Dict = hidden_dropout_prob a_ : List[Any] = attention_probs_dropout_prob a_ : List[Any] = max_position_embeddings a_ : Any = type_vocab_size a_ : Dict = type_sequence_label_size a_ : Tuple = initializer_range a_ : Dict = num_labels a_ : int = num_choices a_ : Tuple = scope a_ : Optional[Any] = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : List[Any] = None if self.use_token_type_ids: a_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : Union[str, Any] = None a_ : int = None a_ : List[Any] = None if self.use_labels: a_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) a_ : int = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) a_ : str = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , *__SCREAMING_SNAKE_CASE : int ) -> Optional[int]: a_ : Union[str, Any] = OpenAIGPTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : List[str] = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : List[str] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , *__SCREAMING_SNAKE_CASE : str ) -> List[Any]: a_ : Optional[int] = OpenAIGPTLMHeadModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : List[str] = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , *__SCREAMING_SNAKE_CASE : str ) -> Tuple: a_ : Union[str, Any] = OpenAIGPTDoubleHeadsModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , *__SCREAMING_SNAKE_CASE : Dict ) -> str: a_ : Tuple = self.num_labels a_ : Any = OpenAIGPTForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Tuple = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: a_ : Dict = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Tuple = config_and_inputs a_ : Any = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> int: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]=False ) -> Tuple: a_ : Optional[int] = super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE , ) a_ : Any = inputs_dict['''labels'''] a_ : int = inputs_dict['''labels'''] a_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE , ) a_ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : int ) -> str: a_ : Tuple = OpenAIGPTModelTester(self ) a_ : List[str] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: a_ : Optional[Any] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(__SCREAMING_SNAKE_CASE ) a_ : List[str] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) # the president is a_ : Optional[Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the a_ : Tuple = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].tolist() , __SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['ConditionalDetrFeatureExtractor'] __lowerCAmelCase = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
1
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
1
'''simple docstring''' from ....utils import logging __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : List[str]=2048 ) -> Union[str, Any]: a_ : List[str] = config.__dict__ a_ : Union[str, Any] = modal_hidden_size if num_labels: a_ : Any = num_labels
666
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
1
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off __lowerCAmelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] __lowerCAmelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "whisper" snake_case__ = ["past_key_values"] snake_case__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=5_1865 , __SCREAMING_SNAKE_CASE : List[str]=80 , __SCREAMING_SNAKE_CASE : Dict=6 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4 , __SCREAMING_SNAKE_CASE : Any=6 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Dict=1536 , __SCREAMING_SNAKE_CASE : Optional[int]=1536 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=0.0 , __SCREAMING_SNAKE_CASE : Tuple=5_0257 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Any=256 , __SCREAMING_SNAKE_CASE : List[Any]=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : Dict=0.0 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Optional[Any]=1500 , __SCREAMING_SNAKE_CASE : Any=448 , __SCREAMING_SNAKE_CASE : str=5_0256 , __SCREAMING_SNAKE_CASE : Optional[int]=5_0256 , __SCREAMING_SNAKE_CASE : Tuple=5_0256 , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=[220, 5_0256] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=256 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Dict=0.05 , __SCREAMING_SNAKE_CASE : Any=10 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : int=10 , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : str=7 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]: a_ : Optional[int] = vocab_size a_ : Dict = num_mel_bins a_ : Union[str, Any] = d_model a_ : str = encoder_layers a_ : Union[str, Any] = encoder_attention_heads a_ : str = decoder_layers a_ : Optional[Any] = decoder_attention_heads a_ : List[Any] = decoder_ffn_dim a_ : Optional[Any] = encoder_ffn_dim a_ : int = dropout a_ : str = attention_dropout a_ : Tuple = activation_dropout a_ : List[str] = activation_function a_ : int = init_std a_ : str = encoder_layerdrop a_ : int = decoder_layerdrop a_ : Union[str, Any] = use_cache a_ : Any = encoder_layers a_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True a_ : Optional[int] = max_source_positions a_ : Optional[int] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. a_ : Optional[Any] = classifier_proj_size a_ : int = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a_ : str = apply_spec_augment a_ : List[Any] = mask_time_prob a_ : int = mask_time_length a_ : Tuple = mask_time_min_masks a_ : Any = mask_feature_prob a_ : Optional[Any] = mask_feature_length a_ : Tuple = mask_feature_min_masks a_ : List[Any] = median_filter_width super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , suppress_tokens=__SCREAMING_SNAKE_CASE , begin_suppress_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: a_ : Tuple = {0: '''batch'''} else: a_ : Tuple = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' ) return common_inputs def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , __SCREAMING_SNAKE_CASE : int = 2_2050 , __SCREAMING_SNAKE_CASE : float = 5.0 , __SCREAMING_SNAKE_CASE : int = 220 , ) -> Mapping[str, Any]: a_ : List[str] = OrderedDict() a_ : int = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , time_duration=__SCREAMING_SNAKE_CASE , frequency=__SCREAMING_SNAKE_CASE , ) a_ : Optional[Any] = encoder_inputs['''input_features'''].shape[2] a_ : int = encoder_sequence_length // 2 if self.use_past else seq_length a_ : Optional[Any] = super().generate_dummy_inputs( preprocessor.tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = encoder_inputs.pop('''input_features''' ) a_ : Dict = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: a_ : Tuple = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def SCREAMING_SNAKE_CASE ( self : str ) -> float: return 1e-3
666
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
1
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def _UpperCAmelCase ( __A : List[Any] , __A : List[Any] ): # ===== initialization ===== a_ : str = Mock() a_ : List[str] = conn, Mock() a_ : Dict = iter([1, None] ) a_ : List[str] = lambda __A : next(__A ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=__A ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
666
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCAmelCase = get_logger() __lowerCAmelCase = None class SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: super().__init__(features=__SCREAMING_SNAKE_CASE ) import jax from jaxlib.xla_client import Device if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError( f'Expected {device} to be a `str` not {type(__SCREAMING_SNAKE_CASE )}, as `jaxlib.xla_extension.Device` ' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) a_ : Union[str, Any] = device if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a_ : Optional[int] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'Device with string identifier {self.device} not listed among the available ' f'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' f'device: {str(jax.devices()[0] )}.' ) a_ : Any = str(jax.devices()[0] ) a_ : Tuple = jnp_array_kwargs @staticmethod def SCREAMING_SNAKE_CASE ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(__SCREAMING_SNAKE_CASE ): device for device in jax.devices()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: import jax import jax.numpy as jnp if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and column: if all( isinstance(__SCREAMING_SNAKE_CASE , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__SCREAMING_SNAKE_CASE , axis=0 ) return column def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> Tuple: import jax import jax.numpy as jnp if isinstance(__SCREAMING_SNAKE_CASE , (str, bytes, type(__SCREAMING_SNAKE_CASE )) ): return value elif isinstance(__SCREAMING_SNAKE_CASE , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() a_ : List[Any] = {} if isinstance(__SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: a_ : str = {'''dtype''': jnp.intaa} else: a_ : Union[str, Any] = {'''dtype''': jnp.intaa} elif isinstance(__SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): a_ : Tuple = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ): a_ : Union[str, Any] = np.asarray(__SCREAMING_SNAKE_CASE ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a_ : List[str] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__SCREAMING_SNAKE_CASE , **{**default_dtype, **self.jnp_array_kwargs} ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Dict: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__SCREAMING_SNAKE_CASE , '''__array__''' ) and not isinstance(__SCREAMING_SNAKE_CASE , jax.Array ): a_ : str = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) return self._tensorize(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : dict ) -> int: return map_nested(self._recursive_tensorize , __SCREAMING_SNAKE_CASE , map_list=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : pa.Table ) -> Mapping: a_ : Dict = self.numpy_arrow_extractor().extract_row(__SCREAMING_SNAKE_CASE ) a_ : str = self.python_features_decoder.decode_row(__SCREAMING_SNAKE_CASE ) return self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : pa.Table ) -> "jax.Array": a_ : Optional[Any] = self.numpy_arrow_extractor().extract_column(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = self.python_features_decoder.decode_column(__SCREAMING_SNAKE_CASE , pa_table.column_names[0] ) a_ : Any = self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = self._consolidate(__SCREAMING_SNAKE_CASE ) return column def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : pa.Table ) -> Mapping: a_ : Optional[Any] = self.numpy_arrow_extractor().extract_batch(__SCREAMING_SNAKE_CASE ) a_ : Dict = self.python_features_decoder.decode_batch(__SCREAMING_SNAKE_CASE ) a_ : str = self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) for column_name in batch: a_ : Optional[Any] = self._consolidate(batch[column_name] ) return batch
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = (KDPMaDiscreteScheduler,) snake_case__ = 10 def SCREAMING_SNAKE_CASE ( self : Tuple , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> int: a_ : List[Any] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**__SCREAMING_SNAKE_CASE ) return config def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: a_ : Tuple = self.scheduler_classes[0] a_ : List[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) a_ : int = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps ) a_ : Dict = self.dummy_model() a_ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma a_ : Union[str, Any] = sample.to(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): a_ : Union[str, Any] = scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : int = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : int = output.prev_sample a_ : Tuple = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1_112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: if torch_device == "mps": return a_ : List[str] = self.scheduler_classes[0] a_ : Any = self.get_scheduler_config() a_ : List[Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps ) a_ : List[str] = self.dummy_model() a_ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma a_ : Union[str, Any] = sample.to(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): a_ : Any = scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = output.prev_sample a_ : List[str] = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) a_ : Union[str, Any] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: if torch_device == "mps": return a_ : Dict = self.scheduler_classes[0] a_ : Tuple = self.get_scheduler_config() a_ : Optional[Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps , device=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = self.dummy_model() a_ : Optional[int] = self.dummy_sample_deter.to(__SCREAMING_SNAKE_CASE ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a_ : Optional[Any] = scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : int = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = output.prev_sample a_ : Union[str, Any] = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[int] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) if str(__SCREAMING_SNAKE_CASE ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "roc_bert" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str=3_0522 , __SCREAMING_SNAKE_CASE : List[str]=768 , __SCREAMING_SNAKE_CASE : Union[str, Any]=12 , __SCREAMING_SNAKE_CASE : Dict=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3072 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : List[str]=512 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=1e-12 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : str="absolute" , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=768 , __SCREAMING_SNAKE_CASE : Dict=910 , __SCREAMING_SNAKE_CASE : Union[str, Any]=512 , __SCREAMING_SNAKE_CASE : int=2_4858 , __SCREAMING_SNAKE_CASE : Any=True , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> str: a_ : int = vocab_size a_ : str = max_position_embeddings a_ : str = hidden_size a_ : Tuple = num_hidden_layers a_ : List[Any] = num_attention_heads a_ : Tuple = intermediate_size a_ : List[str] = hidden_act a_ : Optional[Any] = hidden_dropout_prob a_ : List[Any] = attention_probs_dropout_prob a_ : Dict = initializer_range a_ : str = type_vocab_size a_ : Optional[int] = layer_norm_eps a_ : Union[str, Any] = use_cache a_ : int = enable_pronunciation a_ : List[Any] = enable_shape a_ : List[str] = pronunciation_embed_dim a_ : Optional[Any] = pronunciation_vocab_size a_ : int = shape_embed_dim a_ : Optional[int] = shape_vocab_size a_ : Union[str, Any] = concat_input a_ : Optional[Any] = position_embedding_type a_ : Union[str, Any] = classifier_dropout super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
1
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : NestedDataStructureLike[PathLike] , __SCREAMING_SNAKE_CASE : Optional[NamedSplit] = None , __SCREAMING_SNAKE_CASE : Optional[Features] = None , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : Any , ) -> Union[str, Any]: super().__init__( __SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , streaming=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) a_ : List[Any] = field a_ : int = path_or_paths if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} a_ : Optional[int] = Json( cache_dir=__SCREAMING_SNAKE_CASE , data_files=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , field=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: # Build iterable dataset if self.streaming: a_ : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: a_ : int = None a_ : List[str] = None a_ : Dict = None a_ : Optional[Any] = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) a_ : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE : def __init__( self : str , __SCREAMING_SNAKE_CASE : Dataset , __SCREAMING_SNAKE_CASE : Union[PathLike, BinaryIO] , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Optional[int]: if num_proc is not None and num_proc <= 0: raise ValueError(f'num_proc {num_proc} must be an integer > 0.' ) a_ : int = dataset a_ : List[str] = path_or_buf a_ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a_ : Tuple = num_proc a_ : int = '''utf-8''' a_ : int = to_json_kwargs def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: a_ : Any = self.to_json_kwargs.pop('''path_or_buf''' , __SCREAMING_SNAKE_CASE ) a_ : List[str] = self.to_json_kwargs.pop('''orient''' , '''records''' ) a_ : Tuple = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) a_ : str = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) a_ : Tuple = self.to_json_kwargs.pop('''compression''' , __SCREAMING_SNAKE_CASE ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=__SCREAMING_SNAKE_CASE ) as buffer: a_ : int = self._write(file_obj=__SCREAMING_SNAKE_CASE , orient=__SCREAMING_SNAKE_CASE , lines=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'The compression parameter is not supported when writing to a buffer, but compression={compression}' ''' was passed. Please provide a local path instead.''' ) a_ : str = self._write( file_obj=self.path_or_buf , orient=__SCREAMING_SNAKE_CASE , lines=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , **self.to_json_kwargs ) return written def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: a_ , a_ , a_ , a_ , a_ : str = args a_ : Tuple = query_table( table=self.dataset.data , key=slice(__SCREAMING_SNAKE_CASE , offset + self.batch_size ) , indices=self.dataset._indices , ) a_ : Tuple = batch.to_pandas().to_json( path_or_buf=__SCREAMING_SNAKE_CASE , orient=__SCREAMING_SNAKE_CASE , lines=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : BinaryIO , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : int , ) -> int: a_ : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): a_ : str = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__SCREAMING_SNAKE_CASE ) else: a_ , a_ : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(__SCREAMING_SNAKE_CASE ) return written
666
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
1
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def _UpperCAmelCase ( __A : Tuple ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): @staticmethod def SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE : ArgumentParser ) -> Dict: a_ : List[Any] = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=__SCREAMING_SNAKE_CASE , help='''Name of the model to download''' ) download_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : bool ) -> Tuple: a_ : int = model a_ : Any = cache a_ : List[Any] = force a_ : Optional[Any] = trust_remote_code def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
666
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]=7 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=30 , __SCREAMING_SNAKE_CASE : Dict=400 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Any=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Union[str, Any]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[Any]=1 / 255 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , ) -> Dict: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p a_ : Optional[int] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} a_ : Dict = parent a_ : str = batch_size a_ : Optional[Any] = num_channels a_ : List[str] = min_resolution a_ : Optional[Any] = max_resolution a_ : int = do_resize a_ : int = size a_ : int = do_normalize a_ : str = image_mean a_ : Dict = image_std a_ : Optional[Any] = do_rescale a_ : List[str] = rescale_factor a_ : str = do_pad def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ) -> Dict: if not batched: a_ : int = image_inputs[0] if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ): a_ , a_ : str = image.size else: a_ , a_ : Any = image.shape[1], image.shape[2] if w < h: a_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) a_ : str = self.size['''shortest_edge'''] elif w > h: a_ : List[str] = self.size['''shortest_edge'''] a_ : List[Any] = int(self.size['''shortest_edge'''] * w / h ) else: a_ : Union[str, Any] = self.size['''shortest_edge'''] a_ : Union[str, Any] = self.size['''shortest_edge'''] else: a_ : Any = [] for image in image_inputs: a_ , a_ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a_ : Union[str, Any] = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0] a_ : Dict = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = ConditionalDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: a_ : Union[str, Any] = ConditionalDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: a_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE ) a_ : List[str] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: pass def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: # Initialize image_processing a_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a_ , a_ : Optional[int] = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ : Any = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: # Initialize image_processing a_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input a_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a_ , a_ : Union[str, Any] = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ : Union[str, Any] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values a_ , a_ : int = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: # Initialize image_processing a_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input a_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a_ , a_ : Dict = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values a_ , a_ : Union[str, Any] = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: # prepare image and target a_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: a_ : List[str] = json.loads(f.read() ) a_ : Optional[Any] = {'''image_id''': 3_9769, '''annotations''': target} # encode them a_ : Dict = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) a_ : Tuple = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # verify pixel values a_ : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __SCREAMING_SNAKE_CASE ) a_ : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area a_ : Any = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __SCREAMING_SNAKE_CASE ) ) # verify boxes a_ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __SCREAMING_SNAKE_CASE ) a_ : int = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id a_ : int = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __SCREAMING_SNAKE_CASE ) ) # verify is_crowd a_ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __SCREAMING_SNAKE_CASE ) ) # verify class_labels a_ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __SCREAMING_SNAKE_CASE ) ) # verify orig_size a_ : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __SCREAMING_SNAKE_CASE ) ) # verify size a_ : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __SCREAMING_SNAKE_CASE ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: # prepare image, target and masks_path a_ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: a_ : Optional[int] = json.loads(f.read() ) a_ : Tuple = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} a_ : int = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them a_ : str = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) a_ : List[str] = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , masks_path=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # verify pixel values a_ : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __SCREAMING_SNAKE_CASE ) a_ : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area a_ : Union[str, Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __SCREAMING_SNAKE_CASE ) ) # verify boxes a_ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id a_ : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __SCREAMING_SNAKE_CASE ) ) # verify is_crowd a_ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __SCREAMING_SNAKE_CASE ) ) # verify class_labels a_ : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __SCREAMING_SNAKE_CASE ) ) # verify masks a_ : Tuple = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __SCREAMING_SNAKE_CASE ) # verify orig_size a_ : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __SCREAMING_SNAKE_CASE ) ) # verify size a_ : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __SCREAMING_SNAKE_CASE ) )
666
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
1
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = GPTSanJapaneseTokenizer snake_case__ = False snake_case__ = {"do_clean_text": False, "add_prefix_space": False} def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: super().setUp() # fmt: off a_ : Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on a_ : Any = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 a_ : Dict = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: a_ : Union[str, Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' a_ : Dict = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Optional[int]: a_ , a_ : List[str] = self.get_input_output_texts(__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.decode(__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) return text, ids def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : List[str] = self.get_tokenizer() # Testing tokenization a_ : Tuple = '''こんにちは、世界。 こんばんは、㔺界。''' a_ : Any = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] a_ : Dict = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing conversion to ids without special tokens a_ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] a_ : Tuple = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing conversion to ids with special tokens a_ : Optional[int] = tokens + [tokenizer.unk_token] a_ : List[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] a_ : int = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: a_ : Tuple = self.get_tokenizer() # Testing tokenization a_ : str = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' a_ : str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' a_ : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.decode(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization a_ : Optional[Any] = '''こんにちは、世界。''' a_ : Union[str, Any] = '''こんばんは、㔺界。😀''' a_ : Union[str, Any] = '''こんにちは、世界。こんばんは、世界。😀''' a_ : Union[str, Any] = tokenizer.encode(prefix_text + input_text ) a_ : Dict = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) a_ : Optional[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE , prefix_text=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.decode(__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.decode(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.decode(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: a_ : Any = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization a_ : Any = '''こんにちは、世界。''' a_ : Tuple = '''こんばんは、㔺界。😀''' a_ : Tuple = len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) - 2 a_ : List[str] = len(tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) - 2 a_ : List[str] = [1] + [0] * (len_prefix + len_text + 1) a_ : int = [1] * (len_prefix + len_text + 1) + [0] a_ : Optional[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) a_ : List[str] = tokenizer(prefix_text + input_text ).token_type_ids a_ : Union[str, Any] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids a_ : Tuple = tokenizer(__SCREAMING_SNAKE_CASE , prefix_text=__SCREAMING_SNAKE_CASE ).token_type_ids self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: a_ : Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) a_ : int = tokenizer.encode('''あンいワ''' ) a_ : List[Any] = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) a_ : str = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(__SCREAMING_SNAKE_CASE ) , tokenizer.decode(__SCREAMING_SNAKE_CASE ) ) self.assertEqual(tokenizer.decode(__SCREAMING_SNAKE_CASE ) , tokenizer.decode(__SCREAMING_SNAKE_CASE ) ) self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) a_ : Optional[int] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] a_ : Any = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.batch_encode_plus(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) # fmt: off a_ : List[Any] = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] a_ : Any = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] a_ : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token.token_type_ids , __SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token.attention_mask , __SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token_a.input_ids , __SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token_a.token_type_ids , __SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token_a.attention_mask , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: # tokenizer has no padding token pass
666
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
1
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: a_ : Tuple = 0 a_ : Tuple = [0] a_ : List[Any] = [0] a_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , 0 ) a_ : str = [60] a_ : Optional[int] = [10] a_ : Any = len(__SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , 0 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: a_ : Optional[Any] = 3 a_ : str = [1, 2, 3] a_ : Optional[int] = [3, 2, 1] a_ : List[Any] = len(__SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , 5 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: a_ : Any = 50 a_ : Dict = [60, 100, 120] a_ : int = [10, 20, 30] a_ : Dict = len(__SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , 220 ) if __name__ == "__main__": unittest.main()
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class SCREAMING_SNAKE_CASE : def __init__( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : str=3 , __SCREAMING_SNAKE_CASE : List[str]=16 , __SCREAMING_SNAKE_CASE : int=[1, 2, 1] , __SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 4] , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Any=2.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : int=1e-5 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=10 , __SCREAMING_SNAKE_CASE : List[Any]=8 , __SCREAMING_SNAKE_CASE : Optional[Any]=["stage1", "stage2", "stage3"] , __SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 2, 3] , ) -> Any: a_ : Dict = parent a_ : str = batch_size a_ : Union[str, Any] = image_size a_ : Optional[int] = patch_size a_ : List[str] = num_channels a_ : Union[str, Any] = embed_dim a_ : Optional[int] = depths a_ : Optional[int] = num_heads a_ : List[Any] = window_size a_ : List[str] = mlp_ratio a_ : Tuple = qkv_bias a_ : Tuple = hidden_dropout_prob a_ : Any = attention_probs_dropout_prob a_ : Optional[int] = drop_path_rate a_ : str = hidden_act a_ : List[Any] = use_absolute_embeddings a_ : int = patch_norm a_ : List[Any] = layer_norm_eps a_ : str = initializer_range a_ : Dict = is_training a_ : str = scope a_ : int = use_labels a_ : Optional[int] = type_sequence_label_size a_ : Dict = encoder_stride a_ : List[Any] = out_features a_ : str = out_indices def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Optional[int] = None if self.use_labels: a_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int ) -> List[str]: a_ : List[Any] = MaskFormerSwinModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) a_ : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) a_ : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: a_ : Union[str, Any] = MaskFormerSwinBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Dict = model(__SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__SCREAMING_SNAKE_CASE ): a_ : Tuple = ['''stem'''] a_ : str = MaskFormerSwinBackbone(config=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: a_ : Any = self.prepare_config_and_inputs() a_ , a_ , a_ : int = config_and_inputs a_ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) snake_case__ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: a_ : Dict = MaskFormerSwinModelTester(self ) a_ : int = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: pass def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: return def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__SCREAMING_SNAKE_CASE ) @unittest.skip('''Swin does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Any ) -> int: pass @unittest.skip('''Swin does not support feedforward chunking''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: a_ , a_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a_ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ , a_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : int = model_class(__SCREAMING_SNAKE_CASE ) a_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Optional[int] = [*signature.parameters.keys()] a_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: a_ : Optional[Any] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): a_ : Any = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) a_ : Union[str, Any] = outputs.hidden_states a_ : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # Swin has a different seq_length a_ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a_ : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a_ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: a_ : int = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : Optional[Any] = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : int = 3 a_ : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) a_ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) a_ : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: a_ : Union[str, Any] = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : str = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: pass def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: a_ , a_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__SCREAMING_SNAKE_CASE : Optional[Any] ): a_ : str = 0 return t def check_equivalence(__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any={} ): with torch.no_grad(): a_ : Optional[Any] = model(**__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(__SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(__SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(__SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(__SCREAMING_SNAKE_CASE )}. Dict has' f' `nan`: {torch.isnan(__SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(__SCREAMING_SNAKE_CASE )}.' ) , ) recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: a_ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Any = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : str = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) a_ : int = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) a_ : Optional[int] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , SCREAMING_SNAKE_CASE_ ): snake_case__ = (MaskFormerSwinBackbone,) if is_torch_available() else () snake_case__ = MaskFormerSwinConfig def SCREAMING_SNAKE_CASE ( self : str ) -> str: a_ : List[Any] = MaskFormerSwinModelTester(self ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: a_ , a_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() a_ : Any = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: a_ : int = backbone_class(__SCREAMING_SNAKE_CASE ) backbone.to(__SCREAMING_SNAKE_CASE ) backbone.eval() a_ : List[Any] = backbone(**__SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True a_ : List[Any] = backbone(**__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) a_ , a_ , a_ : Optional[int] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: a_ : Union[str, Any] = backbone(**__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
666
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
1
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): snake_case__ = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 5_0257 , __SCREAMING_SNAKE_CASE : int = 1024 , __SCREAMING_SNAKE_CASE : int = 768 , __SCREAMING_SNAKE_CASE : int = 12 , __SCREAMING_SNAKE_CASE : int = 12 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : str = "gelu_new" , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : float = 1e-5 , __SCREAMING_SNAKE_CASE : float = 0.02 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , ) -> List[Any]: super().__init__() a_ : Optional[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) a_ : str = prefix_inner_dim a_ : Optional[Any] = prefix_hidden_dim a_ : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) a_ : List[Any] = ( nn.Linear(self.prefix_hidden_dim , __SCREAMING_SNAKE_CASE ) if self.prefix_hidden_dim is not None else nn.Identity() ) a_ : Union[str, Any] = GPTaConfig( vocab_size=__SCREAMING_SNAKE_CASE , n_positions=__SCREAMING_SNAKE_CASE , n_embd=__SCREAMING_SNAKE_CASE , n_layer=__SCREAMING_SNAKE_CASE , n_head=__SCREAMING_SNAKE_CASE , n_inner=__SCREAMING_SNAKE_CASE , activation_function=__SCREAMING_SNAKE_CASE , resid_pdrop=__SCREAMING_SNAKE_CASE , embd_pdrop=__SCREAMING_SNAKE_CASE , attn_pdrop=__SCREAMING_SNAKE_CASE , layer_norm_epsilon=__SCREAMING_SNAKE_CASE , initializer_range=__SCREAMING_SNAKE_CASE , scale_attn_weights=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE , scale_attn_by_inverse_layer_idx=__SCREAMING_SNAKE_CASE , reorder_and_upcast_attn=__SCREAMING_SNAKE_CASE , ) a_ : Tuple = GPTaLMHeadModel(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , ) -> List[Any]: a_ : Any = self.transformer.transformer.wte(__SCREAMING_SNAKE_CASE ) a_ : Dict = self.encode_prefix(__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.decode_prefix(__SCREAMING_SNAKE_CASE ) a_ : List[str] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: a_ : List[str] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) a_ : int = torch.cat((dummy_token, input_ids) , dim=1 ) a_ : Dict = self.transformer(inputs_embeds=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : torch.device ) -> torch.Tensor: return torch.zeros(__SCREAMING_SNAKE_CASE , self.prefix_length , dtype=torch.intaa , device=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Any: return self.encode_prefix(__SCREAMING_SNAKE_CASE ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Dict: a_ : Dict = torch.split(__SCREAMING_SNAKE_CASE , 1 , dim=0 ) a_ : str = [] a_ : Optional[int] = [] for feature in features: a_ : str = self.decode_prefix(feature.to(__SCREAMING_SNAKE_CASE ) ) # back to the clip feature # Only support beam search for now a_ , a_ : List[Any] = self.generate_beam( input_embeds=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) a_ : Dict = torch.stack(__SCREAMING_SNAKE_CASE ) a_ : List[str] = torch.stack(__SCREAMING_SNAKE_CASE ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : int = 5 , __SCREAMING_SNAKE_CASE : int = 67 , __SCREAMING_SNAKE_CASE : float = 1.0 , __SCREAMING_SNAKE_CASE : Optional[int] = None , ) -> Dict: a_ : int = eos_token_id a_ : Dict = None a_ : Dict = None a_ : List[Any] = torch.ones(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , dtype=torch.int ) a_ : Any = torch.zeros(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , dtype=torch.bool ) if input_embeds is not None: a_ : Tuple = input_embeds else: a_ : Dict = self.transformer.transformer.wte(__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): a_ : Tuple = self.transformer(inputs_embeds=__SCREAMING_SNAKE_CASE ) a_ : Tuple = outputs.logits a_ : Union[str, Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) a_ : Optional[Any] = logits.softmax(-1 ).log() if scores is None: a_ , a_ : Optional[Any] = logits.topk(__SCREAMING_SNAKE_CASE , -1 ) a_ : Dict = generated.expand(__SCREAMING_SNAKE_CASE , *generated.shape[1:] ) a_ , a_ : List[str] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: a_ : Optional[int] = next_tokens else: a_ : int = tokens.expand(__SCREAMING_SNAKE_CASE , *tokens.shape[1:] ) a_ : Tuple = torch.cat((tokens, next_tokens) , dim=1 ) else: a_ : List[Any] = -float(np.inf ) a_ : Tuple = 0 a_ : List[Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 a_ : str = scores_sum / seq_lengths[:, None] a_ , a_ : List[str] = scores_sum_average.view(-1 ).topk(__SCREAMING_SNAKE_CASE , -1 ) a_ : str = next_tokens // scores_sum.shape[1] a_ : int = seq_lengths[next_tokens_source] a_ : Tuple = next_tokens % scores_sum.shape[1] a_ : List[str] = next_tokens.unsqueeze(1 ) a_ : Tuple = tokens[next_tokens_source] a_ : Dict = torch.cat((tokens, next_tokens) , dim=1 ) a_ : Tuple = generated[next_tokens_source] a_ : int = scores_sum_average * seq_lengths a_ : int = is_stopped[next_tokens_source] a_ : Optional[int] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) a_ : Optional[Any] = torch.cat((generated, next_token_embed) , dim=1 ) a_ : List[str] = is_stopped + next_tokens.eq(__SCREAMING_SNAKE_CASE ).squeeze() if is_stopped.all(): break a_ : Optional[Any] = scores / seq_lengths a_ : str = scores.argsort(descending=__SCREAMING_SNAKE_CASE ) # tokens tensors are already padded to max_seq_length a_ : List[str] = [tokens[i] for i in order] a_ : str = torch.stack(__SCREAMING_SNAKE_CASE , dim=0 ) a_ : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
666
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
1
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = 42 class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): @register_to_config def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int = 6_5536 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : str = "fourier" , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __SCREAMING_SNAKE_CASE : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __SCREAMING_SNAKE_CASE : Tuple[str] = "UNetMidBlock1D" , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : Tuple[int] = (32, 32, 64) , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : int = 8 , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : bool = False , ) -> List[str]: super().__init__() a_ : str = sample_size # time if time_embedding_type == "fourier": a_ : List[str] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=__SCREAMING_SNAKE_CASE , log=__SCREAMING_SNAKE_CASE , flip_sin_to_cos=__SCREAMING_SNAKE_CASE ) a_ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": a_ : Dict = Timesteps( block_out_channels[0] , flip_sin_to_cos=__SCREAMING_SNAKE_CASE , downscale_freq_shift=__SCREAMING_SNAKE_CASE ) a_ : str = block_out_channels[0] if use_timestep_embedding: a_ : str = block_out_channels[0] * 4 a_ : Any = TimestepEmbedding( in_channels=__SCREAMING_SNAKE_CASE , time_embed_dim=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , out_dim=block_out_channels[0] , ) a_ : Dict = nn.ModuleList([] ) a_ : List[Any] = None a_ : Optional[int] = nn.ModuleList([] ) a_ : Union[str, Any] = None # down a_ : str = in_channels for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): a_ : List[Any] = output_channel a_ : Dict = block_out_channels[i] if i == 0: input_channel += extra_in_channels a_ : Union[str, Any] = i == len(__SCREAMING_SNAKE_CASE ) - 1 a_ : Optional[Any] = get_down_block( __SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid a_ : Optional[Any] = get_mid_block( __SCREAMING_SNAKE_CASE , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=__SCREAMING_SNAKE_CASE , add_downsample=__SCREAMING_SNAKE_CASE , ) # up a_ : str = list(reversed(__SCREAMING_SNAKE_CASE ) ) a_ : Union[str, Any] = reversed_block_out_channels[0] if out_block_type is None: a_ : List[str] = out_channels else: a_ : int = block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): a_ : Union[str, Any] = output_channel a_ : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(__SCREAMING_SNAKE_CASE ) - 1 else final_upsample_channels ) a_ : Any = i == len(__SCREAMING_SNAKE_CASE ) - 1 a_ : int = get_up_block( __SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) a_ : str = output_channel # out a_ : Dict = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) a_ : int = get_out_block( out_block_type=__SCREAMING_SNAKE_CASE , num_groups_out=__SCREAMING_SNAKE_CASE , embed_dim=block_out_channels[0] , out_channels=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : Union[torch.Tensor, float, int] , __SCREAMING_SNAKE_CASE : bool = True , ) -> Union[UNetaDOutput, Tuple]: a_ : List[str] = timestep if not torch.is_tensor(__SCREAMING_SNAKE_CASE ): a_ : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(__SCREAMING_SNAKE_CASE ) and len(timesteps.shape ) == 0: a_ : Tuple = timesteps[None].to(sample.device ) a_ : Any = self.time_proj(__SCREAMING_SNAKE_CASE ) if self.config.use_timestep_embedding: a_ : List[str] = self.time_mlp(__SCREAMING_SNAKE_CASE ) else: a_ : Any = timestep_embed[..., None] a_ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) a_ : Any = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down a_ : Tuple = () for downsample_block in self.down_blocks: a_ , a_ : Any = downsample_block(hidden_states=__SCREAMING_SNAKE_CASE , temb=__SCREAMING_SNAKE_CASE ) down_block_res_samples += res_samples # 3. mid if self.mid_block: a_ : Tuple = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): a_ : Optional[Any] = down_block_res_samples[-1:] a_ : Any = down_block_res_samples[:-1] a_ : Optional[Any] = upsample_block(__SCREAMING_SNAKE_CASE , res_hidden_states_tuple=__SCREAMING_SNAKE_CASE , temb=__SCREAMING_SNAKE_CASE ) # 5. post-process if self.out_block: a_ : List[Any] = self.out_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not return_dict: return (sample,) return UNetaDOutput(sample=__SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = ["input_features", "attention_mask"] def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any=80 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_6000 , __SCREAMING_SNAKE_CASE : Dict=80 , __SCREAMING_SNAKE_CASE : Dict=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]=True , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Tuple: super().__init__(feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = num_mel_bins a_ : str = do_ceptral_normalize a_ : int = normalize_means a_ : Optional[int] = normalize_vars a_ : Dict = True def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : np.ndarray , ) -> np.ndarray: a_ : str = waveform * (2**15) # Kaldi compliance: 16-bit signed integers a_ : Union[str, Any] = torch.from_numpy(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) a_ : List[Any] = ta_kaldi.fbank(__SCREAMING_SNAKE_CASE , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : float = 0.0 , ) -> np.ndarray: # make sure we normalize float32 arrays if normalize_means: a_ : Any = x[:input_length].mean(axis=0 ) a_ : Any = np.subtract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if normalize_vars: a_ : Dict = x[:input_length].std(axis=0 ) a_ : List[Any] = np.divide(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: a_ : Any = padding_value # make sure array is in float32 a_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[np.ndarray] , __SCREAMING_SNAKE_CASE : Optional[np.ndarray] = None ) -> List[np.ndarray]: a_ : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ] def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) a_ : Dict = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) a_ : int = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ : Dict = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): a_ : Optional[int] = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a_ : Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a_ : List[Any] = [raw_speech] # extract fbank features a_ : int = [self._extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in raw_speech] # convert into correct format for padding a_ : Dict = BatchFeature({'''input_features''': features} ) a_ : int = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) # make sure list is in array format a_ : Optional[Any] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): a_ : str = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] a_ : Union[str, Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: a_ : str = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: a_ : List[str] = ( np.array(__SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD else None ) a_ : List[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=__SCREAMING_SNAKE_CASE ) if return_tensors is not None: a_ : Optional[int] = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs
666
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _UpperCAmelCase ( __A : Any ): a_ : Optional[Any] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__A , __A ) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ , a_ : str = emb.weight.shape a_ : Any = nn.Linear(__A , __A , bias=__A ) a_ : List[Any] = emb.weight.data return lin_layer def _UpperCAmelCase ( __A : List[Any] ): a_ : int = torch.load(__A , map_location='''cpu''' ) a_ : Tuple = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] a_ : List[str] = mam_aaa['''model'''] remove_ignore_keys_(__A ) a_ : Union[str, Any] = state_dict['''encoder.embed_tokens.weight'''].shape[0] a_ : List[str] = MaMaaaConfig( vocab_size=__A , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) a_ : List[Any] = state_dict['''decoder.embed_tokens.weight'''] a_ : List[str] = MaMaaaForConditionalGeneration(__A ) model.model.load_state_dict(__A , strict=__A ) a_ : Tuple = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
666
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[float] ): a_ : Dict = 0.00 a_ : Union[str, Any] = 0 for resistor in resistors: if resistor <= 0: a_ : str = f'Resistor at index {index} has a negative or zero value!' raise ValueError(__A ) first_sum += 1 / float(__A ) index += 1 return 1 / first_sum def _UpperCAmelCase ( __A : list[float] ): a_ : List[Any] = 0.00 a_ : int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: a_ : int = f'Resistor at index {index} has a negative value!' raise ValueError(__A ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = ["input_values", "padding_mask"] def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : int = 2_4000 , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : float = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> Optional[int]: super().__init__(feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Tuple = chunk_length_s a_ : Tuple = overlap @property def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : Any , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[bool, str, PaddingStrategy]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs a_ : Optional[Any] = True a_ : Tuple = bool( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): a_ : Tuple = raw_audio.astype(np.floataa ) # always return batch if not is_batched: a_ : Union[str, Any] = [np.asarray(__SCREAMING_SNAKE_CASE ).T] # verify inputs are valid for idx, example in enumerate(__SCREAMING_SNAKE_CASE ): if example.ndim > 2: raise ValueError(f'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'Expected stereo audio but example has {example.shape[-1]} channels' ) a_ : Union[str, Any] = None a_ : Union[str, Any] = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: a_ : Optional[int] = min(array.shape[0] for array in raw_audio ) a_ : Optional[Any] = int(np.floor(max_length / self.chunk_stride ) ) a_ : List[Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: a_ : List[Any] = max(array.shape[0] for array in raw_audio ) a_ : Optional[int] = int(np.ceil(max_length / self.chunk_stride ) ) a_ : int = (nb_step - 1) * self.chunk_stride + self.chunk_length a_ : List[Any] = '''max_length''' else: a_ : Optional[int] = input_values # normal padding on batch if padded_inputs is None: a_ : Optional[int] = self.pad( __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , ) if padding: a_ : Tuple = padded_inputs.pop('''attention_mask''' ) a_ : List[str] = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: a_ : List[str] = example[..., None] input_values.append(example.T ) a_ : List[Any] = input_values if return_tensors is not None: a_ : int = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs
666
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
1
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : Dict=30 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Tuple=5 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=37 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=10 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : str=None , ) -> Union[str, Any]: a_ : Tuple = parent a_ : List[Any] = batch_size a_ : List[Any] = image_size a_ : int = patch_size a_ : Dict = num_channels a_ : List[str] = is_training a_ : int = use_labels a_ : int = hidden_size a_ : List[str] = num_hidden_layers a_ : Tuple = num_attention_heads a_ : Union[str, Any] = intermediate_size a_ : List[Any] = hidden_act a_ : str = hidden_dropout_prob a_ : List[Any] = attention_probs_dropout_prob a_ : Optional[int] = type_sequence_label_size a_ : int = initializer_range a_ : Union[str, Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a_ : List[Any] = (image_size // patch_size) ** 2 a_ : Any = num_patches + 1 def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Optional[int] = None if self.use_labels: a_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Optional[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: a_ : Tuple = ViTMSNModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: a_ : Tuple = self.type_sequence_label_size a_ : str = ViTMSNForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) print('''Pixel and labels shape: {pixel_values.shape}, {labels.shape}''' ) print('''Labels: {labels}''' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a_ : str = 1 a_ : Any = ViTMSNForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ : Tuple = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: a_ : str = self.prepare_config_and_inputs() a_ , a_ , a_ : Tuple = config_and_inputs a_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () snake_case__ = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : Any = ViTMSNModelTester(self ) a_ : List[Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMSN does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ , a_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Optional[Any] = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ , a_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Optional[int] = model_class(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : int = [*signature.parameters.keys()] a_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[Any] = ViTMSNModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ): a_ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained('''facebook/vit-msn-small''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(2 ) a_ : List[str] = ViTMSNForImageClassification.from_pretrained('''facebook/vit-msn-small''' ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = self.default_image_processor a_ : Optional[Any] = prepare_img() a_ : Any = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): a_ : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits a_ : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) a_ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
666
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _UpperCAmelCase ( __A : dict ): return (data["data"], data["target"]) def _UpperCAmelCase ( __A : np.ndarray , __A : np.ndarray ): a_ : Optional[int] = XGBClassifier() classifier.fit(__A , __A ) return classifier def _UpperCAmelCase ( ): a_ : Any = load_iris() a_ , a_ : List[str] = data_handling(__A ) a_ , a_ , a_ , a_ : Tuple = train_test_split( __A , __A , test_size=0.25 ) a_ : List[str] = iris['''target_names'''] # Create an XGBoost Classifier from the training data a_ : Optional[Any] = xgboost(__A , __A ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __A , __A , __A , display_labels=__A , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
666
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
1
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
666
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
1
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar __lowerCAmelCase = TypeVar('T') class SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : bool = True ) -> None: a_ : dict[T, list[T]] = {} # dictionary of lists a_ : Tuple = directed def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__SCREAMING_SNAKE_CASE ) self.adj_list[destination_vertex].append(__SCREAMING_SNAKE_CASE ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__SCREAMING_SNAKE_CASE ) a_ : int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: a_ : Optional[Any] = [destination_vertex] a_ : int = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__SCREAMING_SNAKE_CASE ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__SCREAMING_SNAKE_CASE ) a_ : int = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: a_ : Tuple = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: a_ : int = [destination_vertex] a_ : Optional[int] = [] return self def __repr__( self : Tuple ) -> str: return pformat(self.adj_list )
666
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : list ): if len(__A ) <= 1: return [tuple(__A )] a_ : Optional[int] = [] def generate(__A : int , __A : list ): a_ : Tuple = [0] * n res.append(tuple(__A ) ) a_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: a_ , a_ : Optional[Any] = arr[i], arr[0] else: a_ , a_ : int = arr[i], arr[c[i]] res.append(tuple(__A ) ) c[i] += 1 a_ : List[Any] = 0 else: a_ : List[Any] = 0 i += 1 generate(len(__A ) , __A ) return res if __name__ == "__main__": __lowerCAmelCase = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase = [int(item) for item in user_input.split(',')] print(heaps(arr))
666
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
1
'''simple docstring''' from __future__ import annotations import bisect def _UpperCAmelCase ( __A : list[int] , __A : int , __A : int = 0 , __A : int = -1 ): if hi < 0: a_ : Optional[Any] = len(__A ) while lo < hi: a_ : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: a_ : List[str] = mid + 1 else: a_ : List[str] = mid return lo def _UpperCAmelCase ( __A : list[int] , __A : int , __A : int = 0 , __A : int = -1 ): if hi < 0: a_ : int = len(__A ) while lo < hi: a_ : int = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: a_ : List[str] = mid + 1 else: a_ : Dict = mid return lo def _UpperCAmelCase ( __A : list[int] , __A : int , __A : int = 0 , __A : int = -1 ): sorted_collection.insert(bisect_left(__A , __A , __A , __A ) , __A ) def _UpperCAmelCase ( __A : list[int] , __A : int , __A : int = 0 , __A : int = -1 ): sorted_collection.insert(bisect_right(__A , __A , __A , __A ) , __A ) def _UpperCAmelCase ( __A : list[int] , __A : int ): a_ : Any = 0 a_ : int = len(__A ) - 1 while left <= right: a_ : Optional[Any] = left + (right - left) // 2 a_ : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: a_ : str = midpoint - 1 else: a_ : str = midpoint + 1 return None def _UpperCAmelCase ( __A : list[int] , __A : int ): a_ : Optional[int] = bisect.bisect_left(__A , __A ) if index != len(__A ) and sorted_collection[index] == item: return index return None def _UpperCAmelCase ( __A : list[int] , __A : int , __A : int , __A : int ): if right < left: return None a_ : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__A , __A , __A , midpoint - 1 ) else: return binary_search_by_recursion(__A , __A , midpoint + 1 , __A ) if __name__ == "__main__": __lowerCAmelCase = input('Enter numbers separated by comma:\n').strip() __lowerCAmelCase = sorted(int(item) for item in user_input.split(',')) __lowerCAmelCase = int(input('Enter a single number to be found in the list:\n')) __lowerCAmelCase = binary_search(collection, target) if result is None: print(F"""{target} was not found in {collection}.""") else: print(F"""{target} was found at position {result} in {collection}.""")
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : int , __A : str ): a_ : Any = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( __A : Any , __A : Tuple , __A : Dict ): a_ : str = 0 while b > 0: if b & 1: a_ : Dict = ((res % c) + (a % c)) % c a += a b >>= 1 return res
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "openai/whisper-base" snake_case__ = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) snake_case__ = "transcriber" snake_case__ = WhisperProcessor snake_case__ = WhisperForConditionalGeneration snake_case__ = ["audio"] snake_case__ = ["text"] def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Any ) -> int: return self.pre_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_features def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: return self.model.generate(inputs=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: return self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )[0]
666
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "xlm-roberta" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]=3_0522 , __SCREAMING_SNAKE_CASE : Any=768 , __SCREAMING_SNAKE_CASE : Dict=12 , __SCREAMING_SNAKE_CASE : Dict=12 , __SCREAMING_SNAKE_CASE : Any=3072 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : str=512 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=1e-12 , __SCREAMING_SNAKE_CASE : Tuple=1 , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]="absolute" , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> List[Any]: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : int = vocab_size a_ : Optional[Any] = hidden_size a_ : Union[str, Any] = num_hidden_layers a_ : Optional[int] = num_attention_heads a_ : Tuple = hidden_act a_ : Optional[int] = intermediate_size a_ : Dict = hidden_dropout_prob a_ : Optional[int] = attention_probs_dropout_prob a_ : List[Any] = max_position_embeddings a_ : Union[str, Any] = type_vocab_size a_ : Tuple = initializer_range a_ : List[str] = layer_norm_eps a_ : Tuple = position_embedding_type a_ : Tuple = use_cache a_ : Optional[int] = classifier_dropout class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ : List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a_ : str = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
666
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def _UpperCAmelCase ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue a_ : str = cst_fwd.get(__A , np.inf ) a_ : List[str] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) a_ : Dict = new_cost_f a_ : int = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: a_ : Optional[Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def _UpperCAmelCase ( __A : str , __A : str , __A : dict , __A : dict ): a_ : int = -1 a_ : Optional[Any] = set() a_ : Optional[Any] = set() a_ : Any = {source: 0} a_ : Dict = {destination: 0} a_ : str = {source: None} a_ : List[Any] = {destination: None} a_ : PriorityQueue[Any] = PriorityQueue() a_ : PriorityQueue[Any] = PriorityQueue() a_ : Optional[Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): a_ , a_ : int = queue_forward.get() visited_forward.add(__A ) a_ , a_ : Optional[int] = queue_backward.get() visited_backward.add(__A ) a_ : Tuple = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) a_ : Any = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: a_ : Union[str, Any] = shortest_distance return shortest_path_distance __lowerCAmelCase = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } __lowerCAmelCase = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
1
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def _UpperCAmelCase ( __A : Dict ): monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def _UpperCAmelCase ( __A : Optional[int] ): class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Dict: a_ : List[Any] = metric_id class SCREAMING_SNAKE_CASE : snake_case__ = [MetricMock(SCREAMING_SNAKE_CASE_ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def _UpperCAmelCase ( __A : Any , __A : str , __A : Optional[Any] , __A : Dict , __A : Dict ): if "tmp_path" in args: a_ : int = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(__A , match='''https://huggingface.co/docs/evaluate''' ): func(*__A )
666
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = FlaxAutoencoderKL @property def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : Optional[Any] = 4 a_ : Optional[Any] = 3 a_ : Union[str, Any] = (32, 32) a_ : int = jax.random.PRNGKey(0 ) a_ : Tuple = jax.random.uniform(__SCREAMING_SNAKE_CASE , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: a_ : Optional[int] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } a_ : Dict = self.dummy_input return init_dict, inputs_dict
666
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
1
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = XLMTokenizer snake_case__ = False def SCREAMING_SNAKE_CASE ( self : str ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] a_ : Any = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Dict = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] a_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: a_ : int = '''lower newer''' a_ : Optional[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : Dict = XLMTokenizer(self.vocab_file , self.merges_file ) a_ : str = '''lower''' a_ : List[str] = ['''low''', '''er</w>'''] a_ : Dict = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokens + ['''<unk>'''] a_ : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: a_ : Optional[Any] = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) a_ : str = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : int ): a_ : str = int(__A ) if decimal in (0, 1): # Exit cases for the recursion return str(__A ) a_ , a_ : Union[str, Any] = divmod(__A , 2 ) return binary_recursive(__A ) + str(__A ) def _UpperCAmelCase ( __A : str ): a_ : Optional[int] = str(__A ).strip() if not number: raise ValueError('''No input value was provided''' ) a_ : List[Any] = '''-''' if number.startswith('''-''' ) else '''''' a_ : Tuple = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f'{negative}0b{binary_recursive(int(__A ) )}' if __name__ == "__main__": from doctest import testmod testmod()
666
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _UpperCAmelCase ( __A : int ): a_ : Any = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] a_ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False a_ : str = True if '''large''' in model_name or '''huge''' in model_name else False a_ : Optional[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a_ : Any = [3, 3, 3, 3] a_ : Union[str, Any] = [5, 5, 5, 5] elif "fl4" in model_name: a_ : Optional[Any] = [4, 4, 4, 4] a_ : List[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a_ : List[Any] = [3, 3, 3, 3] if "lrf" in model_name: a_ : List[str] = [3, 3, 3, 3] else: a_ : int = [2, 2, 2, 2] if "tiny" in model_name: a_ : Any = 96 elif "small" in model_name: a_ : int = 96 elif "base" in model_name: a_ : Any = 1_28 elif "large" in model_name: a_ : Union[str, Any] = 1_92 elif "xlarge" in model_name: a_ : Optional[Any] = 2_56 elif "huge" in model_name: a_ : Optional[int] = 3_52 # set label information a_ : Any = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: a_ : Tuple = '''imagenet-22k-id2label.json''' else: a_ : Dict = '''imagenet-1k-id2label.json''' a_ : Optional[int] = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) a_ : Optional[Any] = {int(__A ): v for k, v in idalabel.items()} a_ : Union[str, Any] = {v: k for k, v in idalabel.items()} a_ : List[str] = FocalNetConfig( embed_dim=__A , depths=__A , focal_levels=__A , focal_windows=__A , use_conv_embed=__A , idalabel=__A , labelaid=__A , use_post_layernorm=__A , use_layerscale=__A , ) return config def _UpperCAmelCase ( __A : Tuple ): if "patch_embed.proj" in name: a_ : Dict = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: a_ : Optional[int] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: a_ : Tuple = '''encoder.''' + name if "encoder.layers" in name: a_ : str = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: a_ : Optional[Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: a_ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a_ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a_ : Optional[Any] = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a_ : int = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": a_ : Dict = '''layernorm.weight''' if name == "norm.bias": a_ : List[str] = '''layernorm.bias''' if "head" in name: a_ : List[Any] = name.replace('''head''' , '''classifier''' ) else: a_ : Tuple = '''focalnet.''' + name return name def _UpperCAmelCase ( __A : List[Any] , __A : Optional[Any] , __A : str=False ): # fmt: off a_ : Tuple = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on a_ : Any = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __A ) a_ : Optional[Any] = torch.hub.load_state_dict_from_url(__A , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): a_ : Union[str, Any] = state_dict.pop(__A ) a_ : Optional[int] = val a_ : Tuple = get_focalnet_config(__A ) a_ : str = FocalNetForImageClassification(__A ) model.eval() # load state dict model.load_state_dict(__A ) # verify conversion a_ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : Any = BitImageProcessor( do_resize=__A , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__A , crop_size=2_24 , do_normalize=__A , image_mean=__A , image_std=__A , ) a_ : Optional[int] = Image.open(requests.get(__A , stream=__A ).raw ) a_ : Optional[Any] = processor(images=__A , return_tensors='''pt''' ) a_ : Union[str, Any] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ : int = image_transforms(__A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __A , atol=1E-4 ) a_ : List[str] = model(**__A ) a_ : Optional[Any] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a_ : Union[str, Any] = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a_ : List[Any] = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a_ : List[Any] = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a_ : Optional[Any] = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a_ : Any = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a_ : Any = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , __A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: print(f'Pushing model and processor of {model_name} to the hub...' ) model.push_to_hub(f'{model_name}' ) processor.push_to_hub(f'{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) __lowerCAmelCase = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = StableUnCLIPImgaImgPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case__ = frozenset([] ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: a_ : List[Any] = 32 a_ : Optional[int] = embedder_hidden_size # image encoding components a_ : str = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) a_ : Dict = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__SCREAMING_SNAKE_CASE , projection_dim=__SCREAMING_SNAKE_CASE , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) a_ : str = StableUnCLIPImageNormalizer(embedding_dim=__SCREAMING_SNAKE_CASE ) a_ : int = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) a_ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) a_ : Optional[int] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__SCREAMING_SNAKE_CASE , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) a_ : List[str] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__SCREAMING_SNAKE_CASE , layers_per_block=1 , upcast_attention=__SCREAMING_SNAKE_CASE , use_linear_projection=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) a_ : Tuple = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , ) torch.manual_seed(0 ) a_ : Optional[Any] = AutoencoderKL() a_ : Tuple = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : Optional[int]=True ) -> List[str]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : List[str] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Tuple = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) if pil_image: a_ : List[str] = input_image * 0.5 + 0.5 a_ : List[Any] = input_image.clamp(0 , 1 ) a_ : str = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() a_ : Optional[Any] = DiffusionPipeline.numpy_to_pil(__SCREAMING_SNAKE_CASE )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: a_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : List[Any] = self.get_dummy_components() a_ : Any = StableUnCLIPImgaImgPipeline(**__SCREAMING_SNAKE_CASE ) a_ : int = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) inputs.update({'''image_embeds''': None} ) a_ : List[Any] = sd_pipe(**__SCREAMING_SNAKE_CASE ).images a_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: a_ : List[str] = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: a_ : int = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__SCREAMING_SNAKE_CASE ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: a_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) a_ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) a_ : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a_ : Tuple = torch.Generator(device='''cpu''' ).manual_seed(0 ) a_ : Any = pipe(__SCREAMING_SNAKE_CASE , '''anime turle''' , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' ) a_ : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) a_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) a_ : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a_ : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) a_ : Tuple = pipe(__SCREAMING_SNAKE_CASE , '''anime turle''' , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' ) a_ : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: a_ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a_ : Any = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) a_ : List[str] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a_ : List[Any] = pipe( __SCREAMING_SNAKE_CASE , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) a_ : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
666
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
1
'''simple docstring''' import functools def _UpperCAmelCase ( __A : list[int] , __A : list[int] ): # Validation if not isinstance(__A , __A ) or not all(isinstance(__A , __A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__A ) != 3 or not all(isinstance(__A , __A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__A ) == 0: return 0 if min(__A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) a_ : int = set(__A ) @functools.cache def dynamic_programming(__A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
1
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __lowerCAmelCase = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' __lowerCAmelCase = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' __lowerCAmelCase = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def _UpperCAmelCase ( __A : List[Any] , __A : Any ): return float((preds == labels).mean() ) def _UpperCAmelCase ( __A : List[Any] , __A : List[str] ): a_ : Union[str, Any] = simple_accuracy(__A , __A ) a_ : List[Any] = float(fa_score(y_true=__A , y_pred=__A ) ) return { "accuracy": acc, "f1": fa, } def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Optional[int] = float(pearsonr(__A , __A )[0] ) a_ : Any = float(spearmanr(__A , __A )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int ) -> Tuple: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif self.config_name == "stsb": return pearson_and_spearman(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
666
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
1