code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
701
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() __snake_case : Optional[int] = module __snake_case : Optional[Any] = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) __snake_case : Optional[int] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase_ ( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ): return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" __UpperCAmelCase = "bigscience/bloom-1b7" # Constant values __UpperCAmelCase = 2.109659552692574 __UpperCAmelCase = "Hello my name is" __UpperCAmelCase = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I") EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n") EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University") __UpperCAmelCase = 1_0 def lowercase_ ( self ): # Models and tokenizer __snake_case : str = AutoTokenizer.from_pretrained(self.model_name ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): super().setUp() # Models and tokenizer __snake_case : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def lowercase_ ( self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : Any = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) __snake_case : Dict = config.to_dict() __snake_case : List[str] = config.to_diff_dict() __snake_case : Optional[Any] = config.to_json_string() def lowercase_ ( self ): from bitsandbytes.nn import Paramsabit __snake_case : Tuple = self.model_fpaa.get_memory_footprint() __snake_case : Union[str, Any] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case : Any = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase_ ( self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase_ ( self ): __snake_case : str = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case : Optional[int] = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowercase_ ( self ): __snake_case : Union[str, Any] = BitsAndBytesConfig() __snake_case : int = True __snake_case : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) __snake_case : int = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case : Any = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowercase_ ( self ): with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): __snake_case : Any = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def lowercase_ ( self ): with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case : Tuple = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case : str = self.model_fpaa.to(torch.floataa ) __snake_case : Tuple = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case : int = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case : int = self.model_fpaa.half() # Check this does not throw an error __snake_case : str = self.model_fpaa.float() def lowercase_ ( self ): __snake_case : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def lowercase_ ( cls ): __snake_case : str = 't5-small' __snake_case : int = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case : Optional[int] = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case : Any = 'Translate in German: Hello, my dog is cute' def lowercase_ ( self ): gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): from transformers import TaForConditionalGeneration __snake_case : Optional[Any] = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case : List[Any] = None # test with `t5-small` __snake_case : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __snake_case : int = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case : List[Any] = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __snake_case : Optional[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __snake_case : Any = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case : Optional[int] = model.generate(**_UpperCAmelCase ) __snake_case : int = modules def lowercase_ ( self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case : str = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __snake_case : Tuple = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __snake_case : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case : Union[str, Any] = model.generate(**_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): super().setUp() # model_name __snake_case : Optional[Any] = 'bigscience/bloom-560m' __snake_case : Dict = 't5-small' # Different types of model __snake_case : int = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model __snake_case : Any = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model __snake_case : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model __snake_case : List[Any] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def lowercase_ ( self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): super().setUp() def lowercase_ ( self ): del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : Tuple = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case : Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): super().setUp() def lowercase_ ( self ): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case : Dict = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case : List[Any] = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : str = 'facebook/opt-350m' super().setUp() def lowercase_ ( self ): if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case : Union[str, Any] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case : Union[str, Any] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): __snake_case : List[Any] = LoRALayer(module.q_proj , rank=16 ) __snake_case : Optional[Any] = LoRALayer(module.k_proj , rank=16 ) __snake_case : List[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case : Optional[int] = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case : List[str] = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "gpt2-xl" __UpperCAmelCase = 3.3191854854152187
702
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
0
from __future__ import annotations def UpperCAmelCase__( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
703
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
0
from decimal import Decimal, getcontext from math import ceil, factorial def UpperCAmelCase__( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) __snake_case : Optional[int] = precision __snake_case : List[str] = ceil(precision / 14 ) __snake_case : Optional[int] = 42_68_80 * Decimal(1_00_05 ).sqrt() __snake_case : List[str] = 1 __snake_case : Dict = 13_59_14_09 __snake_case : Tuple = Decimal(__UpperCAmelCase ) for k in range(1 , __UpperCAmelCase ): __snake_case : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(__UpperCAmelCase ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __magic_name__ = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
704
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __magic_name__ = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" pass @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __snake_case : Any = torch.manual_seed(0 ) __snake_case : Optional[int] = pipe.dual_guided( prompt='first prompt' , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) __snake_case : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained(_UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[int] = generator.manual_seed(0 ) __snake_case : List[Any] = pipe.dual_guided( prompt='first prompt' , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowercase_ ( self ): __snake_case : List[Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 'cyberpunk 2077' __snake_case : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __snake_case : Any = torch.manual_seed(0 ) __snake_case : Any = pipe.dual_guided( prompt=_UpperCAmelCase , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __snake_case : int = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case : Optional[Any] = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __snake_case : List[str] = 'A painting of a squirrel eating a burger ' __snake_case : Tuple = torch.manual_seed(0 ) __snake_case : int = pipe.text_to_image( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images __snake_case : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case : str = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __snake_case : Optional[Any] = pipe.image_variation(_UpperCAmelCase , generator=_UpperCAmelCase , output_type='numpy' ).images __snake_case : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case : int = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
705
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
0
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase="None" , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): __snake_case : Any = parent __snake_case : int = batch_size __snake_case : str = seq_length __snake_case : Tuple = is_training __snake_case : Optional[int] = use_input_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : Optional[Any] = vocab_size __snake_case : Dict = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : int = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : str = num_labels __snake_case : Any = num_choices __snake_case : Any = relative_attention __snake_case : List[Any] = position_biased_input __snake_case : Tuple = pos_att_type __snake_case : List[Any] = scope def lowercase_ ( self ): __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Dict = None __snake_case : Tuple = None __snake_case : str = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : int = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase_ ( self , _UpperCAmelCase ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = DebertaVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )[0] __snake_case : List[str] = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )[0] __snake_case : str = model(_UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = DebertaVaForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : Any = DebertaVaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DebertaVaForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = DebertaVaForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Dict = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = DebertaVaForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Union[str, Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( __snake_case ) : Optional[int] = config_and_inputs __snake_case : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = DebertaVaModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[Any] = DebertaVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def lowercase_ ( self ): pass @slow def lowercase_ ( self ): __snake_case : Optional[Any] = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) __snake_case : Optional[Any] = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __snake_case : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] # compare the actual values for a slice. __snake_case : Dict = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) , F"""{output[:, 1:4, 1:4]}""" )
706
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 4_2 __UpperCAmelCase = 4_2 __UpperCAmelCase = 4_2 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
707
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
0
def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int ): # Base Case if curr_ind == len(__UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(__UpperCAmelCase ) ): if valid_connection(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): # Insert current vertex into path as next transition __snake_case : Optional[int] = next_ver # Validate created path if util_hamilton_cycle(__UpperCAmelCase , __UpperCAmelCase , curr_ind + 1 ): return True # Backtrack __snake_case : Dict = -1 return False def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : int = 0 ): __snake_case : int = [-1] * (len(__UpperCAmelCase ) + 1) # initialize start and end of path with starting index __snake_case : Union[str, Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__UpperCAmelCase , __UpperCAmelCase , 1 ) else []
708
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
0
'''simple docstring''' def UpperCAmelCase__( ): __snake_case : int = [] __snake_case : str = 1 while len(__UpperCAmelCase ) < 1E6: constant.append(str(__UpperCAmelCase ) ) i += 1 __snake_case : str = ''.join(__UpperCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
709
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
0
from typing import TYPE_CHECKING from ...utils import _LazyModule __magic_name__ = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
710
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
0
import doctest from collections import deque import numpy as np class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self ): __snake_case : List[Any] = [2, 1, 2, -1] __snake_case : List[Any] = [1, 2, 3, 4] def lowercase_ ( self ): __snake_case : str = len(self.first_signal ) __snake_case : int = len(self.second_signal ) __snake_case : Dict = max(_UpperCAmelCase , _UpperCAmelCase ) # create a zero matrix of max_length x max_length __snake_case : Dict = [[0] * max_length for i in range(_UpperCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCAmelCase ): __snake_case : List[str] = deque(self.second_signal ) rotated_signal.rotate(_UpperCAmelCase ) for j, item in enumerate(_UpperCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal __snake_case : List[Any] = np.matmul(np.transpose(_UpperCAmelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_UpperCAmelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
711
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''naver-clova-ix/donut-base''': '''https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json''', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "donut-swin" __UpperCAmelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=4 , _UpperCAmelCase=3 , _UpperCAmelCase=96 , _UpperCAmelCase=[2, 2, 6, 2] , _UpperCAmelCase=[3, 6, 12, 24] , _UpperCAmelCase=7 , _UpperCAmelCase=4.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-5 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : List[Any] = image_size __snake_case : Optional[Any] = patch_size __snake_case : Tuple = num_channels __snake_case : Dict = embed_dim __snake_case : Tuple = depths __snake_case : int = len(_UpperCAmelCase ) __snake_case : List[Any] = num_heads __snake_case : Optional[Any] = window_size __snake_case : Dict = mlp_ratio __snake_case : Optional[Any] = qkv_bias __snake_case : Optional[int] = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : int = drop_path_rate __snake_case : Tuple = hidden_act __snake_case : Optional[int] = use_absolute_embeddings __snake_case : Tuple = layer_norm_eps __snake_case : int = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case : Any = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) )
712
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
0
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = (EulerDiscreteScheduler,) __UpperCAmelCase = 1_0 def lowercase_ ( self , **_UpperCAmelCase ): __snake_case : Optional[int] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def lowercase_ ( self ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowercase_ ( self ): for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowercase_ ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowercase_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : Union[str, Any] = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __snake_case : Optional[Any] = torch.manual_seed(0 ) __snake_case : Tuple = self.dummy_model() __snake_case : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : Optional[int] = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __snake_case : Any = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[Any] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) __snake_case : int = output.prev_sample __snake_case : List[str] = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : List[Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def lowercase_ ( self ): __snake_case : int = self.scheduler_classes[0] __snake_case : List[Any] = self.get_scheduler_config(prediction_type='v_prediction' ) __snake_case : Optional[Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __snake_case : List[Any] = torch.manual_seed(0 ) __snake_case : str = self.dummy_model() __snake_case : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : Any = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __snake_case : Union[str, Any] = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) __snake_case : str = output.prev_sample __snake_case : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : Optional[int] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.26_76E-06 ) < 1E-3 def lowercase_ ( self ): __snake_case : Any = self.scheduler_classes[0] __snake_case : List[str] = self.get_scheduler_config() __snake_case : Tuple = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : Dict = self.dummy_model() __snake_case : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __snake_case : Any = sample.to(_UpperCAmelCase ) for t in scheduler.timesteps: __snake_case : str = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : int = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) __snake_case : List[Any] = output.prev_sample __snake_case : str = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : List[str] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def lowercase_ ( self ): __snake_case : Dict = self.scheduler_classes[0] __snake_case : Tuple = self.get_scheduler_config() __snake_case : str = scheduler_class(**_UpperCAmelCase , use_karras_sigmas=_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) __snake_case : str = torch.manual_seed(0 ) __snake_case : List[str] = self.dummy_model() __snake_case : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __snake_case : Optional[int] = sample.to(_UpperCAmelCase ) for t in scheduler.timesteps: __snake_case : List[Any] = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : str = model(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Tuple = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) __snake_case : Tuple = output.prev_sample __snake_case : Dict = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1E-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1E-3
713
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __magic_name__ = '''Usage of script: script_name <size_of_canvas:int>''' __magic_name__ = [0] * 100 + [1] * 10 random.shuffle(choice) def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : Tuple = [[False for i in range(__UpperCAmelCase )] for j in range(__UpperCAmelCase )] return canvas def UpperCAmelCase__( __UpperCAmelCase : list[list[bool]] ): for i, row in enumerate(__UpperCAmelCase ): for j, _ in enumerate(__UpperCAmelCase ): __snake_case : int = bool(random.getrandbits(1 ) ) def UpperCAmelCase__( __UpperCAmelCase : list[list[bool]] ): __snake_case : Any = np.array(__UpperCAmelCase ) __snake_case : Any = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__UpperCAmelCase ): for c, pt in enumerate(__UpperCAmelCase ): __snake_case : Any = __judge_point( __UpperCAmelCase , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __snake_case : Any = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __snake_case : list[list[bool]] = current_canvas.tolist() return return_canvas def UpperCAmelCase__( __UpperCAmelCase : bool , __UpperCAmelCase : list[list[bool]] ): __snake_case : Optional[Any] = 0 __snake_case : List[Any] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __snake_case : List[Any] = pt if pt: if alive < 2: __snake_case : List[Any] = False elif alive == 2 or alive == 3: __snake_case : List[str] = True elif alive > 3: __snake_case : int = False else: if alive == 3: __snake_case : Dict = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __magic_name__ = int(sys.argv[1]) # main working structure of this module. __magic_name__ = create_canvas(canvas_size) seed(c) __magic_name__ , __magic_name__ = plt.subplots() fig.show() __magic_name__ = ListedColormap(['''w''', '''k''']) try: while True: __magic_name__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
714
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
0
def UpperCAmelCase__( __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 10_00 ): __snake_case : List[Any] = 1 __snake_case : Any = 0 for divide_by_number in range(__UpperCAmelCase , digit + 1 ): __snake_case : list[int] = [] __snake_case : List[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCAmelCase ): __snake_case : Optional[int] = len(__UpperCAmelCase ) __snake_case : List[str] = divide_by_number else: has_been_divided.append(__UpperCAmelCase ) __snake_case : Union[str, Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
715
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple="shi-labs/oneformer_demo" ): with open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='dataset' ) , 'r' ) as f: __snake_case : Optional[int] = json.load(__UpperCAmelCase ) __snake_case : Tuple = {} __snake_case : List[str] = [] __snake_case : Optional[Any] = [] for key, info in class_info.items(): __snake_case : Any = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(__UpperCAmelCase ) ) __snake_case : Union[str, Any] = thing_ids __snake_case : Union[str, Any] = class_names return metadata class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=10 , _UpperCAmelCase=False , _UpperCAmelCase=255 , _UpperCAmelCase="shi-labs/oneformer_demo" , _UpperCAmelCase="ade20k_panoptic.json" , _UpperCAmelCase=10 , ): __snake_case : Dict = parent __snake_case : List[str] = batch_size __snake_case : Any = num_channels __snake_case : Any = min_resolution __snake_case : str = max_resolution __snake_case : List[Any] = do_resize __snake_case : Tuple = {'shortest_edge': 32, 'longest_edge': 1_333} if size is None else size __snake_case : Dict = do_normalize __snake_case : Any = image_mean __snake_case : Any = image_std __snake_case : Dict = class_info_file __snake_case : Any = prepare_metadata(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : str = num_text __snake_case : Optional[Any] = repo_path # for the post_process_functions __snake_case : Optional[Any] = 2 __snake_case : List[str] = 10 __snake_case : int = 10 __snake_case : List[str] = 3 __snake_case : int = 4 __snake_case : str = num_labels __snake_case : Optional[Any] = do_reduce_labels __snake_case : Optional[int] = ignore_index def lowercase_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False ): if not batched: __snake_case : Any = image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image ): __snake_case : Optional[int] = image.size else: __snake_case : List[Any] = image.shape[1], image.shape[2] if w < h: __snake_case : List[Any] = int(self.size['shortest_edge'] * h / w ) __snake_case : Optional[int] = self.size['shortest_edge'] elif w > h: __snake_case : Union[str, Any] = self.size['shortest_edge'] __snake_case : Tuple = int(self.size['shortest_edge'] * w / h ) else: __snake_case : List[Any] = self.size['shortest_edge'] __snake_case : int = self.size['shortest_edge'] else: __snake_case : Optional[int] = [] for image in image_inputs: __snake_case : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case : Optional[Any] = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[0] )[0] __snake_case : Tuple = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[1] )[1] return expected_height, expected_width def lowercase_ ( self ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __UpperCAmelCase = image_processing_class def lowercase_ ( self ): __snake_case : Optional[Any] = OneFormerImageProcessorTester(self ) @property def lowercase_ ( self ): return self.image_processing_tester.prepare_image_processor_dict() def lowercase_ ( self ): __snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'ignore_index' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'class_info_file' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'num_text' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'repo_path' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'metadata' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_reduce_labels' ) ) def lowercase_ ( self ): pass def lowercase_ ( self ): # Initialize image_processor __snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __snake_case : Dict = self.image_processing_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : str = self.image_processing_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) __snake_case : Dict = image_processor( _UpperCAmelCase , ['semantic'] * len(_UpperCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ): # Initialize image_processor __snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Any = prepare_image_inputs(self.image_processing_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __snake_case : Dict = self.image_processing_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : int = self.image_processing_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) __snake_case : Optional[Any] = image_processor( _UpperCAmelCase , ['semantic'] * len(_UpperCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ): # Initialize image_processor __snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __snake_case : Tuple = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __snake_case : Optional[int] = self.image_processing_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) __snake_case : List[str] = image_processor( _UpperCAmelCase , ['semantic'] * len(_UpperCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="np" ): __snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __snake_case : Union[str, Any] = self.image_processing_tester.num_labels __snake_case : str = None __snake_case : Tuple = None __snake_case : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=_UpperCAmelCase ) if with_segmentation_maps: __snake_case : List[str] = num_labels if is_instance_map: __snake_case : str = list(range(_UpperCAmelCase ) ) * 2 __snake_case : Union[str, Any] = dict(enumerate(_UpperCAmelCase ) ) __snake_case : str = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __snake_case : Optional[Any] = [Image.fromarray(_UpperCAmelCase ) for annotation in annotations] __snake_case : Dict = image_processor( _UpperCAmelCase , ['semantic'] * len(_UpperCAmelCase ) , _UpperCAmelCase , return_tensors='pt' , instance_id_to_semantic_id=_UpperCAmelCase , pad_and_return_pixel_mask=_UpperCAmelCase , ) return inputs def lowercase_ ( self ): pass def lowercase_ ( self ): def common(_UpperCAmelCase=False , _UpperCAmelCase=None ): __snake_case : str = self.comm_get_image_processor_inputs( with_segmentation_maps=_UpperCAmelCase , is_instance_map=_UpperCAmelCase , segmentation_type=_UpperCAmelCase ) __snake_case : Union[str, Any] = inputs['mask_labels'] __snake_case : Any = inputs['class_labels'] __snake_case : Optional[int] = inputs['pixel_values'] __snake_case : str = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_UpperCAmelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_UpperCAmelCase ) common(is_instance_map=_UpperCAmelCase , segmentation_type='pil' ) common(is_instance_map=_UpperCAmelCase , segmentation_type='pil' ) def lowercase_ ( self ): __snake_case : List[Any] = np.zeros((20, 50) ) __snake_case : Any = 1 __snake_case : Optional[int] = 1 __snake_case : Dict = 1 __snake_case : Union[str, Any] = binary_mask_to_rle(_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __snake_case : Union[str, Any] = self.image_processing_tester.get_fake_oneformer_outputs() __snake_case : str = fature_extractor.post_process_semantic_segmentation(_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __snake_case : Tuple = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __snake_case : Any = fature_extractor.post_process_semantic_segmentation(_UpperCAmelCase , target_sizes=_UpperCAmelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowercase_ ( self ): __snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() __snake_case : List[str] = image_processor.post_process_instance_segmentation(_UpperCAmelCase , threshold=0 ) self.assertTrue(len(_UpperCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , _UpperCAmelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowercase_ ( self ): __snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __snake_case : Union[str, Any] = self.image_processing_tester.get_fake_oneformer_outputs() __snake_case : List[str] = image_processor.post_process_panoptic_segmentation(_UpperCAmelCase , threshold=0 ) self.assertTrue(len(_UpperCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , _UpperCAmelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
716
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "mobilenet_v2" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=224 , _UpperCAmelCase=1.0 , _UpperCAmelCase=8 , _UpperCAmelCase=8 , _UpperCAmelCase=6 , _UpperCAmelCase=32 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu6" , _UpperCAmelCase=True , _UpperCAmelCase=0.8 , _UpperCAmelCase=0.02 , _UpperCAmelCase=0.001 , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) __snake_case : Optional[Any] = num_channels __snake_case : str = image_size __snake_case : List[Any] = depth_multiplier __snake_case : Any = depth_divisible_by __snake_case : Optional[int] = min_depth __snake_case : Union[str, Any] = expand_ratio __snake_case : Optional[int] = output_stride __snake_case : Optional[int] = first_layer_is_expansion __snake_case : int = finegrained_output __snake_case : Any = hidden_act __snake_case : Tuple = tf_padding __snake_case : Optional[Any] = classifier_dropout_prob __snake_case : List[str] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = semantic_loss_ignore_index class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = version.parse("1.11") @property def lowercase_ ( self ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def lowercase_ ( self ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def lowercase_ ( self ): return 1E-4
717
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
0
from __future__ import annotations import pandas as pd def UpperCAmelCase__( __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int ) -> str: __snake_case : Dict = [0] * no_of_processes __snake_case : Any = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__UpperCAmelCase ): __snake_case : Dict = burst_time[i] __snake_case : int = 0 __snake_case : Tuple = 0 __snake_case : Tuple = 9_99_99_99_99 __snake_case : List[str] = 0 __snake_case : Tuple = False # Process until all processes are completed while complete != no_of_processes: for j in range(__UpperCAmelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __snake_case : List[str] = remaining_time[j] __snake_case : str = j __snake_case : List[str] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __snake_case : Tuple = remaining_time[short] if minm == 0: __snake_case : Union[str, Any] = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 __snake_case : Tuple = False # Find finish time of current process __snake_case : List[Any] = increment_time + 1 # Calculate waiting time __snake_case : str = finish_time - arrival_time[short] __snake_case : List[Any] = finar - burst_time[short] if waiting_time[short] < 0: __snake_case : Any = 0 # Increment time increment_time += 1 return waiting_time def UpperCAmelCase__( __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[int] ) -> Any: __snake_case : Optional[Any] = [0] * no_of_processes for i in range(__UpperCAmelCase ): __snake_case : Optional[Any] = burst_time[i] + waiting_time[i] return turn_around_time def UpperCAmelCase__( __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int ) -> Optional[int]: __snake_case : List[Any] = 0 __snake_case : List[Any] = 0 for i in range(__UpperCAmelCase ): __snake_case : Dict = total_waiting_time + waiting_time[i] __snake_case : Any = total_turn_around_time + turn_around_time[i] print(F"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') __magic_name__ = int(input()) __magic_name__ = [0] * no_of_processes __magic_name__ = [0] * no_of_processes __magic_name__ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) __magic_name__ , __magic_name__ = map(int, input().split()) __magic_name__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __magic_name__ = burst_time __magic_name__ = no_of_processes __magic_name__ = waiting_time __magic_name__ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __magic_name__ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
718
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "openai/whisper-base" __UpperCAmelCase = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase = "transcriber" __UpperCAmelCase = WhisperProcessor __UpperCAmelCase = WhisperForConditionalGeneration __UpperCAmelCase = ["audio"] __UpperCAmelCase = ["text"] def lowercase_ ( self , _UpperCAmelCase ): return self.pre_processor(_UpperCAmelCase , return_tensors='pt' ).input_features def lowercase_ ( self , _UpperCAmelCase ): return self.model.generate(inputs=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.pre_processor.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )[0]
719
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
720
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __magic_name__ = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PegasusTokenizer __UpperCAmelCase = PegasusTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = True def lowercase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing __snake_case : Union[str, Any] = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase_ ( self , **_UpperCAmelCase ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return ("This is a test", "This is a test") def lowercase_ ( self ): __snake_case : Optional[Any] = '</s>' __snake_case : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(_UpperCAmelCase ) , 1_103 ) def lowercase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __snake_case : str = self.tokenizer_class.from_pretrained(self.tmpdirname ) __snake_case : int = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) __snake_case : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] __snake_case : Tuple = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __snake_case : Any = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' __snake_case : int = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] __snake_case : Tuple = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 __snake_case : List[Any] = 'To ensure a smooth flow of bank resolutions.' __snake_case : Dict = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] __snake_case : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase_ ( self ): __snake_case : str = ['This is going to be way too long.' * 150, 'short example'] __snake_case : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] __snake_case : int = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='pt' ) __snake_case : str = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowercase_ ( self ): # fmt: off __snake_case : Optional[int] = {'input_ids': [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PegasusTokenizer __UpperCAmelCase = PegasusTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = True def lowercase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing __snake_case : Tuple = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase_ ( self , **_UpperCAmelCase ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return ("This is a test", "This is a test") def lowercase_ ( self ): __snake_case : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __snake_case : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __snake_case : Tuple = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) __snake_case : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] __snake_case : List[str] = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowercase_ ( self ): __snake_case : Union[str, Any] = ['This is going to be way too long.' * 1_000, 'short example'] __snake_case : List[str] = ['not super long but more than 5 tokens', 'tiny'] __snake_case : int = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='pt' ) __snake_case : int = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowercase_ ( self ): __snake_case : Union[str, Any] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) __snake_case : str = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=4 , ): __snake_case : int = parent __snake_case : Union[str, Any] = batch_size __snake_case : List[Any] = seq_length __snake_case : Optional[Any] = is_training __snake_case : Optional[Any] = use_attention_mask __snake_case : Tuple = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : Optional[Any] = vocab_size __snake_case : int = hidden_size __snake_case : int = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : Optional[int] = num_choices def lowercase_ ( self ): __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] = None if self.use_attention_mask: __snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ): __snake_case : List[str] = self.prepare_config_and_inputs() __snake_case : Any = config_and_inputs __snake_case : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case : Optional[Any] = config_and_inputs __snake_case : Optional[int] = True __snake_case : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = True __UpperCAmelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ): __snake_case : List[str] = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ): for model_class_name in self.all_model_classes: __snake_case : List[Any] = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=_UpperCAmelCase ) __snake_case : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def lowercase_ ( self ): __snake_case : str = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=_UpperCAmelCase ) __snake_case : Dict = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __snake_case : Any = model(_UpperCAmelCase )[0] __snake_case : str = [1, 11, 50_265] self.assertEqual(list(output.shape ) , _UpperCAmelCase ) # compare the actual values for a slice. __snake_case : str = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : List[str] = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=_UpperCAmelCase ) __snake_case : Optional[Any] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __snake_case : Optional[Any] = model(_UpperCAmelCase )[0] # compare the actual values for a slice. __snake_case : List[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
701
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
0
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = LayoutLMTokenizer __UpperCAmelCase = LayoutLMTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = True def lowercase_ ( self ): super().setUp() __snake_case : Dict = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self , **_UpperCAmelCase ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[str] = 'UNwant\u00E9d,running' __snake_case : Tuple = 'unwanted, running' return input_text, output_text def lowercase_ ( self ): __snake_case : Optional[Any] = self.tokenizer_class(self.vocab_file ) __snake_case : Union[str, Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def lowercase_ ( self ): pass
702
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=100 , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=[0, 1, 2, 3] , ): __snake_case : List[str] = parent __snake_case : str = 100 __snake_case : List[Any] = batch_size __snake_case : Dict = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Dict = num_channels __snake_case : Tuple = is_training __snake_case : List[Any] = use_labels __snake_case : Union[str, Any] = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : List[str] = type_sequence_label_size __snake_case : int = initializer_range __snake_case : List[Any] = scope __snake_case : str = out_indices __snake_case : Any = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case : Tuple = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = num_patches + 1 def lowercase_ ( self ): __snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : List[Any] = None __snake_case : List[str] = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = BeitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Dict = BeitForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.type_sequence_label_size __snake_case : Union[str, Any] = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Dict = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case : List[Any] = 1 __snake_case : Optional[Any] = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Optional[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[int] = self.num_labels __snake_case : Dict = BeitForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[str] = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __snake_case : int = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowercase_ ( self ): __snake_case : str = self.prepare_config_and_inputs() __snake_case : str = config_and_inputs __snake_case : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Union[str, Any] = BeitModelTester(self ) __snake_case : str = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def lowercase_ ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Any = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowercase_ ( self ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def lowercase_ ( self ): if not self.model_tester.is_training: return __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling]: continue __snake_case : int = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() __snake_case : Optional[Any] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) __snake_case : str = model(**_UpperCAmelCase ).loss loss.backward() def lowercase_ ( self ): __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __snake_case : Dict = False __snake_case : Dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __snake_case : Optional[Any] = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() __snake_case : List[Any] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) __snake_case : Union[str, Any] = model(**_UpperCAmelCase ).loss loss.backward() def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : str = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: __snake_case : int = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def lowercase_ ( self ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[str] = BeitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Optional[int] = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(_UpperCAmelCase ) __snake_case : Any = self.default_image_processor __snake_case : Optional[int] = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values.to(_UpperCAmelCase ) # prepare bool_masked_pos __snake_case : List[str] = torch.ones((1, 196) , dtype=torch.bool ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Any = model(pixel_values=_UpperCAmelCase , bool_masked_pos=_UpperCAmelCase ) __snake_case : Any = outputs.logits # verify the logits __snake_case : int = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : List[Any] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _UpperCAmelCase , atol=1E-2 ) ) @slow def lowercase_ ( self ): __snake_case : Union[str, Any] = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(_UpperCAmelCase ) __snake_case : List[Any] = self.default_image_processor __snake_case : Tuple = prepare_img() __snake_case : List[str] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : Dict = outputs.logits # verify the logits __snake_case : Dict = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Dict = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) __snake_case : Dict = 281 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowercase_ ( self ): __snake_case : Tuple = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( _UpperCAmelCase ) __snake_case : List[str] = self.default_image_processor __snake_case : List[Any] = prepare_img() __snake_case : Dict = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : List[str] = model(**_UpperCAmelCase ) __snake_case : Any = outputs.logits # verify the logits __snake_case : Optional[int] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Union[str, Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) __snake_case : Dict = 2_396 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowercase_ ( self ): __snake_case : Union[str, Any] = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __snake_case : List[str] = model.to(_UpperCAmelCase ) __snake_case : List[Any] = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) __snake_case : Optional[int] = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __snake_case : List[Any] = Image.open(ds[0]['file'] ) __snake_case : str = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : Tuple = outputs.logits # verify the logits __snake_case : Any = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : List[str] = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __snake_case : Any = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_UpperCAmelCase , ) else: __snake_case : str = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __snake_case : Tuple = model.to(_UpperCAmelCase ) __snake_case : List[Any] = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) __snake_case : int = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __snake_case : Optional[int] = Image.open(ds[0]['file'] ) __snake_case : int = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Any = model(**_UpperCAmelCase ) __snake_case : Optional[Any] = outputs.logits.detach().cpu() __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(500, 300)] ) __snake_case : int = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : Union[str, Any] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
703
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __magic_name__ = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
704
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __magic_name__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self , _UpperCAmelCase = 1 , _UpperCAmelCase = 100 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , ): if audio_length_in_s is None: __snake_case : str = self.unet.config.sample_size / self.unet.config.sample_rate __snake_case : Any = audio_length_in_s * self.unet.config.sample_rate __snake_case : Union[str, Any] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) __snake_case : Dict = int(_UpperCAmelCase ) if sample_size % down_scale_factor != 0: __snake_case : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) __snake_case : Union[str, Any] = int(_UpperCAmelCase ) __snake_case : Tuple = next(iter(self.unet.parameters() ) ).dtype __snake_case : str = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __snake_case : Optional[int] = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase , device=audio.device ) __snake_case : List[str] = self.scheduler.timesteps.to(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __snake_case : Dict = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 __snake_case : Any = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample __snake_case : List[str] = audio.clamp(-1 , 1 ).float().cpu().numpy() __snake_case : List[Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_UpperCAmelCase )
705
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
0
import argparse from collections import defaultdict def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] ): __snake_case : Union[str, Any] = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , 'r' ) as f: __snake_case : str = f.readlines() __snake_case : Any = F"""class {class_name}(""" __snake_case : Any = F"""{4 * " "}def {test_name}(""" __snake_case : str = F"""{8 * " "}{correct_line.split()[0]}""" __snake_case : List[str] = F"""{16 * " "}{correct_line.split()[0]}""" __snake_case : Dict = False __snake_case : Tuple = False __snake_case : List[str] = False __snake_case : Dict = False __snake_case : Union[str, Any] = 0 __snake_case : str = 0 __snake_case : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): __snake_case : str = True elif in_class and line.startswith(__UpperCAmelCase ): __snake_case : Any = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): __snake_case : str = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __snake_case : str = True if in_class and in_func and in_line: if ")" not in line: continue else: __snake_case : Union[str, Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) __snake_case : str = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , 'w' ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str]=None ): if fail is not None: with open(__UpperCAmelCase , 'r' ) as f: __snake_case : Dict = {l.strip() for l in f.readlines()} else: __snake_case : List[str] = None with open(__UpperCAmelCase , 'r' ) as f: __snake_case : List[Any] = f.readlines() __snake_case : List[Any] = defaultdict(__UpperCAmelCase ) for line in correct_lines: __snake_case : Tuple = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) __magic_name__ = parser.parse_args() main(args.correct_filename, args.fail_filename)
706
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 4_2 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
707
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
0
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def UpperCAmelCase__( ): print('Making key files...' ) make_key_files('rsa' , 10_24 ) print('Key files generation successful.' ) def UpperCAmelCase__( __UpperCAmelCase : int ): print('Generating prime p...' ) __snake_case : Tuple = rabinMiller.generate_large_prime(__UpperCAmelCase ) print('Generating prime q...' ) __snake_case : int = rabinMiller.generate_large_prime(__UpperCAmelCase ) __snake_case : int = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: __snake_case : Any = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__UpperCAmelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) __snake_case : Optional[int] = cryptoMath.find_mod_inverse(__UpperCAmelCase , (p - 1) * (q - 1) ) __snake_case : Optional[Any] = (n, e) __snake_case : Tuple = (n, d) return (public_key, private_key) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : int ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() __snake_case : Dict = generate_key(__UpperCAmelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
708
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
0
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = WavaVecaPhonemeCTCTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : Union[str, Any] = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) __snake_case : str = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __snake_case : List[str] = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} __snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): __snake_case : Tuple = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase )) for i in range(len(_UpperCAmelCase ) )] __snake_case : int = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Union[str, Any] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[str] = [t[0] for t in toks] # Ensure consistency __snake_case : List[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : Tuple = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : Optional[Any] = ' ' + output_txt __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) __snake_case : Optional[int] = tokenizer('m xxx ɪ' , do_phonemize=_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) __snake_case : Tuple = tokenizer('m aaa ɪ ccc' , do_phonemize=_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa __snake_case : Optional[int] = tokenizer('maɪ c' , do_phonemize=_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , [3, 200] ) # mai should be <unk> (=3) def lowercase_ ( self ): __snake_case : Any = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : Optional[int] = 'Hello how are you' __snake_case : str = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(_UpperCAmelCase , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : Union[str, Any] = 'Hello how are you' __snake_case : str = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(_UpperCAmelCase ).input_ids , tokenizer(_UpperCAmelCase , do_phonemize=_UpperCAmelCase ).input_ids ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : List[Any] = 'Hello how are you' __snake_case : Dict = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) __snake_case : Optional[Any] = tokenizer.decode(tokenizer(_UpperCAmelCase ).input_ids ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : str = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] __snake_case : Optional[int] = tokenizer.decode(sample_ids[0] ) __snake_case : List[Any] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , batch_tokens[0] ) self.assertEqual(_UpperCAmelCase , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def lowercase_ ( self ): __snake_case : Dict = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __snake_case : List[str] = 'Hello how are you' __snake_case : str = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(_UpperCAmelCase , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def lowercase_ ( self ): __snake_case : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __snake_case : List[Any] = 'Hello how are you' __snake_case : List[str] = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(_UpperCAmelCase ).input_ids , tokenizer(_UpperCAmelCase , do_phonemize=_UpperCAmelCase ).input_ids ) def lowercase_ ( self ): __snake_case : Optional[int] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off __snake_case : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter __snake_case : Dict = tokenizer.decode(sample_ids[0] ) __snake_case : List[Any] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , batch_tokens[0] ) self.assertEqual(_UpperCAmelCase , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter __snake_case : Tuple = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=_UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase , filter_word_delimiter_token=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , batch_tokens[0] ) self.assertEqual(_UpperCAmelCase , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def lowercase_ ( self ): __snake_case : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __snake_case : Any = 'Hello how are you' __snake_case : Any = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) __snake_case : int = tokenizer.decode(tokenizer(_UpperCAmelCase ).input_ids , filter_word_delimiter_token=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __snake_case : Optional[int] = 'Hello how are you' __snake_case : Any = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) __snake_case : List[Any] = tokenizer.decode(tokenizer(_UpperCAmelCase ).input_ids , filter_word_delimiter_token=_UpperCAmelCase ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=_UpperCAmelCase ) __snake_case : Optional[Any] = 'Hello how are you' __snake_case : Optional[Any] = tokenizer(_UpperCAmelCase , phonemizer_lang='en-us' ).input_ids __snake_case : Optional[Any] = tokenizer(_UpperCAmelCase , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase ) __snake_case : Tuple = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(_UpperCAmelCase , 'ɛ l o h aʊ a ʁ j u' ) def lowercase_ ( self ): __snake_case : List[str] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : str = 'Hello how Are you' __snake_case : Optional[Any] = 'hello how are you' __snake_case : str = tokenizer(_UpperCAmelCase ).input_ids __snake_case : Tuple = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : str = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off __snake_case : Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on __snake_case : Any = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self ): __snake_case : List[Any] = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __snake_case : str = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on __snake_case : List[Any] = tokenizer.decode(_UpperCAmelCase , output_char_offsets=_UpperCAmelCase , filter_word_delimiter_token=_UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def lowercase_ ( self ): __snake_case : Any = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(isinstance(outputs_list[0] , _UpperCAmelCase ) ) # transform list to ModelOutput __snake_case : int = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(_UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): [recursive_check(_UpperCAmelCase , _UpperCAmelCase ) for la, la in zip(_UpperCAmelCase , _UpperCAmelCase )] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off __snake_case : Union[str, Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __snake_case : int = tokenizer.batch_decode(_UpperCAmelCase , output_char_offsets=_UpperCAmelCase ) __snake_case : List[Any] = [tokenizer.decode(_UpperCAmelCase , output_char_offsets=_UpperCAmelCase ) for ids in sample_ids] check_list_tuples_equal(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def lowercase_ ( self ): pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def lowercase_ ( self ): pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def lowercase_ ( self ): pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Dict = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Any = tokenizer.vocab_size __snake_case : Optional[Any] = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __snake_case : Union[str, Any] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] __snake_case : List[str] = tokenizer.add_tokens(_UpperCAmelCase ) __snake_case : int = tokenizer.vocab_size __snake_case : Optional[int] = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) ) __snake_case : str = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __snake_case : Union[str, Any] = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} __snake_case : Tuple = tokenizer.add_special_tokens(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.vocab_size __snake_case : Dict = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) ) __snake_case : Dict = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def lowercase_ ( self ): pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Tuple = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] __snake_case : Any = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(output['text'] , _UpperCAmelCase )
709
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCAmelCase__( __UpperCAmelCase : Any ): if not is_accelerate_available(): return method __snake_case : Any = version.parse(accelerate.__version__ ).base_version if version.parse(__UpperCAmelCase ) < version.parse('0.17.0' ): return method def wrapper(self : str , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Union[str, Any] ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *__UpperCAmelCase , **__UpperCAmelCase ) return wrapper
710
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
0
from sklearn.metrics import mean_squared_error import datasets __magic_name__ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' __magic_name__ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' __magic_name__ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def lowercase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def lowercase_ ( self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase="uniform_average" , _UpperCAmelCase=True ): __snake_case : int = mean_squared_error( _UpperCAmelCase , _UpperCAmelCase , sample_weight=_UpperCAmelCase , multioutput=_UpperCAmelCase , squared=_UpperCAmelCase ) return {"mse": mse}
711
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : int = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) __snake_case : Tuple = DetaConfig( backbone_config=__UpperCAmelCase , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__UpperCAmelCase , with_box_refine=__UpperCAmelCase , two_stage=__UpperCAmelCase , ) # set labels __snake_case : int = 'huggingface/label-files' if "o365" in model_name: __snake_case : List[str] = 3_66 __snake_case : str = 'object365-id2label.json' else: __snake_case : str = 91 __snake_case : Optional[int] = 'coco-detection-id2label.json' __snake_case : Union[str, Any] = num_labels __snake_case : Any = json.load(open(cached_download(hf_hub_url(__UpperCAmelCase , __UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) __snake_case : Union[str, Any] = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} __snake_case : List[str] = idalabel __snake_case : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : List[str] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.reduction.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.bias""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", F"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", F"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", F"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", F"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", F"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", F"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.weight""", F"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.weight""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.weight""", F"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.bias""", F"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict ): __snake_case : str = dct.pop(__UpperCAmelCase ) __snake_case : List[str] = val def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict ): __snake_case : Dict = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __snake_case : str = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __snake_case : List[Any] = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __snake_case : Any = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __snake_case : str = in_proj_weight[:dim, :] __snake_case : Any = in_proj_bias[: dim] __snake_case : List[str] = in_proj_weight[ dim : dim * 2, : ] __snake_case : str = in_proj_bias[ dim : dim * 2 ] __snake_case : str = in_proj_weight[ -dim :, : ] __snake_case : Any = in_proj_bias[-dim :] # fmt: on def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ): # transformer decoder self-attention layers __snake_case : Dict = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __snake_case : Optional[Any] = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __snake_case : List[Any] = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __snake_case : Union[str, Any] = in_proj_weight[:hidden_size, :] __snake_case : Any = in_proj_bias[:hidden_size] __snake_case : Tuple = in_proj_weight[ hidden_size : hidden_size * 2, : ] __snake_case : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] __snake_case : Any = in_proj_weight[-hidden_size:, :] __snake_case : Tuple = in_proj_bias[-hidden_size:] def UpperCAmelCase__( ): __snake_case : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case : str = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ): __snake_case : Any = get_deta_config(__UpperCAmelCase ) # load original state dict if model_name == "deta-swin-large": __snake_case : Optional[Any] = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": __snake_case : Any = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F"""Model name {model_name} not supported""" ) __snake_case : Tuple = torch.load(__UpperCAmelCase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__UpperCAmelCase , param.shape ) # rename keys __snake_case : List[str] = create_rename_keys(__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_swin_q_k_v(__UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(__UpperCAmelCase , __UpperCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __snake_case : List[str] = state_dict.pop(__UpperCAmelCase ) __snake_case : str = val if "input_proj" in key: __snake_case : Union[str, Any] = state_dict.pop(__UpperCAmelCase ) __snake_case : Dict = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __snake_case : int = state_dict.pop(__UpperCAmelCase ) __snake_case : Dict = val # finally, create HuggingFace model and load state dict __snake_case : Dict = DetaForObjectDetection(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() __snake_case : Tuple = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__UpperCAmelCase ) # load image processor __snake_case : int = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image __snake_case : int = prepare_img() __snake_case : Any = processor(images=__UpperCAmelCase , return_tensors='pt' ) __snake_case : Dict = encoding['pixel_values'] __snake_case : Union[str, Any] = model(pixel_values.to(__UpperCAmelCase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __snake_case : List[Any] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __snake_case : Union[str, Any] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __snake_case : Dict = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __snake_case : int = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__UpperCAmelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__UpperCAmelCase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F"""jozhang97/{model_name}""" ) processor.push_to_hub(F"""jozhang97/{model_name}""" ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __magic_name__ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): __snake_case : Any = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = 'sshleifer/tiny-gpt2' __snake_case : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) __snake_case : Any = TensorFlowBenchmark(_UpperCAmelCase ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): __snake_case : Union[str, Any] = 'sgugger/tiny-distilbert-classification' __snake_case : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , only_pretrain_model=_UpperCAmelCase , ) __snake_case : Optional[Any] = TensorFlowBenchmark(_UpperCAmelCase ) __snake_case : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): __snake_case : Dict = 'sshleifer/tiny-gpt2' __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __snake_case : Optional[Any] = TensorFlowBenchmark(_UpperCAmelCase ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): __snake_case : Dict = 'sshleifer/tiny-gpt2' __snake_case : Any = AutoConfig.from_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) __snake_case : Dict = TensorFlowBenchmark(_UpperCAmelCase , [config] ) __snake_case : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): __snake_case : int = 'sshleifer/tiny-gpt2' __snake_case : int = AutoConfig.from_pretrained(_UpperCAmelCase ) __snake_case : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(_UpperCAmelCase , [config] ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): __snake_case : Optional[Any] = 'sshleifer/tiny-gpt2' __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __snake_case : Optional[int] = TensorFlowBenchmark(_UpperCAmelCase ) __snake_case : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase_ ( self ): __snake_case : str = 'sshleifer/tiny-gpt2' __snake_case : Dict = AutoConfig.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(_UpperCAmelCase , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase_ ( self ): __snake_case : Optional[int] = 'patrickvonplaten/t5-tiny-random' __snake_case : int = AutoConfig.from_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __snake_case : Optional[int] = TensorFlowBenchmark(_UpperCAmelCase , configs=[config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def lowercase_ ( self ): __snake_case : int = 'sshleifer/tiny-gpt2' __snake_case : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) __snake_case : Optional[int] = TensorFlowBenchmark(_UpperCAmelCase ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): __snake_case : Optional[int] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_UpperCAmelCase , save_to_csv=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_UpperCAmelCase , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(_UpperCAmelCase , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(_UpperCAmelCase , 'env.csv' ) , multi_process=_UpperCAmelCase , ) __snake_case : str = TensorFlowBenchmark(_UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_UpperCAmelCase , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , 'env.csv' ) ).exists() ) def lowercase_ ( self ): __snake_case : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(_UpperCAmelCase ): self.assertTrue(hasattr(_UpperCAmelCase , 'sequential' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'cumulative' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'current' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_UpperCAmelCase , 'log.txt' ) , log_print=_UpperCAmelCase , trace_memory_line_by_line=_UpperCAmelCase , eager_mode=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) __snake_case : Optional[Any] = TensorFlowBenchmark(_UpperCAmelCase ) __snake_case : List[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , 'log.txt' ) ).exists() )
713
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : Any ): __snake_case : int = r'\w+[.]\d+' __snake_case : List[Any] = re.findall(__UpperCAmelCase , __UpperCAmelCase ) for pat in pats: __snake_case : Any = key.replace(__UpperCAmelCase , '_'.join(pat.split('.' ) ) ) return key def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict ): __snake_case : str = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __snake_case : int = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __snake_case : Dict = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __snake_case : Tuple = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer __snake_case : str = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __snake_case : Any = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __snake_case : Dict = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": __snake_case : Union[str, Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __snake_case : int = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __snake_case : Any = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int=42 ): # Step 1: Convert pytorch tensor to numpy __snake_case : int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __snake_case : Any = flax_model.init_weights(PRNGKey(__UpperCAmelCase ) ) __snake_case : Dict = flatten_dict(__UpperCAmelCase ) __snake_case : Any = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __snake_case : str = rename_key(__UpperCAmelCase ) __snake_case : str = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters __snake_case : Any = rename_key_and_reshape_tensor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown __snake_case : Optional[Any] = jnp.asarray(__UpperCAmelCase ) return unflatten_dict(__UpperCAmelCase )
714
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __magic_name__ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__( __UpperCAmelCase : str ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(__UpperCAmelCase ): return ext raise Exception( F"""Unable to determine file format from file extension {path}. """ F"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def UpperCAmelCase__( __UpperCAmelCase : Any ): __snake_case : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) __snake_case : str = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format __snake_case : Union[str, Any] = PipelineDataFormat.from_str( format=__UpperCAmelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(__UpperCAmelCase , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = nlp __snake_case : Optional[Any] = reader @staticmethod def lowercase_ ( _UpperCAmelCase ): __snake_case : Optional[Any] = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=_UpperCAmelCase , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=_UpperCAmelCase , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=_UpperCAmelCase , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=_UpperCAmelCase , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=_UpperCAmelCase , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=_UpperCAmelCase , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=_UpperCAmelCase , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=_UpperCAmelCase , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = self._nlp, [] for entry in self._reader: __snake_case : Union[str, Any] = nlp(**_UpperCAmelCase ) if self._reader.is_multi_columns else nlp(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): outputs.append(_UpperCAmelCase ) else: outputs += output # Saving data if self._nlp.binary_output: __snake_case : Tuple = self._reader.save_binary(_UpperCAmelCase ) logger.warning(F"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(_UpperCAmelCase )
715
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __magic_name__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __magic_name__ = [0, 25, 50] __magic_name__ = [25, 50, 75] __magic_name__ = fuzz.membership.trimf(X, abca) __magic_name__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __magic_name__ = np.ones(75) __magic_name__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __magic_name__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __magic_name__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __magic_name__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __magic_name__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __magic_name__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __magic_name__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __magic_name__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __magic_name__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
716
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
0
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Tuple = inspect.getfile(accelerate.test_utils ) __snake_case : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) __snake_case : str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowercase_ ( self ): __snake_case : Tuple = F""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() __snake_case : List[Any] = [sys.executable] + distributed_args execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
717
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ) -> Optional[int]: # Initialise PyTorch model __snake_case : List[str] = LxmertConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : Optional[int] = LxmertForPreTraining(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
718
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=10 , _UpperCAmelCase=[10, 20, 30, 40] , _UpperCAmelCase=[1, 1, 2, 1] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=3 , _UpperCAmelCase=None , ): __snake_case : List[Any] = parent __snake_case : str = batch_size __snake_case : str = image_size __snake_case : str = num_channels __snake_case : Dict = embeddings_size __snake_case : Dict = hidden_sizes __snake_case : Optional[Any] = depths __snake_case : List[str] = is_training __snake_case : Union[str, Any] = use_labels __snake_case : Optional[int] = hidden_act __snake_case : Optional[int] = num_labels __snake_case : Tuple = scope __snake_case : Union[str, Any] = len(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Any = self.get_config() return config, pixel_values, labels def lowercase_ ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = TFResNetModel(config=_UpperCAmelCase ) __snake_case : Any = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = self.num_labels __snake_case : List[str] = TFResNetForImageClassification(_UpperCAmelCase ) __snake_case : Optional[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self ): __snake_case : Dict = self.prepare_config_and_inputs() __snake_case : Optional[Any] = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Any = TFResNetModelTester(self ) __snake_case : str = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ): return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = model_class(_UpperCAmelCase ) __snake_case : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : str = [*signature.parameters.keys()] __snake_case : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = model_class(_UpperCAmelCase ) __snake_case : Tuple = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : int = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __snake_case : Tuple = layer_type __snake_case : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[Any] = TFResNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase_ ( self ): __snake_case : Optional[Any] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __snake_case : Optional[int] = self.default_image_processor __snake_case : Any = prepare_img() __snake_case : Union[str, Any] = image_processor(images=_UpperCAmelCase , return_tensors='tf' ) # forward pass __snake_case : List[Any] = model(**_UpperCAmelCase ) # verify the logits __snake_case : Optional[Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Tuple = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCAmelCase , atol=1E-4 ) )
719
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
0
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case : Optional[int] = divisor, remainder __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
720
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
0
def UpperCAmelCase__( __UpperCAmelCase : int = 10**12 ): __snake_case : List[Any] = 1 __snake_case : str = 0 __snake_case : str = 1 __snake_case : int = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'''{solution() = }''')
721
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ): __snake_case : Tuple = nn.functional.normalize(__UpperCAmelCase ) __snake_case : List[str] = nn.functional.normalize(__UpperCAmelCase ) return torch.mm(__UpperCAmelCase , normalized_text_embeds.t() ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = CLIPConfig __UpperCAmelCase = ["CLIPEncoderLayer"] def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : int = CLIPVisionModel(config.vision_config ) __snake_case : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) __snake_case : int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) __snake_case : Union[str, Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) __snake_case : int = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) __snake_case : Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = self.vision_model(_UpperCAmelCase )[1] # pooled_output __snake_case : int = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Tuple = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() __snake_case : Any = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() __snake_case : str = [] __snake_case : Dict = image_embeds.shape[0] for i in range(_UpperCAmelCase ): __snake_case : str = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __snake_case : Dict = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __snake_case : Optional[int] = special_cos_dist[i][concept_idx] __snake_case : Tuple = self.special_care_embeds_weights[concept_idx].item() __snake_case : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) __snake_case : List[str] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): __snake_case : Dict = cos_dist[i][concept_idx] __snake_case : Optional[int] = self.concept_embeds_weights[concept_idx].item() __snake_case : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) __snake_case : Dict = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.vision_model(_UpperCAmelCase )[1] # pooled_output __snake_case : int = self.visual_projection(_UpperCAmelCase ) __snake_case : Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) __snake_case : Union[str, Any] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __snake_case : Tuple = 0.0 __snake_case : Optional[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __snake_case : int = torch.any(special_scores > 0 , dim=1 ) __snake_case : Optional[Any] = special_care * 0.01 __snake_case : List[Any] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __snake_case : Dict = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __snake_case : Dict = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
0
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __magic_name__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __magic_name__ = {'''facebook/blenderbot_small-90M''': 512} def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Optional[Any] = set() __snake_case : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case : List[Any] = char __snake_case : Dict = set(__UpperCAmelCase ) return pairs class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="__start__" , _UpperCAmelCase="__end__" , _UpperCAmelCase="__unk__" , _UpperCAmelCase="__null__" , **_UpperCAmelCase , ): super().__init__(unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , **_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __snake_case : List[Any] = json.load(_UpperCAmelCase ) __snake_case : Tuple = {v: k for k, v in self.encoder.items()} with open(_UpperCAmelCase , encoding='utf-8' ) as merges_handle: __snake_case : List[Any] = merges_handle.read().split('\n' )[1:-1] __snake_case : List[Any] = [tuple(merge.split() ) for merge in merges] __snake_case : Union[str, Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __snake_case : int = {} @property def lowercase_ ( self ): return len(self.encoder ) def lowercase_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self , _UpperCAmelCase ): if token in self.cache: return self.cache[token] __snake_case : Tuple = re.sub('([.,!?()])' , R' \1' , _UpperCAmelCase ) __snake_case : List[str] = re.sub('(\')' , R' \1 ' , _UpperCAmelCase ) __snake_case : Optional[Any] = re.sub(R'\s{2,}' , ' ' , _UpperCAmelCase ) if "\n" in token: __snake_case : int = token.replace('\n' , ' __newln__' ) __snake_case : Optional[int] = token.split(' ' ) __snake_case : Tuple = [] for token in tokens: if not len(_UpperCAmelCase ): continue __snake_case : List[str] = token.lower() __snake_case : Optional[Any] = tuple(_UpperCAmelCase ) __snake_case : Optional[int] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) __snake_case : Optional[Any] = get_pairs(_UpperCAmelCase ) if not pairs: words.append(_UpperCAmelCase ) continue while True: __snake_case : Union[str, Any] = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __snake_case : List[Any] = bigram __snake_case : Optional[int] = [] __snake_case : Optional[int] = 0 while i < len(_UpperCAmelCase ): try: __snake_case : List[Any] = word.index(_UpperCAmelCase , _UpperCAmelCase ) new_word.extend(word[i:j] ) __snake_case : Optional[Any] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case : int = tuple(_UpperCAmelCase ) __snake_case : Dict = new_word if len(_UpperCAmelCase ) == 1: break else: __snake_case : Dict = get_pairs(_UpperCAmelCase ) __snake_case : Union[str, Any] = '@@ '.join(_UpperCAmelCase ) __snake_case : Optional[int] = word[:-4] __snake_case : Union[str, Any] = word words.append(_UpperCAmelCase ) return " ".join(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = [] __snake_case : int = re.findall(R'\S+\n?' , _UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_UpperCAmelCase ).split(' ' ) ) ) return split_tokens def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = token.lower() return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = ' '.join(_UpperCAmelCase ).replace('@@ ' , '' ).strip() return out_string def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : int = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __snake_case : str = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '\n' ) __snake_case : str = 0 with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) __snake_case : Union[str, Any] = token_index writer.write(' '.join(_UpperCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file
701
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] ): try: with open(__UpperCAmelCase , 'rb' ) as flax_state_f: __snake_case : int = from_bytes(__UpperCAmelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(__UpperCAmelCase ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __snake_case : Tuple = flatten_dict(jax.tree_util.tree_map(lambda __UpperCAmelCase : x.dtype == jnp.bfloataa , __UpperCAmelCase ) ).values() if any(__UpperCAmelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __snake_case : Union[str, Any] = jax.tree_util.tree_map( lambda __UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __UpperCAmelCase ) __snake_case : Optional[int] = '' __snake_case : str = flatten_dict(__UpperCAmelCase , sep='.' ) __snake_case : Any = pt_model.state_dict() # keep track of unexpected & missing keys __snake_case : Tuple = [] __snake_case : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __snake_case : List[str] = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __snake_case : int = flax_key_tuple_array[:-1] + ['weight'] __snake_case : Union[str, Any] = jnp.transpose(__UpperCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __snake_case : str = flax_key_tuple_array[:-1] + ['weight'] __snake_case : List[Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __snake_case : Dict = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__UpperCAmelCase ): __snake_case : str = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) __snake_case : Optional[Any] = '.'.join(__UpperCAmelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict __snake_case : List[Any] = np.asarray(__UpperCAmelCase ) if not isinstance(__UpperCAmelCase , np.ndarray ) else flax_tensor __snake_case : Optional[Any] = torch.from_numpy(__UpperCAmelCase ) # remove from missing keys missing_keys.remove(__UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__UpperCAmelCase ) pt_model.load_state_dict(__UpperCAmelCase ) # re-transform missing_keys to list __snake_case : Tuple = list(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(__UpperCAmelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ' use it for predictions and inference.' ) return pt_model
702
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 4_2 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
703
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
0
from typing import Dict, Optional import numpy as np import datasets __magic_name__ = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' __magic_name__ = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' __magic_name__ = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def UpperCAmelCase__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , ): if label_map is not None: for old_id, new_id in label_map.items(): __snake_case : Tuple = new_id # turn into Numpy arrays __snake_case : Optional[int] = np.array(__UpperCAmelCase ) __snake_case : Optional[int] = np.array(__UpperCAmelCase ) if reduce_labels: __snake_case : Tuple = 2_55 __snake_case : List[str] = label - 1 __snake_case : List[str] = 2_55 __snake_case : Optional[Any] = label != ignore_index __snake_case : str = np.not_equal(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Optional[Any] = pred_label[mask] __snake_case : Union[str, Any] = np.array(__UpperCAmelCase )[mask] __snake_case : Any = pred_label[pred_label == label] __snake_case : int = np.histogram(__UpperCAmelCase , bins=__UpperCAmelCase , range=(0, num_labels - 1) )[0] __snake_case : List[str] = np.histogram(__UpperCAmelCase , bins=__UpperCAmelCase , range=(0, num_labels - 1) )[0] __snake_case : Union[str, Any] = np.histogram(__UpperCAmelCase , bins=__UpperCAmelCase , range=(0, num_labels - 1) )[0] __snake_case : Any = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCAmelCase__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , ): __snake_case : Tuple = np.zeros((num_labels,) , dtype=np.floataa ) __snake_case : Any = np.zeros((num_labels,) , dtype=np.floataa ) __snake_case : str = np.zeros((num_labels,) , dtype=np.floataa ) __snake_case : Any = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__UpperCAmelCase , __UpperCAmelCase ): __snake_case : Dict = intersect_and_union( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCAmelCase__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , ): __snake_case : int = total_intersect_and_union( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # compute metrics __snake_case : Optional[int] = {} __snake_case : str = total_area_intersect.sum() / total_area_label.sum() __snake_case : List[Any] = total_area_intersect / total_area_union __snake_case : List[Any] = total_area_intersect / total_area_label __snake_case : Union[str, Any] = np.nanmean(__UpperCAmelCase ) __snake_case : Optional[Any] = np.nanmean(__UpperCAmelCase ) __snake_case : Dict = all_acc __snake_case : List[Any] = iou __snake_case : int = acc if nan_to_num is not None: __snake_case : Tuple = {metric: np.nan_to_num(__UpperCAmelCase , nan=__UpperCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def lowercase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , ): __snake_case : Union[str, Any] = mean_iou( results=_UpperCAmelCase , gt_seg_maps=_UpperCAmelCase , num_labels=_UpperCAmelCase , ignore_index=_UpperCAmelCase , nan_to_num=_UpperCAmelCase , label_map=_UpperCAmelCase , reduce_labels=_UpperCAmelCase , ) return iou_result
704
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
0
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , ): if attention_mask is None: __snake_case : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __snake_case : Tuple = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __snake_case : Optional[Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: __snake_case : List[str] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: __snake_case : int = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase="relu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ): __snake_case : Union[str, Any] = parent __snake_case : str = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : str = use_labels __snake_case : Tuple = vocab_size __snake_case : List[Any] = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : int = intermediate_size __snake_case : int = hidden_act __snake_case : List[Any] = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : Dict = encoder_layerdrop __snake_case : int = decoder_layerdrop __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = eos_token_id __snake_case : Tuple = pad_token_id __snake_case : Optional[int] = bos_token_id def lowercase_ ( self ): __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[Any] = self.eos_token_id # Eos Token __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __snake_case : str = input_ids.clamp(self.pad_token_id + 1 ) __snake_case : Any = decoder_input_ids.clamp(self.pad_token_id + 1 ) __snake_case : int = self.get_config() __snake_case : Dict = prepare_mam_aaa_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def lowercase_ ( self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowercase_ ( self ): __snake_case : Dict = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = MaMaaaModel(config=_UpperCAmelCase ).get_decoder().to(_UpperCAmelCase ).eval() __snake_case : str = inputs_dict['input_ids'] __snake_case : Union[str, Any] = inputs_dict['attention_mask'] __snake_case : Any = inputs_dict['head_mask'] # first forward pass __snake_case : Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __snake_case : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __snake_case : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __snake_case : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __snake_case : Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )['last_hidden_state'] __snake_case : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[ 'last_hidden_state' ] # select random slice __snake_case : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-2 ) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = MaMaaaModel(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() __snake_case : str = model(**_UpperCAmelCase ) __snake_case : Dict = outputs.encoder_last_hidden_state __snake_case : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[Any] = model.get_encoder() encoder.save_pretrained(_UpperCAmelCase ) __snake_case : int = MaMaaaEncoder.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Any = model.get_decoder() decoder.save_pretrained(_UpperCAmelCase ) __snake_case : Tuple = MaMaaaDecoder.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) __snake_case : List[Any] = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __UpperCAmelCase = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __UpperCAmelCase = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowercase_ ( self ): __snake_case : Union[str, Any] = MaMaaaModelTester(self ) __snake_case : Optional[int] = ConfigTester(self , config_class=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __snake_case : Dict = model_class(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = model_class.from_pretrained(_UpperCAmelCase , output_loading_info=_UpperCAmelCase ) self.assertEqual(info['missing_keys'] , [] ) def lowercase_ ( self ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __snake_case : Tuple = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Optional[int] = copy.deepcopy(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) if not self.is_encoder_decoder: __snake_case : Optional[int] = inputs['input_ids'] del inputs["input_ids"] else: __snake_case : int = inputs['input_ids'] __snake_case : List[str] = inputs.get('decoder_input_ids' , _UpperCAmelCase ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , _UpperCAmelCase ) __snake_case : Optional[int] = model.get_input_embeddings() if not self.is_encoder_decoder: __snake_case : Tuple = wte(_UpperCAmelCase ) else: __snake_case : List[Any] = wte(_UpperCAmelCase ) __snake_case : Optional[Any] = wte(_UpperCAmelCase ) with torch.no_grad(): model(**_UpperCAmelCase )[0] def lowercase_ ( self ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() __snake_case : Any = input_dict['input_ids'] __snake_case : List[Any] = input_ids.ne(1 ).to(_UpperCAmelCase ) __snake_case : Optional[int] = MaMaaaForConditionalGeneration(_UpperCAmelCase ).eval().to(_UpperCAmelCase ) if torch_device == "cuda": model.half() model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) model.generate(num_beams=4 , do_sample=_UpperCAmelCase , early_stopping=_UpperCAmelCase , num_return_sequences=3 ) def UpperCAmelCase__( __UpperCAmelCase : str ): return torch.tensor(__UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase ) __magic_name__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def lowercase_ ( self ): __snake_case : int = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(_UpperCAmelCase ) __snake_case : Optional[Any] = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) __snake_case : Union[str, Any] = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) __snake_case : int = prepare_mam_aaa_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase )[0] __snake_case : Tuple = torch.Size((1, 11, 1_024) ) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here __snake_case : Optional[int] = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : List[str] = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_UpperCAmelCase ) # change to intended input __snake_case : Union[str, Any] = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) __snake_case : str = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) __snake_case : Optional[int] = prepare_mam_aaa_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) with torch.no_grad(): __snake_case : List[str] = model(**_UpperCAmelCase )[0] __snake_case : Optional[int] = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here __snake_case : Optional[Any] = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : Any = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) __snake_case : Optional[Any] = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams __snake_case : int = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) __snake_case : str = model.generate( input_ids=dct['input_ids'].to(_UpperCAmelCase ) , attention_mask=dct['attention_mask'].to(_UpperCAmelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) __snake_case : Tuple = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] __snake_case : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) assert generated == expected_en
705
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __magic_name__ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ): inspect_dataset(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Optional[Any] = path + '.py' assert script_name in os.listdir(__UpperCAmelCase ) assert "__pycache__" not in os.listdir(__UpperCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] ): inspect_metric(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Optional[Any] = path + '.py' assert script_name in os.listdir(__UpperCAmelCase ) assert "__pycache__" not in os.listdir(__UpperCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): __snake_case : Dict = get_dataset_config_info(__UpperCAmelCase , config_name=__UpperCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : Any ): with pytest.raises(__UpperCAmelCase ): get_dataset_config_info(__UpperCAmelCase , config_name=__UpperCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Any ): __snake_case : Any = get_dataset_config_names(__UpperCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : int ): __snake_case : str = get_dataset_infos(__UpperCAmelCase ) assert list(infos.keys() ) == expected_configs __snake_case : Tuple = expected_configs[0] assert expected_config in infos __snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int ): __snake_case : List[Any] = get_dataset_infos(__UpperCAmelCase ) assert expected_config in infos __snake_case : Optional[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] ): with pytest.raises(__UpperCAmelCase ): get_dataset_split_names(__UpperCAmelCase , config_name=__UpperCAmelCase )
706
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
0
import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
707
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): __snake_case : Optional[int] = parent __snake_case : int = batch_size __snake_case : str = seq_length __snake_case : List[str] = is_training __snake_case : int = use_input_mask __snake_case : Optional[int] = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : List[Any] = vocab_size __snake_case : Any = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : Optional[Any] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : str = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[str] = max_position_embeddings __snake_case : Optional[Any] = type_vocab_size __snake_case : Any = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = num_labels __snake_case : Union[str, Any] = num_choices __snake_case : Tuple = scope def lowercase_ ( self ): __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[str] = None if self.use_input_mask: __snake_case : Any = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[Any] = None __snake_case : Dict = None __snake_case : str = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Any = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=_UpperCAmelCase , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = OpenLlamaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) __snake_case : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __snake_case : Union[str, Any] = True __snake_case : List[Any] = OpenLlamaModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : Union[str, Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) __snake_case : Dict = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __snake_case : Optional[Any] = OpenLlamaForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Optional[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __snake_case : Any = True __snake_case : int = True __snake_case : Optional[int] = OpenLlamaForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # first forward pass __snake_case : int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase , ) __snake_case : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] __snake_case : Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] # select random slice __snake_case : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : Any = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( __snake_case ) : List[str] = config_and_inputs __snake_case : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Any = OpenLlamaModelTester(self ) __snake_case : List[Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : List[Any] = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = 3 __snake_case : Optional[int] = input_dict['input_ids'] __snake_case : Optional[Any] = input_ids.ne(1 ).to(_UpperCAmelCase ) __snake_case : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : List[str] = OpenLlamaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = 3 __snake_case : Optional[Any] = 'single_label_classification' __snake_case : List[str] = input_dict['input_ids'] __snake_case : Optional[int] = input_ids.ne(1 ).to(_UpperCAmelCase ) __snake_case : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : Any = OpenLlamaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self ): __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = 3 __snake_case : List[Any] = 'multi_label_classification' __snake_case : str = input_dict['input_ids'] __snake_case : str = input_ids.ne(1 ).to(_UpperCAmelCase ) __snake_case : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __snake_case : List[Any] = OpenLlamaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def lowercase_ ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : str = ids_tensor([1, 10] , config.vocab_size ) __snake_case : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : List[Any] = OpenLlamaModel(_UpperCAmelCase ) original_model.to(_UpperCAmelCase ) original_model.eval() __snake_case : Dict = original_model(_UpperCAmelCase ).last_hidden_state __snake_case : str = original_model(_UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : List[Any] = {'type': scaling_type, 'factor': 10.0} __snake_case : List[Any] = OpenLlamaModel(_UpperCAmelCase ) scaled_model.to(_UpperCAmelCase ) scaled_model.eval() __snake_case : Any = scaled_model(_UpperCAmelCase ).last_hidden_state __snake_case : Tuple = scaled_model(_UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) )
708
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
0
'''simple docstring''' from random import randint, random def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : int = 5 , ): __snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = max(__UpperCAmelCase , 0 ) while i < number_of_cells: __snake_case : Optional[Any] = ( randint(0 , __UpperCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def UpperCAmelCase__( __UpperCAmelCase : list , __UpperCAmelCase : int ): __snake_case : Optional[int] = 0 __snake_case : Dict = highway_now[car_index + 1 :] for cell in range(len(__UpperCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(__UpperCAmelCase , -1 ) def UpperCAmelCase__( __UpperCAmelCase : list , __UpperCAmelCase : float , __UpperCAmelCase : int ): __snake_case : Optional[int] = len(__UpperCAmelCase ) # Beforce calculations, the highway is empty __snake_case : Optional[Any] = [-1] * number_of_cells for car_index in range(__UpperCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __snake_case : int = min(highway_now[car_index] + 1 , __UpperCAmelCase ) # Number of empty cell before the next car __snake_case : Union[str, Any] = get_distance(__UpperCAmelCase , __UpperCAmelCase ) - 1 # We can't have the car causing an accident __snake_case : int = min(next_highway[car_index] , __UpperCAmelCase ) if random() < probability: # Randomly, a driver will slow down __snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def UpperCAmelCase__( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : int ): __snake_case : Any = len(highway[0] ) for i in range(__UpperCAmelCase ): __snake_case : Optional[Any] = update(highway[i] , __UpperCAmelCase , __UpperCAmelCase ) __snake_case : Dict = [-1] * number_of_cells for car_index in range(__UpperCAmelCase ): __snake_case : str = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __snake_case : int = (car_index + speed) % number_of_cells # Commit the change of position __snake_case : Tuple = speed highway.append(__UpperCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
709
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): __snake_case : Tuple = parent __snake_case : int = batch_size __snake_case : Union[str, Any] = seq_length __snake_case : Any = is_training __snake_case : Tuple = use_input_mask __snake_case : List[Any] = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : int = vocab_size __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : int = hidden_act __snake_case : List[str] = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[Any] = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = num_labels __snake_case : Tuple = num_choices __snake_case : Optional[int] = scope __snake_case : Tuple = vocab_size - 1 def lowercase_ ( self ): __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = None if self.use_input_mask: __snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : List[str] = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[str] = self.get_config() return config, input_ids, input_mask, token_labels def lowercase_ ( self ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.prepare_config_and_inputs() __snake_case : List[str] = True return config, input_ids, input_mask, token_labels def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = GPTNeoXModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) __snake_case : List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = True __snake_case : int = GPTNeoXModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Dict = GPTNeoXForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = self.num_labels __snake_case : Tuple = GPTNeoXForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Dict = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = self.num_labels __snake_case : Optional[int] = GPTNeoXForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = self.num_labels __snake_case : Optional[int] = GPTNeoXForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[int] = True __snake_case : List[Any] = GPTNeoXForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # first forward pass __snake_case : Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __snake_case : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) __snake_case : Optional[int] = output_from_no_past['hidden_states'][0] __snake_case : Union[str, Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] # select random slice __snake_case : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case : str = config_and_inputs __snake_case : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Tuple = GPTNeoXModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=64 , num_attention_heads=8 ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): # This regression test was failing with PyTorch < 1.3 __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() __snake_case : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def lowercase_ ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[Any] = ids_tensor([1, 10] , config.vocab_size ) __snake_case : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Tuple = GPTNeoXModel(_UpperCAmelCase ) original_model.to(_UpperCAmelCase ) original_model.eval() __snake_case : Optional[Any] = original_model(_UpperCAmelCase ).last_hidden_state __snake_case : List[str] = original_model(_UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Any = {'type': scaling_type, 'factor': 10.0} __snake_case : Optional[Any] = GPTNeoXModel(_UpperCAmelCase ) scaled_model.to(_UpperCAmelCase ) scaled_model.eval() __snake_case : Tuple = scaled_model(_UpperCAmelCase ).last_hidden_state __snake_case : Dict = scaled_model(_UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def lowercase_ ( self ): __snake_case : Any = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: __snake_case : Union[str, Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_UpperCAmelCase ) __snake_case : Tuple = tokenizer('My favorite food is' , return_tensors='pt' ).to(_UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __snake_case : Tuple = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' __snake_case : Optional[Any] = model.generate(**_UpperCAmelCase , do_sample=_UpperCAmelCase , max_new_tokens=20 ) __snake_case : str = tokenizer.batch_decode(_UpperCAmelCase )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
710
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } __magic_name__ = {'''mobilebert-uncased''': 512} __magic_name__ = {} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = MobileBertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) __snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCAmelCase ) != tokenize_chinese_chars ): __snake_case : Union[str, Any] = getattr(_UpperCAmelCase , normalizer_state.pop('type' ) ) __snake_case : Tuple = do_lower_case __snake_case : int = strip_accents __snake_case : Optional[Any] = tokenize_chinese_chars __snake_case : List[str] = normalizer_class(**_UpperCAmelCase ) __snake_case : Union[str, Any] = do_lower_case def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Dict = [self.sep_token_id] __snake_case : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : List[Any] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
711
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase ): with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: __snake_case : Optional[int] = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) __snake_case : int = input_file.read() __snake_case : List[Any] = regexp.search(_UpperCAmelCase ) return match def lowercase_ ( self , _UpperCAmelCase ): with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: __snake_case : Any = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) __snake_case : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __snake_case : str = regexp.finditer(_UpperCAmelCase ) __snake_case : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowercase_ ( self ): __snake_case : Dict = Path('./datasets' ) __snake_case : List[str] = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def lowercase_ ( self ): __snake_case : Optional[int] = Path('./datasets' ) __snake_case : Optional[Any] = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
712
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
0
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def UpperCAmelCase__( __UpperCAmelCase : Dict ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def UpperCAmelCase__( ): with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Optional[Any] = [1, 2, 3] with pytest.raises(__UpperCAmelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=2 ) with pytest.raises(__UpperCAmelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): __snake_case : Optional[int] = [1, 2] __snake_case : List[Any] = {'a': 1, 'b': 2} __snake_case : Optional[int] = {'a': [1, 2], 'b': [3, 4]} __snake_case : List[str] = {'a': {'1': 1}, 'b': 2} __snake_case : str = {'a': 1, 'b': 2, 'c': 3, 'd': 4} __snake_case : List[Any] = [2, 3] __snake_case : Optional[Any] = {'a': 2, 'b': 3} __snake_case : str = {'a': [2, 3], 'b': [4, 5]} __snake_case : Any = {'a': {'1': 2}, 'b': 3} __snake_case : List[str] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa
713
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] __magic_name__ = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } __magic_name__ = {F'''funnel-transformer/{name}''': 512 for name in _model_names} __magic_name__ = {F'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = FunnelTokenizer __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = 2 def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<sep>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<cls>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase="##" , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , clean_text=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , wordpieces_prefix=_UpperCAmelCase , **_UpperCAmelCase , ) __snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCAmelCase ) != tokenize_chinese_chars ): __snake_case : Any = getattr(_UpperCAmelCase , normalizer_state.pop('type' ) ) __snake_case : Tuple = do_lower_case __snake_case : Optional[Any] = strip_accents __snake_case : List[Any] = tokenize_chinese_chars __snake_case : Dict = normalizer_class(**_UpperCAmelCase ) __snake_case : Dict = do_lower_case def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Optional[int] = [self.sep_token_id] __snake_case : str = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Tuple = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
714
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : str ): def get_masked_lm_array(__UpperCAmelCase : str ): __snake_case : List[Any] = F"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) if "kernel" in name: __snake_case : str = array.transpose() return torch.from_numpy(__UpperCAmelCase ) def get_encoder_array(__UpperCAmelCase : str ): __snake_case : Any = F"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[Any] = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) if "kernel" in name: __snake_case : str = array.transpose() return torch.from_numpy(__UpperCAmelCase ) def get_encoder_layer_array(__UpperCAmelCase : int , __UpperCAmelCase : str ): __snake_case : Tuple = F"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : int = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) if "kernel" in name: __snake_case : List[Any] = array.transpose() return torch.from_numpy(__UpperCAmelCase ) def get_encoder_attention_layer_array(__UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Any ): __snake_case : Any = F"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : int = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : int = array.reshape(__UpperCAmelCase ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(__UpperCAmelCase ) print(F"""Loading model based on config from {config_path}...""" ) __snake_case : int = BertConfig.from_json_file(__UpperCAmelCase ) __snake_case : Dict = BertForMaskedLM(__UpperCAmelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : Dict = get_encoder_attention_layer_array( __UpperCAmelCase , '_query_dense/kernel' , self_attn.query.weight.data.shape ) __snake_case : Optional[Any] = get_encoder_attention_layer_array( __UpperCAmelCase , '_query_dense/bias' , self_attn.query.bias.data.shape ) __snake_case : Optional[Any] = get_encoder_attention_layer_array( __UpperCAmelCase , '_key_dense/kernel' , self_attn.key.weight.data.shape ) __snake_case : Optional[int] = get_encoder_attention_layer_array( __UpperCAmelCase , '_key_dense/bias' , self_attn.key.bias.data.shape ) __snake_case : Optional[Any] = get_encoder_attention_layer_array( __UpperCAmelCase , '_value_dense/kernel' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( __UpperCAmelCase , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : List[Any] = get_encoder_attention_layer_array( __UpperCAmelCase , '_output_dense/kernel' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( __UpperCAmelCase , '_output_dense/bias' , self_output.dense.bias.data.shape ) __snake_case : List[Any] = get_encoder_layer_array(__UpperCAmelCase , '_attention_layer_norm/gamma' ) __snake_case : Dict = get_encoder_layer_array(__UpperCAmelCase , '_attention_layer_norm/beta' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : Any = get_encoder_layer_array(__UpperCAmelCase , '_intermediate_dense/kernel' ) __snake_case : Dict = get_encoder_layer_array(__UpperCAmelCase , '_intermediate_dense/bias' ) # Output __snake_case : BertOutput = layer.output __snake_case : Any = get_encoder_layer_array(__UpperCAmelCase , '_output_dense/kernel' ) __snake_case : List[str] = get_encoder_layer_array(__UpperCAmelCase , '_output_dense/bias' ) __snake_case : Dict = get_encoder_layer_array(__UpperCAmelCase , '_output_layer_norm/gamma' ) __snake_case : Tuple = get_encoder_layer_array(__UpperCAmelCase , '_output_layer_norm/beta' ) # Embeddings __snake_case : Dict = get_encoder_array('_position_embedding_layer/embeddings' ) __snake_case : Dict = get_encoder_array('_type_embedding_layer/embeddings' ) __snake_case : Dict = get_encoder_array('_embedding_norm_layer/gamma' ) __snake_case : Optional[int] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head __snake_case : Tuple = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('dense/kernel' ) __snake_case : Optional[int] = get_masked_lm_array('dense/bias' ) __snake_case : List[Any] = get_masked_lm_array('layer_norm/gamma' ) __snake_case : int = get_masked_lm_array('layer_norm/beta' ) __snake_case : List[Any] = get_masked_lm_array('embedding_table' ) # Pooling __snake_case : Tuple = BertPooler(config=__UpperCAmelCase ) __snake_case : BertPooler = get_encoder_array('_pooler_layer/kernel' ) __snake_case : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__UpperCAmelCase ) # Integration test - should load without any errors ;) __snake_case : Tuple = BertForMaskedLM.from_pretrained(__UpperCAmelCase ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) __magic_name__ = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
715
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __magic_name__ = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } __magic_name__ = { '''169M''': 768, '''430M''': 1_024, '''1B5''': 2_048, '''3B''': 2_560, '''7B''': 4_096, '''14B''': 5_120, } def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Dict = list(state_dict.keys() ) for name in state_dict_keys: __snake_case : Tuple = state_dict.pop(__UpperCAmelCase ) # emb -> embedding if name.startswith('emb.' ): __snake_case : Optional[int] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): __snake_case : List[str] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention __snake_case : Optional[Any] = re.sub(r'blocks\.(\d+)\.att' , r'blocks.\1.attention' , __UpperCAmelCase ) # ffn -> feed_forward __snake_case : int = re.sub(r'blocks\.(\d+)\.ffn' , r'blocks.\1.feed_forward' , __UpperCAmelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): __snake_case : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): __snake_case : List[Any] = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): __snake_case : List[str] = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": __snake_case : str = 'rwkv.' + name __snake_case : Any = weight return state_dict def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : str=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) __snake_case : List[Any] = 5_02_77 __snake_case : Tuple = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: __snake_case : Union[str, Any] = PreTrainedTokenizerFast(tokenizer_file=__UpperCAmelCase ) __snake_case : Optional[int] = len(__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) # 2. Build the config __snake_case : Optional[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __snake_case : int = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) __snake_case : Tuple = RwkvConfig( vocab_size=__UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__UpperCAmelCase ) # 3. Download model file then convert state_dict __snake_case : Optional[int] = hf_hub_download(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Dict = torch.load(__UpperCAmelCase , map_location='cpu' ) __snake_case : List[str] = convert_state_dict(__UpperCAmelCase ) # 4. Split in shards and save __snake_case : Optional[Any] = shard_checkpoint(__UpperCAmelCase ) for shard_file, shard in shards.items(): torch.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) if index is not None: __snake_case : Any = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) # Save the index as well with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: __snake_case : Optional[int] = json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + '\n' f.write(__UpperCAmelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) __snake_case : str = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __snake_case : str = torch.load(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) __snake_case : Union[str, Any] = AutoModelForCausalLM.from_pretrained(__UpperCAmelCase ) model.push_to_hub(__UpperCAmelCase , max_shard_size='2GB' ) tokenizer.push_to_hub(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) __magic_name__ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
716
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __magic_name__ = get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple=0 ): os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) with FSDP.state_dict_type( __UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case : Optional[Any] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case : Dict = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __snake_case : List[Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case : Union[str, Any] = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __snake_case : Any = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case : Union[str, Any] = os.path.join(__UpperCAmelCase , F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) logger.info(F"""Saving model to {ckpt_dir}""" ) __snake_case : Optional[Any] = {'model': state_dict} dist_cp.save_state_dict( state_dict=__UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""" ) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return __snake_case : str = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __snake_case : Any = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Loading model from {input_model_file}""" ) __snake_case : List[Any] = torch.load(__UpperCAmelCase ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case : Tuple = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __snake_case : Union[str, Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Loading model from {input_model_file}""" ) __snake_case : Tuple = torch.load(__UpperCAmelCase ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case : Tuple = ( os.path.join(__UpperCAmelCase , F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) __snake_case : Union[str, Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case : Union[str, Any] = state_dict['model'] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict=0 ): os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) with FSDP.state_dict_type( __UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case : Tuple = FSDP.optim_state_dict(__UpperCAmelCase , __UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case : Optional[int] = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __snake_case : Optional[int] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: __snake_case : str = os.path.join(__UpperCAmelCase , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case : Any = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case : Tuple = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __snake_case : Dict = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) __snake_case : str = torch.load(__UpperCAmelCase ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: __snake_case : Optional[Any] = ( os.path.join(__UpperCAmelCase , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) __snake_case : str = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ) , ) __snake_case : Union[str, Any] = optim_state['optimizer'] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) __snake_case : Optional[Any] = FSDP.optim_state_dict_to_load(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) optimizer.load_state_dict(__UpperCAmelCase )
717
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
0
class __SCREAMING_SNAKE_CASE : # Public class to implement a graph """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = row __snake_case : Optional[int] = col __snake_case : str = graph def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Checking all 8 elements surrounding nth element __snake_case : str = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __snake_case : Optional[int] = [-1, 0, 1, -1, 1, -1, 0, 1] __snake_case : List[Any] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase ) def lowercase_ ( self ): # And finally, count all islands. __snake_case : Tuple = [[False for j in range(self.COL )] for i in range(self.ROW )] __snake_case : int = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) count += 1 return count
718
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = KandinskyVaaControlnetImgaImgPipeline __UpperCAmelCase = ["image_embeds", "negative_image_embeds", "image", "hint"] __UpperCAmelCase = ["image_embeds", "negative_image_embeds", "image", "hint"] __UpperCAmelCase = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 100 @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : List[str] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __snake_case : str = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self ): __snake_case : Union[str, Any] = self.dummy_unet __snake_case : Dict = self.dummy_movq __snake_case : Optional[Any] = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.00085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __snake_case : Dict = DDIMScheduler(**_UpperCAmelCase ) __snake_case : int = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): __snake_case : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) __snake_case : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCAmelCase ) # create init_image __snake_case : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) __snake_case : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Any = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('RGB' ).resize((256, 256) ) # create hint __snake_case : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Any = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Dict = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[Any] = 'cpu' __snake_case : Optional[Any] = self.get_dummy_components() __snake_case : List[Any] = self.pipeline_class(**_UpperCAmelCase ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : List[Any] = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Optional[Any] = output.images __snake_case : Dict = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] __snake_case : str = image[0, -3:, -3:, -1] __snake_case : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : List[Any] = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) __snake_case : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __snake_case : str = init_image.resize((512, 512) ) __snake_case : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) __snake_case : List[str] = torch.from_numpy(np.array(_UpperCAmelCase ) ).float() / 255.0 __snake_case : Any = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __snake_case : int = 'A robot, 4k photo' __snake_case : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) __snake_case : List[str] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) __snake_case : List[str] = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) __snake_case : Union[str, Any] = pipe_prior( _UpperCAmelCase , image=_UpperCAmelCase , strength=0.85 , generator=_UpperCAmelCase , negative_prompt='' , ).to_tuple() __snake_case : str = pipeline( image=_UpperCAmelCase , image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , hint=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , ) __snake_case : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
719
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __snake_case : List[str] = size if size is not None else {'shortest_edge': 18} __snake_case : Optional[int] = crop_size if crop_size is not None else {'height': 18, 'width': 18} __snake_case : Optional[int] = parent __snake_case : int = batch_size __snake_case : Optional[Any] = num_channels __snake_case : Optional[Any] = image_size __snake_case : int = min_resolution __snake_case : Tuple = max_resolution __snake_case : Optional[Any] = do_resize __snake_case : List[Any] = size __snake_case : Optional[Any] = do_center_crop __snake_case : Optional[int] = crop_size __snake_case : str = do_normalize __snake_case : Tuple = image_mean __snake_case : Optional[Any] = image_std def lowercase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = LevitImageProcessor if is_vision_available() else None def lowercase_ ( self ): __snake_case : List[Any] = LevitImageProcessingTester(self ) @property def lowercase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ): __snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) def lowercase_ ( self ): __snake_case : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase_ ( self ): pass def lowercase_ ( self ): # Initialize image_processing __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __snake_case : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : Optional[Any] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase_ ( self ): # Initialize image_processing __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __snake_case : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : List[Any] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase_ ( self ): # Initialize image_processing __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : Optional[int] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
720
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "wav2vec2" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="sum" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1_500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) __snake_case : List[str] = hidden_size __snake_case : int = feat_extract_norm __snake_case : str = feat_extract_activation __snake_case : Union[str, Any] = list(_UpperCAmelCase ) __snake_case : Optional[Any] = list(_UpperCAmelCase ) __snake_case : Dict = list(_UpperCAmelCase ) __snake_case : Any = conv_bias __snake_case : List[Any] = num_conv_pos_embeddings __snake_case : Union[str, Any] = num_conv_pos_embedding_groups __snake_case : int = len(self.conv_dim ) __snake_case : Union[str, Any] = num_hidden_layers __snake_case : List[str] = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : Optional[Any] = num_attention_heads __snake_case : Tuple = hidden_dropout __snake_case : Optional[int] = attention_dropout __snake_case : str = activation_dropout __snake_case : Optional[int] = feat_proj_dropout __snake_case : Optional[int] = final_dropout __snake_case : str = layerdrop __snake_case : List[Any] = layer_norm_eps __snake_case : Dict = initializer_range __snake_case : str = vocab_size __snake_case : Dict = do_stable_layer_norm __snake_case : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case : str = apply_spec_augment __snake_case : Tuple = mask_time_prob __snake_case : int = mask_time_length __snake_case : List[str] = mask_time_min_masks __snake_case : List[str] = mask_feature_prob __snake_case : Union[str, Any] = mask_feature_length __snake_case : Optional[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __snake_case : Optional[int] = num_codevectors_per_group __snake_case : Any = num_codevector_groups __snake_case : str = contrastive_logits_temperature __snake_case : List[Any] = feat_quantizer_dropout __snake_case : int = num_negatives __snake_case : Dict = codevector_dim __snake_case : Tuple = proj_codevector_dim __snake_case : Optional[Any] = diversity_loss_weight # ctc loss __snake_case : str = ctc_loss_reduction __snake_case : List[str] = ctc_zero_infinity # adapter __snake_case : Optional[Any] = add_adapter __snake_case : Dict = adapter_kernel_size __snake_case : List[str] = adapter_stride __snake_case : Optional[int] = num_adapter_layers __snake_case : Any = output_hidden_size or hidden_size __snake_case : Union[str, Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __snake_case : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __snake_case : Dict = list(_UpperCAmelCase ) __snake_case : Optional[int] = list(_UpperCAmelCase ) __snake_case : Optional[Any] = list(_UpperCAmelCase ) __snake_case : Any = xvector_output_dim @property def lowercase_ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
721
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_m2m_100''': ['''M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''M2M100Config''', '''M2M100OnnxConfig'''], '''tokenization_m2m_100''': ['''M2M100Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST''', '''M2M100ForConditionalGeneration''', '''M2M100Model''', '''M2M100PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
0
from __future__ import annotations import os from typing import Any import requests __magic_name__ = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __magic_name__ = BASE_URL + '''/user''' # https://github.com/settings/tokens __magic_name__ = os.environ.get('''USER_TOKEN''', '''''') def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Any = { 'Authorization': F"""token {auth_token}""", 'Accept': 'application/vnd.github.v3+json', } return requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
701
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __magic_name__ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __magic_name__ = parser.parse_args() __magic_name__ = '''cpu''' __magic_name__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __magic_name__ = '''path-to-your-trained-model''' __magic_name__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __magic_name__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __magic_name__ = pipe.to(device) # to channels last __magic_name__ = pipe.unet.to(memory_format=torch.channels_last) __magic_name__ = pipe.vae.to(memory_format=torch.channels_last) __magic_name__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __magic_name__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __magic_name__ = torch.randn(2, 4, 64, 64) __magic_name__ = torch.rand(1) * 999 __magic_name__ = torch.randn(2, 77, 768) __magic_name__ = (sample, timestep, encoder_hidden_status) try: __magic_name__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __magic_name__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __magic_name__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __magic_name__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __magic_name__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __magic_name__ = 666 __magic_name__ = torch.Generator(device).manual_seed(seed) __magic_name__ = {'''generator''': generator} if args.steps is not None: __magic_name__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __magic_name__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
702
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
0
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
703
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __magic_name__ = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __magic_name__ = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' __magic_name__ = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def lowercase_ ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = CHRF.CHAR_ORDER , _UpperCAmelCase = CHRF.WORD_ORDER , _UpperCAmelCase = CHRF.BETA , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , ): __snake_case : Tuple = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __snake_case : Optional[Any] = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] __snake_case : int = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case : List[str] = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
704
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
0
'''simple docstring''' __magic_name__ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __magic_name__ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __magic_name__ = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ): assert len(str(__UpperCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __snake_case : List[str] = year // 1_00 __snake_case : str = (5 * (century % 4) + 2) % 7 __snake_case : str = year % 1_00 __snake_case : List[str] = centurian % 12 __snake_case : Tuple = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __snake_case : Optional[int] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) __snake_case : Dict = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
705
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
0
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') __magic_name__ = TypeVar('''U''') class __SCREAMING_SNAKE_CASE ( Generic[T, U]): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = key __snake_case : Optional[Any] = val __snake_case : DoubleLinkedListNode[T, U] | None = None __snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ): return ( F"""Node: key: {self.key}, val: {self.val}, """ F"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class __SCREAMING_SNAKE_CASE ( Generic[T, U]): """simple docstring""" def __init__( self ): __snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ): __snake_case : Optional[Any] = ['DoubleLinkedList'] __snake_case : Tuple = self.head while node.next is not None: rep.append(str(_UpperCAmelCase ) ) __snake_case : List[Any] = node.next rep.append(str(self.rear ) ) return ",\n ".join(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[str] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __snake_case : str = node __snake_case : Tuple = previous __snake_case : Any = node __snake_case : Optional[Any] = self.rear def lowercase_ ( self , _UpperCAmelCase ): if node.prev is None or node.next is None: return None __snake_case : str = node.next __snake_case : str = node.prev __snake_case : Optional[int] = None __snake_case : str = None return node class __SCREAMING_SNAKE_CASE ( Generic[T, U]): """simple docstring""" __UpperCAmelCase = {} def __init__( self , _UpperCAmelCase ): __snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() __snake_case : List[Any] = capacity __snake_case : int = 0 __snake_case : Optional[Any] = 0 __snake_case : Tuple = 0 __snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ): return ( F"""CacheInfo(hits={self.hits}, misses={self.miss}, """ F"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self , _UpperCAmelCase ): return key in self.cache def lowercase_ ( self , _UpperCAmelCase ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 __snake_case : DoubleLinkedListNode[T, U] = self.cache[key] __snake_case : List[str] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_UpperCAmelCase ) return node.val self.miss += 1 return None def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __snake_case : List[str] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_UpperCAmelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __snake_case : Optional[int] = DoubleLinkedListNode(_UpperCAmelCase , _UpperCAmelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __snake_case : List[str] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __snake_case : Union[str, Any] = value self.list.add(_UpperCAmelCase ) @classmethod def lowercase_ ( cls , _UpperCAmelCase = 128 ): def cache_decorator_inner(_UpperCAmelCase ) -> Callable[..., U]: def cache_decorator_wrapper(*_UpperCAmelCase ) -> U: if func not in cls.decorator_function_to_instance_map: __snake_case : List[str] = LRUCache(_UpperCAmelCase ) __snake_case : List[Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __snake_case : List[Any] = func(*_UpperCAmelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , _UpperCAmelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_UpperCAmelCase , 'cache_info' , _UpperCAmelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
706
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def lowercase_ ( self ): __snake_case : Any = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) __snake_case : Optional[int] = AutoTokenizer.from_pretrained('google/mt5-small' ) __snake_case : Optional[int] = tokenizer('Hello there' , return_tensors='tf' ).input_ids __snake_case : Tuple = tokenizer('Hi I am' , return_tensors='tf' ).input_ids __snake_case : List[str] = model(_UpperCAmelCase , labels=_UpperCAmelCase ).loss __snake_case : int = -tf.math.reduce_mean(_UpperCAmelCase ).numpy() __snake_case : Any = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
707
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __magic_name__ = logging.get_logger(__name__) # General docstring __magic_name__ = '''ResNetConfig''' # Base docstring __magic_name__ = '''microsoft/resnet-50''' __magic_name__ = [1, 2_048, 7, 7] # Image classification docstring __magic_name__ = '''microsoft/resnet-50''' __magic_name__ = '''tiger cat''' __magic_name__ = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 3 , _UpperCAmelCase = 1 , _UpperCAmelCase = "relu" ): super().__init__() __snake_case : Tuple = nn.Convad( _UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , bias=_UpperCAmelCase ) __snake_case : Tuple = nn.BatchNormad(_UpperCAmelCase ) __snake_case : List[str] = ACTaFN[activation] if activation is not None else nn.Identity() def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Union[str, Any] = self.convolution(_UpperCAmelCase ) __snake_case : Any = self.normalization(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.activation(_UpperCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__() __snake_case : Dict = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __snake_case : Union[str, Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __snake_case : Optional[int] = config.num_channels def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __snake_case : int = self.embedder(_UpperCAmelCase ) __snake_case : Optional[int] = self.pooler(_UpperCAmelCase ) return embedding class __SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 2 ): super().__init__() __snake_case : Union[str, Any] = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase ) __snake_case : List[Any] = nn.BatchNormad(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.convolution(_UpperCAmelCase ) __snake_case : int = self.normalization(_UpperCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , _UpperCAmelCase = "relu" ): super().__init__() __snake_case : List[Any] = in_channels != out_channels or stride != 1 __snake_case : Any = ( ResNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __snake_case : Optional[int] = nn.Sequential( ResNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) , ResNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , activation=_UpperCAmelCase ) , ) __snake_case : List[str] = ACTaFN[activation] def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = hidden_state __snake_case : Optional[Any] = self.layer(_UpperCAmelCase ) __snake_case : Optional[Any] = self.shortcut(_UpperCAmelCase ) hidden_state += residual __snake_case : Optional[Any] = self.activation(_UpperCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , _UpperCAmelCase = "relu" , _UpperCAmelCase = 4 ): super().__init__() __snake_case : Union[str, Any] = in_channels != out_channels or stride != 1 __snake_case : int = out_channels // reduction __snake_case : List[Any] = ( ResNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __snake_case : str = nn.Sequential( ResNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , ResNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) , ResNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __snake_case : Union[str, Any] = ACTaFN[activation] def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = hidden_state __snake_case : int = self.layer(_UpperCAmelCase ) __snake_case : List[str] = self.shortcut(_UpperCAmelCase ) hidden_state += residual __snake_case : List[str] = self.activation(_UpperCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , ): super().__init__() __snake_case : Union[str, Any] = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer __snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , activation=config.hidden_act ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = input for layer in self.layers: __snake_case : int = layer(_UpperCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__() __snake_case : int = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __snake_case : List[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ): self.stages.append(ResNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = True ): __snake_case : int = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case : List[str] = hidden_states + (hidden_state,) __snake_case : Any = stage_module(_UpperCAmelCase ) if output_hidden_states: __snake_case : Any = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = ResNetConfig __UpperCAmelCase = "resnet" __UpperCAmelCase = "pixel_values" __UpperCAmelCase = True def lowercase_ ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = value __magic_name__ = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __magic_name__ = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config __snake_case : List[Any] = ResNetEmbeddings(_UpperCAmelCase ) __snake_case : Optional[int] = ResNetEncoder(_UpperCAmelCase ) __snake_case : List[Any] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ): __snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : List[str] = self.embedder(_UpperCAmelCase ) __snake_case : Optional[Any] = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __snake_case : Optional[int] = encoder_outputs[0] __snake_case : str = self.pooler(_UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : List[str] = ResNetModel(_UpperCAmelCase ) # classification head __snake_case : List[Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase_ ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): __snake_case : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Optional[Any] = self.resnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __snake_case : str = outputs.pooler_output if return_dict else outputs[1] __snake_case : Union[str, Any] = self.classifier(_UpperCAmelCase ) __snake_case : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case : Optional[Any] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case : Optional[int] = 'single_label_classification' else: __snake_case : List[Any] = 'multi_label_classification' if self.config.problem_type == "regression": __snake_case : int = MSELoss() if self.num_labels == 1: __snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case : List[str] = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": __snake_case : str = CrossEntropyLoss() __snake_case : List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case : Any = BCEWithLogitsLoss() __snake_case : Dict = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: __snake_case : List[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) super()._init_backbone(_UpperCAmelCase ) __snake_case : List[str] = [config.embedding_size] + config.hidden_sizes __snake_case : Optional[Any] = ResNetEmbeddings(_UpperCAmelCase ) __snake_case : List[str] = ResNetEncoder(_UpperCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @replace_return_docstrings(output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ): __snake_case : str = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : List[Any] = self.embedder(_UpperCAmelCase ) __snake_case : str = self.encoder(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __snake_case : Tuple = outputs.hidden_states __snake_case : Optional[int] = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __snake_case : int = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_UpperCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_UpperCAmelCase , )
708
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = ["image_processor", "tokenizer"] __UpperCAmelCase = "BlipImageProcessor" __UpperCAmelCase = "AutoTokenizer" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Union[str, Any] = False super().__init__(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __snake_case : Union[str, Any] = self.tokenizer __snake_case : Optional[int] = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) return text_encoding # add pixel_values __snake_case : Optional[Any] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) if text is not None: __snake_case : int = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) else: __snake_case : List[Any] = None if text_encoding is not None: encoding_image_processor.update(_UpperCAmelCase ) return encoding_image_processor def lowercase_ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowercase_ ( self ): __snake_case : Union[str, Any] = self.tokenizer.model_input_names __snake_case : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
709
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __magic_name__ = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __magic_name__ = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __magic_name__ = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def lowercase_ ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , ): __snake_case : List[Any] = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __snake_case : Optional[int] = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] __snake_case : Union[str, Any] = TER( normalized=_UpperCAmelCase , no_punct=_UpperCAmelCase , asian_support=_UpperCAmelCase , case_sensitive=_UpperCAmelCase , ) __snake_case : Union[str, Any] = sb_ter.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
710
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
0
import numpy # List of input, output pairs __magic_name__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __magic_name__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) __magic_name__ = [2, 4, 1, 5] __magic_name__ = len(train_data) __magic_name__ = 0.009 def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any]="train" ): return calculate_hypothesis_value(__UpperCAmelCase , __UpperCAmelCase ) - output( __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): __snake_case : Optional[int] = 0 for i in range(len(__UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any]=m ): __snake_case : Optional[Any] = 0 for i in range(__UpperCAmelCase ): if index == -1: summation_value += _error(__UpperCAmelCase ) else: summation_value += _error(__UpperCAmelCase ) * train_data[i][0][index] return summation_value def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): __snake_case : List[str] = summation_of_cost_derivative(__UpperCAmelCase , __UpperCAmelCase ) / m return cost_derivative_value def UpperCAmelCase__( ): global parameter_vector # Tune these values to set a tolerance value for predicted output __snake_case : Tuple = 0.000002 __snake_case : str = 0 __snake_case : List[str] = 0 while True: j += 1 __snake_case : List[str] = [0, 0, 0, 0] for i in range(0 , len(__UpperCAmelCase ) ): __snake_case : Optional[int] = get_cost_derivative(i - 1 ) __snake_case : Any = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __UpperCAmelCase , __UpperCAmelCase , atol=__UpperCAmelCase , rtol=__UpperCAmelCase , ): break __snake_case : Tuple = temp_parameter_vector print(('Number of iterations:', j) ) def UpperCAmelCase__( ): for i in range(len(__UpperCAmelCase ) ): print(('Actual output value:', output(__UpperCAmelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(__UpperCAmelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
711
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
0
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''T5Config''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "mt5" __UpperCAmelCase = MTaConfig class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "mt5" __UpperCAmelCase = MTaConfig class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "mt5" __UpperCAmelCase = MTaConfig
712
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : List[Any]=False ): __snake_case : List[Any] = OmegaConf.load(__UpperCAmelCase ) if display: print(yaml.dump(OmegaConf.to_container(__UpperCAmelCase ) ) ) return config def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Dict=None ): if conf_path is None: __snake_case : Optional[int] = './model_checkpoints/vqgan_only.yaml' __snake_case : List[Any] = load_config(__UpperCAmelCase , display=__UpperCAmelCase ) __snake_case : Tuple = VQModel(**config.model.params ) if ckpt_path is None: __snake_case : Dict = './model_checkpoints/vqgan_only.pt' __snake_case : Optional[Any] = torch.load(__UpperCAmelCase , map_location=__UpperCAmelCase ) if ".ckpt" in ckpt_path: __snake_case : Tuple = sd['state_dict'] model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) model.to(__UpperCAmelCase ) del sd return model def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ): __snake_case : Optional[Any] = model.encode(__UpperCAmelCase ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) __snake_case : List[Any] = model.decode(__UpperCAmelCase ) return xrec def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int]=False ): __snake_case : List[str] = string.rsplit('.' , 1 ) if reload: __snake_case : Dict = importlib.import_module(__UpperCAmelCase ) importlib.reload(__UpperCAmelCase ) return getattr(importlib.import_module(__UpperCAmelCase , package=__UpperCAmelCase ) , cls ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Any=True ): __snake_case : Union[str, Any] = instantiate_from_config(__UpperCAmelCase ) if sd is not None: model.load_state_dict(__UpperCAmelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ): # load the specified checkpoint if ckpt: __snake_case : List[str] = torch.load(__UpperCAmelCase , map_location='cpu' ) __snake_case : Optional[Any] = pl_sd['global_step'] print(F"""loaded model from global step {global_step}.""" ) else: __snake_case : str = {'state_dict': None} __snake_case : List[Any] = None __snake_case : str = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=__UpperCAmelCase , eval_mode=__UpperCAmelCase )['model'] return model, global_step
714
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __SCREAMING_SNAKE_CASE ( tf.keras.optimizers.schedules.LearningRateSchedule): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1.0 , _UpperCAmelCase = None , ): super().__init__() __snake_case : Union[str, Any] = initial_learning_rate __snake_case : List[Any] = warmup_steps __snake_case : Tuple = power __snake_case : Any = decay_schedule_fn __snake_case : str = name def __call__( self , _UpperCAmelCase ): with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __snake_case : int = tf.cast(_UpperCAmelCase , tf.floataa ) __snake_case : Union[str, Any] = tf.cast(self.warmup_steps , tf.floataa ) __snake_case : Optional[Any] = global_step_float / warmup_steps_float __snake_case : Optional[int] = self.initial_learning_rate * tf.math.pow(_UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_UpperCAmelCase , ) def lowercase_ ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__( __UpperCAmelCase : float , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : float = 0.9 , __UpperCAmelCase : float = 0.999 , __UpperCAmelCase : float = 1E-8 , __UpperCAmelCase : Optional[float] = None , __UpperCAmelCase : Optional[float] = None , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : float = 1.0 , __UpperCAmelCase : Optional[List[str]] = None , ): __snake_case : Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__UpperCAmelCase , ) if num_warmup_steps: __snake_case : str = WarmUp( initial_learning_rate=__UpperCAmelCase , decay_schedule_fn=__UpperCAmelCase , warmup_steps=__UpperCAmelCase , ) if weight_decay_rate > 0.0: __snake_case : Union[str, Any] = AdamWeightDecay( learning_rate=__UpperCAmelCase , weight_decay_rate=__UpperCAmelCase , beta_a=__UpperCAmelCase , beta_a=__UpperCAmelCase , epsilon=__UpperCAmelCase , clipnorm=__UpperCAmelCase , global_clipnorm=__UpperCAmelCase , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=__UpperCAmelCase , ) else: __snake_case : Tuple = tf.keras.optimizers.Adam( learning_rate=__UpperCAmelCase , beta_a=__UpperCAmelCase , beta_a=__UpperCAmelCase , epsilon=__UpperCAmelCase , clipnorm=__UpperCAmelCase , global_clipnorm=__UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase = 0.001 , _UpperCAmelCase = 0.9 , _UpperCAmelCase = 0.999 , _UpperCAmelCase = 1E-7 , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "AdamWeightDecay" , **_UpperCAmelCase , ): super().__init__(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) __snake_case : List[Any] = weight_decay_rate __snake_case : List[Any] = include_in_weight_decay __snake_case : List[str] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , _UpperCAmelCase ): __snake_case : int = {'WarmUp': WarmUp} return super(_UpperCAmelCase , cls ).from_config(_UpperCAmelCase , custom_objects=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): super(_UpperCAmelCase , self )._prepare_local(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): __snake_case : int = list(zip(*_UpperCAmelCase ) ) return super(_UpperCAmelCase , self ).apply_gradients(zip(_UpperCAmelCase , _UpperCAmelCase ) , name=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} __snake_case : str = apply_state or {} __snake_case : List[Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __snake_case : Tuple = self._fallback_apply_state(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , _UpperCAmelCase ) __snake_case : Union[str, Any] = self._decay_weights_op(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(_UpperCAmelCase , self )._resource_apply_dense(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case : List[Any] = self._get_lr(var.device , var.dtype.base_dtype , _UpperCAmelCase ) __snake_case : Optional[int] = self._decay_weights_op(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(_UpperCAmelCase , self )._resource_apply_sparse(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : str = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , _UpperCAmelCase ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_UpperCAmelCase , _UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_UpperCAmelCase , _UpperCAmelCase ) is not None: return False return True class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self ): __snake_case : Dict = [] __snake_case : List[str] = None @property def lowercase_ ( self ): if self._accum_steps is None: __snake_case : List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ): if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , _UpperCAmelCase ): if not self._gradients: __snake_case : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_UpperCAmelCase ) , trainable=_UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_UpperCAmelCase ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(_UpperCAmelCase )}""" ) for accum_gradient, gradient in zip(self._gradients , _UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_UpperCAmelCase ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_UpperCAmelCase ) )
715
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
716
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
0
'''simple docstring''' import enum import shutil import sys __magic_name__ , __magic_name__ = shutil.get_terminal_size() __magic_name__ = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class __SCREAMING_SNAKE_CASE ( enum.Enum): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]="" ): sys.stdout.write(str(__UpperCAmelCase ) + end ) sys.stdout.flush() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any]="" ): forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , __UpperCAmelCase ) def UpperCAmelCase__( ): forceWrite('\r' ) def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : str ): forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def UpperCAmelCase__( ): forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__( ): reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
717
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCAmelCase__( __UpperCAmelCase : Tuple ) -> Dict: __snake_case : Tuple = os.path.join(args.tf_model_dir , 'parameters.json' ) __snake_case : Optional[Any] = json.loads(open(__UpperCAmelCase ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('.pt' ): __snake_case : Optional[Any] = args.output + '.pt' __snake_case : List[Any] = OrderedDict() with tf.device('/CPU:0' ): __snake_case : Tuple = tf.train.load_checkpoint(args.tf_model_dir ) __snake_case : Union[str, Any] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): __snake_case : Union[str, Any] = reader.get_tensor(__UpperCAmelCase ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): __snake_case : Optional[Any] = int(key_name[9] ) elif key_name.startswith('pasts/out' ): __snake_case : Dict = 8 __snake_case : Optional[Any] = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time __snake_case : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case : Optional[int] = torch.tensor(__UpperCAmelCase ) elif key_name.startswith('model/moe' ): __snake_case : Optional[int] = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): __snake_case : str = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player __snake_case : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case : Optional[int] = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/softmlp/kernel' ): __snake_case : List[str] = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player __snake_case : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case : Optional[Any] = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): __snake_case : Tuple = key_name[-9:-7] for i in range(16 ): __snake_case : Union[str, Any] = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) __snake_case : str = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided __snake_case : Tuple = torch.tensor(__UpperCAmelCase ) elif key_name.startswith('model/mlp' ): __snake_case : int = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): __snake_case : int = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player __snake_case : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case : Any = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/p1/bias' ): __snake_case : Any = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player __snake_case : str = vnp.copy() # same because it is one dimensional __snake_case : str = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/p2/kernel' ): __snake_case : Any = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player __snake_case : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case : Optional[Any] = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/p2/bias' ): __snake_case : str = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player __snake_case : int = vnp.copy() # same because it is one dimensional __snake_case : Optional[Any] = torch.tensor(__UpperCAmelCase ) elif key_name.startswith('model/ln' ): __snake_case : str = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): __snake_case : Any = 'model.blocks.%d.feed_forward.norm.bias' % player __snake_case : str = vnp.copy() # same because it is one dimensional __snake_case : List[Any] = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/g' ): __snake_case : Union[str, Any] = 'model.blocks.%d.feed_forward.norm.weight' % player __snake_case : List[str] = vnp.copy() # same because it is one dimensional __snake_case : List[str] = torch.tensor(__UpperCAmelCase ) elif key_name.startswith('model/att' ): __snake_case : Optional[int] = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): __snake_case : List[Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum __snake_case : str = state[:, 0, :, :] __snake_case : Tuple = state[:, 1, :, :] __snake_case : int = state[:, 2, :, :] __snake_case : Any = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __snake_case : Union[str, Any] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __snake_case : Union[str, Any] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __snake_case : Optional[int] = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player __snake_case : str = torch.tensor(__UpperCAmelCase ) __snake_case : List[str] = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player __snake_case : Union[str, Any] = torch.tensor(__UpperCAmelCase ) __snake_case : Optional[Any] = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player __snake_case : Tuple = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/o/kernel' ): __snake_case : Dict = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player __snake_case : Union[str, Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix __snake_case : str = torch.tensor(__UpperCAmelCase ) elif key_name.startswith('model/an' ): __snake_case : str = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): __snake_case : List[Any] = 'model.blocks.%d.self_attn.norm.bias' % player __snake_case : Optional[Any] = vnp.copy() # same because it is one dimensional __snake_case : List[str] = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/g' ): __snake_case : str = 'model.blocks.%d.self_attn.norm.weight' % player __snake_case : Optional[int] = vnp.copy() # same because it is one dimensional __snake_case : Dict = torch.tensor(__UpperCAmelCase ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): __snake_case : str = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] __snake_case : Dict = 'model.%s.weight' % nlayer __snake_case : Union[str, Any] = vnp.copy() # same in embedded __snake_case : Tuple = torch.tensor(__UpperCAmelCase ) if key_name.startswith('model/wte' ): __snake_case : Union[str, Any] = 'lm_head.weight' __snake_case : List[str] = vnp.copy() # same in embedded __snake_case : Optional[Any] = torch.tensor(__UpperCAmelCase ) elif key_name.startswith('model/wob' ): __snake_case : Union[str, Any] = 'final_logits_bias' __snake_case : Optional[int] = vnp.copy() # same in embedded __snake_case : Tuple = state.reshape((1, -1) ) __snake_case : List[Any] = torch.tensor(__UpperCAmelCase ) elif key_name == "model/dense/kernel": __snake_case : List[str] = 'model.last_project.weight' __snake_case : Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case : Dict = torch.tensor(__UpperCAmelCase ) elif key_name == "model/dense_1/bias": __snake_case : Optional[int] = 'model.last_project.bias' __snake_case : Union[str, Any] = vnp.copy() # same because it is one dimensional __snake_case : Any = torch.tensor(__UpperCAmelCase ) torch.save(__UpperCAmelCase , args.output ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') __magic_name__ = parser.parse_args() convert_tf_gptsan_to_pt(args)
718
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __magic_name__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = ["pixel_values"] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : str = size if size is not None else {'shortest_edge': 224} __snake_case : List[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __snake_case : List[str] = crop_size if crop_size is not None else {'height': 224, 'width': 224} __snake_case : str = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase , param_name='crop_size' ) __snake_case : Optional[Any] = do_resize __snake_case : Dict = size __snake_case : Optional[int] = resample __snake_case : Union[str, Any] = do_center_crop __snake_case : Optional[Any] = crop_size __snake_case : List[str] = do_rescale __snake_case : Optional[Any] = rescale_factor __snake_case : Union[str, Any] = do_normalize __snake_case : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case : Dict = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case : Optional[int] = do_convert_rgb def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[str] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __snake_case : Tuple = get_resize_output_image_size(_UpperCAmelCase , size=size['shortest_edge'] , default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : str = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): __snake_case : Optional[Any] = do_resize if do_resize is not None else self.do_resize __snake_case : str = size if size is not None else self.size __snake_case : Optional[int] = get_size_dict(_UpperCAmelCase , param_name='size' , default_to_square=_UpperCAmelCase ) __snake_case : Tuple = resample if resample is not None else self.resample __snake_case : str = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __snake_case : int = get_size_dict(_UpperCAmelCase , param_name='crop_size' , default_to_square=_UpperCAmelCase ) __snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : List[Any] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : List[Any] = image_mean if image_mean is not None else self.image_mean __snake_case : Any = image_std if image_std is not None else self.image_std __snake_case : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case : Union[str, Any] = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case : Optional[int] = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __snake_case : Dict = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __snake_case : List[Any] = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: __snake_case : Optional[Any] = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: __snake_case : Optional[int] = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __snake_case : Any = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __snake_case : List[str] = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __snake_case : Dict = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
719
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
720
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __UpperCAmelCase ( _UpperCAmelCase : NDArray[floataa] , _UpperCAmelCase : NDArray[floataa] , _UpperCAmelCase : list[int] , _UpperCAmelCase : int , ) -> list[float]: __snake_case , __snake_case = coefficient_matrix.shape __snake_case , __snake_case = constant_matrix.shape if rowsa != colsa: __snake_case = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(_UpperCAmelCase ) if colsa != 1: __snake_case = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(_UpperCAmelCase ) if rowsa != rowsa: __snake_case = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(_UpperCAmelCase ) if len(_UpperCAmelCase ) != rowsa: __snake_case = ( "Number of initial values must be equal to number of rows in coefficient " F'''matrix but received {len(_UpperCAmelCase )} and {rowsa}''' ) raise ValueError(_UpperCAmelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __snake_case = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __snake_case , __snake_case = table.shape strictly_diagonally_dominant(_UpperCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(_UpperCAmelCase ): __snake_case = [] for row in range(_UpperCAmelCase ): __snake_case = 0 for col in range(_UpperCAmelCase ): if col == row: __snake_case = table[row][col] elif col == cols - 1: __snake_case = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __snake_case = (temp + val) / denom new_val.append(_UpperCAmelCase ) __snake_case = new_val return [float(_UpperCAmelCase ) for i in new_val] def __UpperCAmelCase ( _UpperCAmelCase : NDArray[floataa] ) -> bool: __snake_case , __snake_case = table.shape __snake_case = True for i in range(0 , _UpperCAmelCase ): __snake_case = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : list ) -> int: if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __snake_case = grid[0] for row_n in range(1 , len(_UpperCAmelCase ) ): __snake_case = grid[row_n] __snake_case = fill_row(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = grid[row_n] return grid[-1][-1] def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(_UpperCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Optional[int] = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """gpt_bigcode""" __SCREAMING_SNAKE_CASE = ["""past_key_values"""] __SCREAMING_SNAKE_CASE = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[int] , a_ : Optional[int]=50_257 , a_ : List[str]=1_024 , a_ : List[Any]=768 , a_ : Tuple=12 , a_ : Any=12 , a_ : Any=None , a_ : Any="gelu_pytorch_tanh" , a_ : List[Any]=0.1 , a_ : List[Any]=0.1 , a_ : int=0.1 , a_ : Any=1e-5 , a_ : List[str]=0.02 , a_ : str=True , a_ : Optional[int]=True , a_ : Tuple=50_256 , a_ : List[str]=50_256 , a_ : Union[str, Any]=True , a_ : int=True , a_ : Dict=True , **a_ : List[Any] , ): """simple docstring""" __snake_case = vocab_size __snake_case = n_positions __snake_case = n_embd __snake_case = n_layer __snake_case = n_head __snake_case = n_inner __snake_case = activation_function __snake_case = resid_pdrop __snake_case = embd_pdrop __snake_case = attn_pdrop __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = scale_attn_weights __snake_case = use_cache __snake_case = attention_softmax_in_fpaa __snake_case = scale_attention_softmax_in_fpaa __snake_case = multi_query __snake_case = bos_token_id __snake_case = eos_token_id super().__init__(bos_token_id=a_ , eos_token_id=a_ , **a_ )
680
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = StableUnCLIPPipeline __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __SCREAMING_SNAKE_CASE = False def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = 32 __snake_case = embedder_hidden_size # prior components torch.manual_seed(0 ) __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __snake_case = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a_ , projection_dim=a_ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __snake_case = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a_ , num_layers=1 , ) torch.manual_seed(0 ) __snake_case = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_000 , clip_sample=a_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) __snake_case = StableUnCLIPImageNormalizer(embedding_dim=a_ ) __snake_case = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __snake_case = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a_ , layers_per_block=1 , upcast_attention=a_ , use_linear_projection=a_ , ) torch.manual_seed(0 ) __snake_case = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=a_ , steps_offset=1 , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL() __snake_case = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def A ( self : Tuple , a_ : Dict , a_ : str=0 ): """simple docstring""" if str(a_ ).startswith("mps" ): __snake_case = torch.manual_seed(a_ ) else: __snake_case = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def A ( self : Tuple ): """simple docstring""" __snake_case = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=a_ ) def A ( self : Tuple ): """simple docstring""" __snake_case = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=a_ ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[int] ): """simple docstring""" __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) __snake_case = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case = torch.Generator(device="cpu" ).manual_seed(0 ) __snake_case = pipe("anime turle" , generator=a_ , output_type="np" ) __snake_case = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a_ , a_ ) def A ( self : Union[str, Any] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) __snake_case = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) __snake_case = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = JukeboxTokenizer __SCREAMING_SNAKE_CASE = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def A ( self : List[Any] ): """simple docstring""" import torch __snake_case = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def A ( self : Any ): """simple docstring""" import torch __snake_case = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Tuple = logging.get_logger(__name__) a : Union[str, Any] = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """deta""" __SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : str , a_ : str=None , a_ : List[Any]=900 , a_ : Optional[Any]=2_048 , a_ : Optional[int]=6 , a_ : Dict=2_048 , a_ : Optional[Any]=8 , a_ : List[str]=6 , a_ : Optional[Any]=1_024 , a_ : List[Any]=8 , a_ : List[Any]=0.0 , a_ : int=True , a_ : Union[str, Any]="relu" , a_ : Optional[int]=256 , a_ : Union[str, Any]=0.1 , a_ : Tuple=0.0 , a_ : Optional[Any]=0.0 , a_ : Optional[int]=0.02 , a_ : str=1.0 , a_ : Dict=True , a_ : Dict=False , a_ : int="sine" , a_ : str=5 , a_ : Any=4 , a_ : Union[str, Any]=4 , a_ : Tuple=True , a_ : str=300 , a_ : List[Any]=True , a_ : Dict=True , a_ : Dict=1 , a_ : Optional[Any]=5 , a_ : Union[str, Any]=2 , a_ : Union[str, Any]=1 , a_ : Dict=1 , a_ : str=5 , a_ : List[Any]=2 , a_ : Dict=0.1 , a_ : Any=0.25 , **a_ : int , ): """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __snake_case = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(a_ , a_ ): __snake_case = backbone_config.pop("model_type" ) __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(a_ ) __snake_case = backbone_config __snake_case = num_queries __snake_case = max_position_embeddings __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = auxiliary_loss __snake_case = position_embedding_type # deformable attributes __snake_case = num_feature_levels __snake_case = encoder_n_points __snake_case = decoder_n_points __snake_case = two_stage __snake_case = two_stage_num_proposals __snake_case = with_box_refine __snake_case = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient __snake_case = focal_alpha super().__init__(is_encoder_decoder=a_ , **a_ ) @property def A ( self : Tuple ): """simple docstring""" return self.encoder_attention_heads @property def A ( self : str ): """simple docstring""" return self.d_model def A ( self : List[str] ): """simple docstring""" __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.backbone_config.to_dict() __snake_case = self.__class__.model_type return output
680
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
1
'''simple docstring''' import pprint import requests a : int = '''https://zenquotes.io/api''' def __UpperCAmelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + "/today" ).json() def __UpperCAmelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": a : str = random_quotes() pprint.pprint(response)
680
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : list[int] , _UpperCAmelCase : str ) -> list[int]: __snake_case = int(_UpperCAmelCase ) # Initialize Result __snake_case = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": a : List[str] = [] a : Optional[int] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): a : str = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) a : Dict = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter a : Tuple = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] a : Tuple = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') a : List[Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
680
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters a : List[str] = False a : Optional[int] = False def __UpperCAmelCase ( _UpperCAmelCase : Namespace ) -> Union[str, Any]: return TrainCommand(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @staticmethod def A ( a_ : ArgumentParser ): """simple docstring""" __snake_case = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=a_ , required=a_ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=a_ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=a_ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=a_ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=a_ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=a_ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=a_ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=a_ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=a_ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=a_ , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=a_ , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=a_ , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=a_ , default=1e-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=a_ ) def __init__( self : Union[str, Any] , a_ : Namespace ): """simple docstring""" __snake_case = logging.get_logger("transformers-cli/training" ) __snake_case = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=a_ ) __snake_case = args.output __snake_case = args.column_label __snake_case = args.column_text __snake_case = args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": __snake_case = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''' ) __snake_case = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case = None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''' ) __snake_case = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case = args.validation_split __snake_case = args.train_batch_size __snake_case = args.valid_batch_size __snake_case = args.learning_rate __snake_case = args.adam_epsilon def A ( self : int ): """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def A ( self : Dict ): """simple docstring""" raise NotImplementedError def A ( self : Optional[int] ): """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
680
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
1
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a : str = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase ): @register_to_config def __init__( self : Any , a_ : bool , a_ : Optional[int] = None , a_ : Optional[int] = None ): """simple docstring""" super().__init__() __snake_case = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __snake_case = torch.zeros(a_ , a_ ) else: __snake_case = None __snake_case = torch.nn.Parameter(a_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 def __init__( self : Tuple , a_ : VQModel , a_ : CLIPTextModel , a_ : CLIPTokenizer , a_ : TransformeraDModel , a_ : VQDiffusionScheduler , a_ : LearnedClassifierFreeSamplingEmbeddings , ): """simple docstring""" super().__init__() self.register_modules( vqvae=a_ , transformer=a_ , text_encoder=a_ , tokenizer=a_ , scheduler=a_ , learned_classifier_free_sampling_embeddings=a_ , ) def A ( self : Union[str, Any] , a_ : str , a_ : str , a_ : Dict ): """simple docstring""" __snake_case = len(a_ ) if isinstance(a_ , a_ ) else 1 # get prompt text embeddings __snake_case = self.tokenizer( a_ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __snake_case = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=a_ ) # duplicate text embeddings for each generation per prompt __snake_case = prompt_embeds.repeat_interleave(a_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __snake_case = self.learned_classifier_free_sampling_embeddings.embeddings __snake_case = negative_prompt_embeds.unsqueeze(0 ).repeat(a_ , 1 , 1 ) else: __snake_case = [""] * batch_size __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( a_ , padding="max_length" , max_length=a_ , truncation=a_ , return_tensors="pt" , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __snake_case = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=a_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = negative_prompt_embeds.shape[1] __snake_case = negative_prompt_embeds.repeat(1 , a_ , 1 ) __snake_case = negative_prompt_embeds.view(batch_size * num_images_per_prompt , a_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Tuple , a_ : Union[str, List[str]] , a_ : int = 100 , a_ : float = 5.0 , a_ : float = 1.0 , a_ : int = 1 , a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[str] = "pil" , a_ : bool = True , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , ): """simple docstring""" if isinstance(a_ , a_ ): __snake_case = 1 elif isinstance(a_ , a_ ): __snake_case = len(a_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(a_ )}''' ) __snake_case = batch_size * num_images_per_prompt __snake_case = guidance_scale > 1.0 __snake_case = self._encode_prompt(a_ , a_ , a_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a_ , a_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(a_ )}.''' ) # get the initial completely masked latents unless the user supplied it __snake_case = (batch_size, self.transformer.num_latent_pixels) if latents is None: __snake_case = self.transformer.num_vector_embeds - 1 __snake_case = torch.full(a_ , a_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) __snake_case = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(a_ , device=self.device ) __snake_case = self.scheduler.timesteps.to(self.device ) __snake_case = latents for i, t in enumerate(self.progress_bar(a_ ) ): # expand the sample if we are doing classifier free guidance __snake_case = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __snake_case = self.transformer(a_ , encoder_hidden_states=a_ , timestep=a_ ).sample if do_classifier_free_guidance: __snake_case , __snake_case = model_output.chunk(2 ) __snake_case = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(a_ , dim=1 , keepdim=a_ ) __snake_case = self.truncate(a_ , a_ ) # remove `log(0)`'s (`-inf`s) __snake_case = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(a_ , timestep=a_ , sample=a_ , generator=a_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a_ , a_ , a_ ) __snake_case = self.vqvae.config.vq_embed_dim __snake_case = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __snake_case = self.vqvae.quantize.get_codebook_entry(a_ , shape=a_ ) __snake_case = self.vqvae.decode(a_ , force_not_quantize=a_ ).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1 ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ ) def A ( self : Dict , a_ : torch.FloatTensor , a_ : float ): """simple docstring""" __snake_case , __snake_case = torch.sort(a_ , 1 , descending=a_ ) __snake_case = torch.exp(a_ ) __snake_case = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __snake_case = torch.full_like(keep_mask[:, 0:1, :] , a_ ) __snake_case = torch.cat((all_true, keep_mask) , dim=1 ) __snake_case = keep_mask[:, :-1, :] __snake_case = keep_mask.gather(1 , indices.argsort(1 ) ) __snake_case = log_p_x_0.clone() __snake_case = -torch.inf # -inf = log(0) return rv
680
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> List[Any]: __snake_case = k_size // 2 __snake_case , __snake_case = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __snake_case = 1 / (2 * pi * sigma) * exp(-(square(_UpperCAmelCase ) + square(_UpperCAmelCase )) / (2 * square(_UpperCAmelCase )) ) return g def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ) -> Optional[int]: __snake_case , __snake_case = image.shape[0], image.shape[1] # dst image height and width __snake_case = height - k_size + 1 __snake_case = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __snake_case = zeros((dst_height * dst_width, k_size * k_size) ) __snake_case = 0 for i, j in product(range(_UpperCAmelCase ) , range(_UpperCAmelCase ) ): __snake_case = ravel(image[i : i + k_size, j : j + k_size] ) __snake_case = window row += 1 # turn the kernel into shape(k*k, 1) __snake_case = gen_gaussian_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = ravel(_UpperCAmelCase ) # reshape and get the dst image __snake_case = dot(_UpperCAmelCase , _UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ).astype(_UpperCAmelCase ) return dst if __name__ == "__main__": # read original image a : List[Any] = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value a : Dict = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size a : Optional[int] = gaussian_filter(gray, 3, sigma=1) a : str = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
680
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Tuple = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """xglm""" __SCREAMING_SNAKE_CASE = ["""past_key_values"""] __SCREAMING_SNAKE_CASE = { """num_attention_heads""": """attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """num_layers""", } def __init__( self : Union[str, Any] , a_ : List[str]=256_008 , a_ : int=2_048 , a_ : Optional[int]=1_024 , a_ : Tuple=4_096 , a_ : Union[str, Any]=24 , a_ : List[Any]=16 , a_ : int="gelu" , a_ : Union[str, Any]=0.1 , a_ : Optional[Any]=0.1 , a_ : Optional[int]=0.0 , a_ : Dict=0.0 , a_ : Union[str, Any]=0.02 , a_ : Dict=True , a_ : Union[str, Any]=True , a_ : Any=2 , a_ : int=1 , a_ : Union[str, Any]=0 , a_ : Dict=2 , **a_ : List[Any] , ): """simple docstring""" __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = d_model __snake_case = ffn_dim __snake_case = num_layers __snake_case = attention_heads __snake_case = activation_function __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = layerdrop __snake_case = init_std __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case = use_cache super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , decoder_start_token_id=a_ , **a_ , )
680
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
1