code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "efficientnet" def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.25 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2_560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.02 , _UpperCAmelCase = 0.001 , _UpperCAmelCase = 0.99 , _UpperCAmelCase = 0.5 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : List[Any] = num_channels __snake_case : Optional[Any] = image_size __snake_case : Optional[int] = width_coefficient __snake_case : Optional[Any] = depth_coefficient __snake_case : Tuple = depth_divisor __snake_case : Dict = kernel_sizes __snake_case : List[Any] = in_channels __snake_case : Dict = out_channels __snake_case : Optional[Any] = depthwise_padding __snake_case : Tuple = strides __snake_case : Optional[Any] = num_block_repeats __snake_case : Tuple = expand_ratios __snake_case : Optional[Any] = squeeze_expansion_ratio __snake_case : Any = hidden_act __snake_case : Optional[Any] = hidden_dim __snake_case : Dict = pooling_type __snake_case : List[str] = initializer_range __snake_case : Optional[Any] = batch_norm_eps __snake_case : int = batch_norm_momentum __snake_case : Dict = dropout_rate __snake_case : str = drop_connect_rate __snake_case : List[Any] = sum(_UpperCAmelCase ) * 4 class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = version.parse("1.11") @property def lowercase_ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase_ ( self ): return 1E-5
679
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
1
import os def UpperCAmelCase__( ): __snake_case : Optional[Any] = os.path.dirname(os.path.realpath(__UpperCAmelCase ) ) __snake_case : Tuple = os.path.join(__UpperCAmelCase , 'triangle.txt' ) with open(__UpperCAmelCase ) as f: __snake_case : Any = f.readlines() __snake_case : Dict = [] for line in triangle: __snake_case : Tuple = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(__UpperCAmelCase ) ) a.append(__UpperCAmelCase ) for i in range(1 , len(__UpperCAmelCase ) ): for j in range(len(a[i] ) ): __snake_case : List[str] = a[i - 1][j] if j != len(a[i - 1] ) else 0 __snake_case : str = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__UpperCAmelCase , __UpperCAmelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
679
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : Any ): __snake_case : int = r'\w+[.]\d+' __snake_case : List[Any] = re.findall(__UpperCAmelCase , __UpperCAmelCase ) for pat in pats: __snake_case : Any = key.replace(__UpperCAmelCase , '_'.join(pat.split('.' ) ) ) return key def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict ): __snake_case : str = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __snake_case : int = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __snake_case : Dict = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __snake_case : Tuple = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer __snake_case : str = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __snake_case : Any = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __snake_case : Dict = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": __snake_case : Union[str, Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __snake_case : int = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __snake_case : Any = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int=42 ): # Step 1: Convert pytorch tensor to numpy __snake_case : int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __snake_case : Any = flax_model.init_weights(PRNGKey(__UpperCAmelCase ) ) __snake_case : Dict = flatten_dict(__UpperCAmelCase ) __snake_case : Any = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __snake_case : str = rename_key(__UpperCAmelCase ) __snake_case : str = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters __snake_case , __snake_case : Any = rename_key_and_reshape_tensor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown __snake_case : Optional[Any] = jnp.asarray(__UpperCAmelCase ) return unflatten_dict(__UpperCAmelCase )
679
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
1
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') __magic_name__ = TypeVar('''U''') class __SCREAMING_SNAKE_CASE ( Generic[T, U]): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = key __snake_case : Optional[Any] = val __snake_case : DoubleLinkedListNode[T, U] | None = None __snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ): return ( F"""Node: key: {self.key}, val: {self.val}, """ F"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class __SCREAMING_SNAKE_CASE ( Generic[T, U]): """simple docstring""" def __init__( self ): __snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ): __snake_case : Optional[Any] = ['DoubleLinkedList'] __snake_case : Tuple = self.head while node.next is not None: rep.append(str(_UpperCAmelCase ) ) __snake_case : List[Any] = node.next rep.append(str(self.rear ) ) return ",\n ".join(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[str] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __snake_case : str = node __snake_case : Tuple = previous __snake_case : Any = node __snake_case : Optional[Any] = self.rear def lowercase_ ( self , _UpperCAmelCase ): if node.prev is None or node.next is None: return None __snake_case : str = node.next __snake_case : str = node.prev __snake_case : Optional[int] = None __snake_case : str = None return node class __SCREAMING_SNAKE_CASE ( Generic[T, U]): """simple docstring""" __UpperCAmelCase = {} def __init__( self , _UpperCAmelCase ): __snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() __snake_case : List[Any] = capacity __snake_case : int = 0 __snake_case : Optional[Any] = 0 __snake_case : Tuple = 0 __snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ): return ( F"""CacheInfo(hits={self.hits}, misses={self.miss}, """ F"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self , _UpperCAmelCase ): return key in self.cache def lowercase_ ( self , _UpperCAmelCase ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 __snake_case : DoubleLinkedListNode[T, U] = self.cache[key] __snake_case : List[str] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_UpperCAmelCase ) return node.val self.miss += 1 return None def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __snake_case : List[str] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_UpperCAmelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __snake_case : Optional[int] = DoubleLinkedListNode(_UpperCAmelCase , _UpperCAmelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __snake_case : List[str] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __snake_case : Union[str, Any] = value self.list.add(_UpperCAmelCase ) @classmethod def lowercase_ ( cls , _UpperCAmelCase = 128 ): def cache_decorator_inner(_UpperCAmelCase ) -> Callable[..., U]: def cache_decorator_wrapper(*_UpperCAmelCase ) -> U: if func not in cls.decorator_function_to_instance_map: __snake_case : List[str] = LRUCache(_UpperCAmelCase ) __snake_case : List[Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __snake_case : List[Any] = func(*_UpperCAmelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , _UpperCAmelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_UpperCAmelCase , 'cache_info' , _UpperCAmelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
679
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def UpperCAmelCase__( ): print('Making key files...' ) make_key_files('rsa' , 10_24 ) print('Key files generation successful.' ) def UpperCAmelCase__( __UpperCAmelCase : int ): print('Generating prime p...' ) __snake_case : Tuple = rabinMiller.generate_large_prime(__UpperCAmelCase ) print('Generating prime q...' ) __snake_case : int = rabinMiller.generate_large_prime(__UpperCAmelCase ) __snake_case : int = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: __snake_case : Any = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__UpperCAmelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) __snake_case : Optional[int] = cryptoMath.find_mod_inverse(__UpperCAmelCase , (p - 1) * (q - 1) ) __snake_case : Optional[Any] = (n, e) __snake_case : Tuple = (n, d) return (public_key, private_key) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : int ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() __snake_case , __snake_case : Dict = generate_key(__UpperCAmelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
679
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
1
def UpperCAmelCase__( __UpperCAmelCase : list[int] ): if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) __snake_case : Union[str, Any] = sum(__UpperCAmelCase ) / len(__UpperCAmelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
679
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
1
from __future__ import annotations from collections.abc import Callable __magic_name__ = list[list[float | int]] def UpperCAmelCase__( __UpperCAmelCase : Matrix , __UpperCAmelCase : Matrix ): __snake_case : int = len(__UpperCAmelCase ) __snake_case : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )] __snake_case : int __snake_case : int __snake_case : int __snake_case : int __snake_case : int __snake_case : float for row in range(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __snake_case : Optional[int] = matrix[row][col] __snake_case : Tuple = vector[row][0] __snake_case : Union[str, Any] = 0 __snake_case : str = 0 while row < size and col < size: # pivoting __snake_case : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __snake_case , __snake_case : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __UpperCAmelCase ): __snake_case : Tuple = augmented[rowa][col] / augmented[row][col] __snake_case : Optional[int] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __UpperCAmelCase ): for row in range(__UpperCAmelCase ): __snake_case : Union[str, Any] = augmented[row][col] / augmented[col][col] for cola in range(__UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase ) ] def UpperCAmelCase__( __UpperCAmelCase : list[int] ): __snake_case : int = len(__UpperCAmelCase ) __snake_case : Matrix = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] __snake_case : Matrix = [[0] for _ in range(__UpperCAmelCase )] __snake_case : Matrix __snake_case : int __snake_case : int __snake_case : int for x_val, y_val in enumerate(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __snake_case : Any = (x_val + 1) ** (size - col - 1) __snake_case : Optional[int] = y_val __snake_case : Optional[Any] = solve(__UpperCAmelCase , __UpperCAmelCase ) def interpolated_func(__UpperCAmelCase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__UpperCAmelCase ) ) return interpolated_func def UpperCAmelCase__( __UpperCAmelCase : int ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase__( __UpperCAmelCase : Callable[[int], int] = question_function , __UpperCAmelCase : int = 10 ): __snake_case : list[int] = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )] __snake_case : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __snake_case : int = 0 __snake_case : Callable[[int], int] __snake_case : int for poly in polynomials: __snake_case : Dict = 1 while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ): x_val += 1 ret += poly(__UpperCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
679
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __magic_name__ = 500_000 __magic_name__ , __magic_name__ = os.path.split(__file__) __magic_name__ = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def UpperCAmelCase__( __UpperCAmelCase : datasets.Dataset , **__UpperCAmelCase : List[str] ): __snake_case : Tuple = dataset.map(**__UpperCAmelCase ) @get_duration def UpperCAmelCase__( __UpperCAmelCase : datasets.Dataset , **__UpperCAmelCase : int ): __snake_case : Optional[int] = dataset.filter(**__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) __snake_case : Optional[int] = generate_example_dataset( os.path.join(__UpperCAmelCase , 'dataset.arrow' ) , __UpperCAmelCase , num_examples=__UpperCAmelCase ) __snake_case : Optional[int] = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__UpperCAmelCase ) def tokenize(__UpperCAmelCase : List[Any] ): return tokenizer(examples['text'] ) __snake_case : str = map(__UpperCAmelCase ) __snake_case : Any = map(__UpperCAmelCase , batched=__UpperCAmelCase ) __snake_case : Optional[int] = map(__UpperCAmelCase , function=lambda __UpperCAmelCase : None , batched=__UpperCAmelCase ) with dataset.formatted_as(type='numpy' ): __snake_case : Optional[int] = map(__UpperCAmelCase , function=lambda __UpperCAmelCase : None , batched=__UpperCAmelCase ) with dataset.formatted_as(type='pandas' ): __snake_case : str = map(__UpperCAmelCase , function=lambda __UpperCAmelCase : None , batched=__UpperCAmelCase ) with dataset.formatted_as(type='torch' , columns='numbers' ): __snake_case : Any = map(__UpperCAmelCase , function=lambda __UpperCAmelCase : None , batched=__UpperCAmelCase ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): __snake_case : int = map(__UpperCAmelCase , function=lambda __UpperCAmelCase : None , batched=__UpperCAmelCase ) __snake_case : Tuple = map(__UpperCAmelCase , function=__UpperCAmelCase , batched=__UpperCAmelCase ) __snake_case : Optional[Any] = filter(__UpperCAmelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__UpperCAmelCase , 'wb' ) as f: f.write(json.dumps(__UpperCAmelCase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
679
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __magic_name__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __magic_name__ = [0, 25, 50] __magic_name__ = [25, 50, 75] __magic_name__ = fuzz.membership.trimf(X, abca) __magic_name__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __magic_name__ = np.ones(75) __magic_name__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __magic_name__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __magic_name__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __magic_name__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __magic_name__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __magic_name__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __magic_name__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __magic_name__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __magic_name__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
679
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str]=0.999 , __UpperCAmelCase : int="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase : Optional[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __snake_case : int = [] for i in range(__UpperCAmelCase ): __snake_case : str = i / num_diffusion_timesteps __snake_case : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase): """simple docstring""" @register_to_config def __init__( self , _UpperCAmelCase = 1_000 , _UpperCAmelCase = "fixed_small_log" , _UpperCAmelCase = True , _UpperCAmelCase = 1.0 , _UpperCAmelCase = "epsilon" , _UpperCAmelCase = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) __snake_case : Union[str, Any] = betas_for_alpha_bar(_UpperCAmelCase ) __snake_case : Any = 1.0 - self.betas __snake_case : Tuple = torch.cumprod(self.alphas , dim=0 ) __snake_case : Optional[int] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __snake_case : Any = 1.0 # setable values __snake_case : Union[str, Any] = None __snake_case : Any = torch.from_numpy(np.arange(0 , _UpperCAmelCase )[::-1].copy() ) __snake_case : Dict = variance_type def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): return sample def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Union[str, Any] = num_inference_steps __snake_case : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __snake_case : Optional[int] = (np.arange(0 , _UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __snake_case : Optional[int] = torch.from_numpy(_UpperCAmelCase ).to(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None ): if prev_timestep is None: __snake_case : int = t - 1 __snake_case : Any = self.alphas_cumprod[t] __snake_case : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __snake_case : int = 1 - alpha_prod_t __snake_case : Optional[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __snake_case : List[str] = self.betas[t] else: __snake_case : Optional[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __snake_case : Optional[int] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __snake_case : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __snake_case : List[str] = torch.log(torch.clamp(_UpperCAmelCase , min=1E-20 ) ) __snake_case : int = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __snake_case : Optional[int] = variance.log() __snake_case : Union[str, Any] = beta.log() __snake_case : int = (predicted_variance + 1) / 2 __snake_case : Any = frac * max_log + (1 - frac) * min_log return variance def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase=None , _UpperCAmelCase = True , ): __snake_case : Tuple = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __snake_case , __snake_case : List[str] = torch.split(_UpperCAmelCase , sample.shape[1] , dim=1 ) else: __snake_case : Union[str, Any] = None # 1. compute alphas, betas if prev_timestep is None: __snake_case : Optional[int] = t - 1 __snake_case : Optional[Any] = self.alphas_cumprod[t] __snake_case : str = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __snake_case : Tuple = 1 - alpha_prod_t __snake_case : Union[str, Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __snake_case : Any = self.betas[t] __snake_case : List[Any] = self.alphas[t] else: __snake_case : Any = 1 - alpha_prod_t / alpha_prod_t_prev __snake_case : int = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __snake_case : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __snake_case : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __snake_case : List[Any] = torch.clamp( _UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __snake_case : Union[str, Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __snake_case : List[Any] = 0 if t > 0: __snake_case : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_UpperCAmelCase , device=model_output.device ) __snake_case : Tuple = self._get_variance( _UpperCAmelCase , predicted_variance=_UpperCAmelCase , prev_timestep=_UpperCAmelCase , ) if self.variance_type == "fixed_small_log": __snake_case : int = variance elif self.variance_type == "learned_range": __snake_case : str = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ' for the UnCLIPScheduler.' ) __snake_case : Optional[int] = variance * variance_noise __snake_case : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_UpperCAmelCase , pred_original_sample=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __snake_case : List[Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __snake_case : List[Any] = timesteps.to(original_samples.device ) __snake_case : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5 __snake_case : int = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __snake_case : int = sqrt_alpha_prod.unsqueeze(-1 ) __snake_case : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 __snake_case : List[str] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __snake_case : str = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __snake_case : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
679
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): __snake_case : int = parent __snake_case : Optional[int] = batch_size __snake_case : List[str] = seq_length __snake_case : Any = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : str = use_token_type_ids __snake_case : List[Any] = use_labels __snake_case : List[str] = vocab_size __snake_case : List[str] = hidden_size __snake_case : Dict = embedding_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : str = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : str = type_vocab_size __snake_case : str = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : Tuple = num_labels __snake_case : List[str] = num_choices __snake_case : List[str] = scope def lowercase_ ( self ): __snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[Any] = None if self.use_input_mask: __snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : int = None __snake_case : Tuple = None __snake_case : List[str] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = MegatronBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __snake_case : List[Any] = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __snake_case : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = MegatronBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = MegatronBertForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Dict = MegatronBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Any = MegatronBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[int] = MegatronBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Dict = self.num_labels __snake_case : Tuple = MegatronBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Any = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = self.num_labels __snake_case : Optional[Any] = MegatronBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Dict = self.num_choices __snake_case : int = MegatronBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = config_and_inputs __snake_case : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = True # test_resize_embeddings = False __UpperCAmelCase = False def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): __snake_case : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __snake_case : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __snake_case : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowercase_ ( self ): __snake_case : List[str] = MegatronBertModelTester(self ) __snake_case : int = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __magic_name__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow @unittest.skip('Model is not available.' ) def lowercase_ ( self ): __snake_case : List[str] = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: __snake_case : List[Any] = os.path.join(os.environ['MYDIR'] , _UpperCAmelCase ) __snake_case : Tuple = MegatronBertModel.from_pretrained(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.half() __snake_case : Optional[Any] = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): __snake_case : List[Any] = model(_UpperCAmelCase )[0] __snake_case : List[Any] = torch.Size((1, 9, 1_024) ) self.assertEqual(output.shape , _UpperCAmelCase ) __snake_case : Tuple = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): __snake_case : Tuple = output[0, ii, jj] __snake_case : Any = expected[3 * ii + jj] __snake_case : Optional[int] = 'ii={} jj={} a={} b={}'.format(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertTrue(math.isclose(_UpperCAmelCase , _UpperCAmelCase , rel_tol=_UpperCAmelCase , abs_tol=_UpperCAmelCase ) , msg=_UpperCAmelCase )
679
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCAmelCase__( __UpperCAmelCase : Optional[Any]="" ): __snake_case : int = tempfile.mkdtemp() return os.path.join(__UpperCAmelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Tuple = torch.rand(12 , dtype=torch.floataa ) - 0.5 __snake_case : List[Any] = AgentAudio(_UpperCAmelCase ) __snake_case : Tuple = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(_UpperCAmelCase ) ) # Ensure that the file contains the same value as the original tensor __snake_case , __snake_case : Tuple = sf.read(_UpperCAmelCase ) self.assertTrue(torch.allclose(_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , atol=1E-4 ) ) def lowercase_ ( self ): __snake_case : Union[str, Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 __snake_case : Optional[int] = get_new_path(suffix='.wav' ) sf.write(_UpperCAmelCase , _UpperCAmelCase , 16_000 ) __snake_case : Union[str, Any] = AgentAudio(_UpperCAmelCase ) self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , _UpperCAmelCase ) @require_vision @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Optional[Any] = torch.randint(0 , 256 , (64, 64, 3) ) __snake_case : str = AgentImage(_UpperCAmelCase ) __snake_case : List[str] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : Dict = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' __snake_case : Optional[int] = Image.open(_UpperCAmelCase ) __snake_case : Optional[Any] = AgentImage(_UpperCAmelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' __snake_case : int = Image.open(_UpperCAmelCase ) __snake_case : List[Any] = AgentImage(_UpperCAmelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_UpperCAmelCase ) ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Tuple = 'Hey!' __snake_case : Dict = AgentText(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , agent_type.to_string() ) self.assertEqual(_UpperCAmelCase , agent_type.to_raw() ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
679
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
1
__magic_name__ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __magic_name__ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __magic_name__ = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ): assert len(str(__UpperCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __snake_case : List[str] = year // 1_00 __snake_case : str = (5 * (century % 4) + 2) % 7 __snake_case : str = year % 1_00 __snake_case : List[str] = centurian % 12 __snake_case : Tuple = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __snake_case : Optional[int] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) __snake_case : Dict = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
679
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
1
from random import randint, random def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : int = 5 , ): __snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = max(__UpperCAmelCase , 0 ) while i < number_of_cells: __snake_case : Optional[Any] = ( randint(0 , __UpperCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def UpperCAmelCase__( __UpperCAmelCase : list , __UpperCAmelCase : int ): __snake_case : Optional[int] = 0 __snake_case : Dict = highway_now[car_index + 1 :] for cell in range(len(__UpperCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(__UpperCAmelCase , -1 ) def UpperCAmelCase__( __UpperCAmelCase : list , __UpperCAmelCase : float , __UpperCAmelCase : int ): __snake_case : Optional[int] = len(__UpperCAmelCase ) # Beforce calculations, the highway is empty __snake_case : Optional[Any] = [-1] * number_of_cells for car_index in range(__UpperCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __snake_case : int = min(highway_now[car_index] + 1 , __UpperCAmelCase ) # Number of empty cell before the next car __snake_case : Union[str, Any] = get_distance(__UpperCAmelCase , __UpperCAmelCase ) - 1 # We can't have the car causing an accident __snake_case : int = min(next_highway[car_index] , __UpperCAmelCase ) if random() < probability: # Randomly, a driver will slow down __snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def UpperCAmelCase__( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : int ): __snake_case : Any = len(highway[0] ) for i in range(__UpperCAmelCase ): __snake_case : Optional[Any] = update(highway[i] , __UpperCAmelCase , __UpperCAmelCase ) __snake_case : Dict = [-1] * number_of_cells for car_index in range(__UpperCAmelCase ): __snake_case : str = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __snake_case : int = (car_index + speed) % number_of_cells # Commit the change of position __snake_case : Tuple = speed highway.append(__UpperCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
679
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
1
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = (EulerDiscreteScheduler,) __UpperCAmelCase = 1_0 def lowercase_ ( self , **_UpperCAmelCase ): __snake_case : Optional[int] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def lowercase_ ( self ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowercase_ ( self ): for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowercase_ ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowercase_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : Union[str, Any] = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __snake_case : Optional[Any] = torch.manual_seed(0 ) __snake_case : Tuple = self.dummy_model() __snake_case : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : Optional[int] = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __snake_case : Any = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[Any] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) __snake_case : int = output.prev_sample __snake_case : List[str] = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : List[Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def lowercase_ ( self ): __snake_case : int = self.scheduler_classes[0] __snake_case : List[Any] = self.get_scheduler_config(prediction_type='v_prediction' ) __snake_case : Optional[Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __snake_case : List[Any] = torch.manual_seed(0 ) __snake_case : str = self.dummy_model() __snake_case : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : Any = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __snake_case : Union[str, Any] = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) __snake_case : str = output.prev_sample __snake_case : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : Optional[int] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.26_76E-06 ) < 1E-3 def lowercase_ ( self ): __snake_case : Any = self.scheduler_classes[0] __snake_case : List[str] = self.get_scheduler_config() __snake_case : Tuple = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : Dict = self.dummy_model() __snake_case : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __snake_case : Any = sample.to(_UpperCAmelCase ) for t in scheduler.timesteps: __snake_case : str = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : int = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) __snake_case : List[Any] = output.prev_sample __snake_case : str = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : List[str] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def lowercase_ ( self ): __snake_case : Dict = self.scheduler_classes[0] __snake_case : Tuple = self.get_scheduler_config() __snake_case : str = scheduler_class(**_UpperCAmelCase , use_karras_sigmas=_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) __snake_case : str = torch.manual_seed(0 ) __snake_case : List[str] = self.dummy_model() __snake_case : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __snake_case : Optional[int] = sample.to(_UpperCAmelCase ) for t in scheduler.timesteps: __snake_case : List[Any] = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : str = model(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Tuple = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) __snake_case : Tuple = output.prev_sample __snake_case : Dict = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1E-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1E-3
679
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = (CMStochasticIterativeScheduler,) __UpperCAmelCase = 1_0 def lowercase_ ( self , **_UpperCAmelCase ): __snake_case : str = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } config.update(**_UpperCAmelCase ) return config def lowercase_ ( self ): __snake_case : List[Any] = 10 __snake_case : Dict = self.get_scheduler_config() __snake_case : Tuple = self.scheduler_classes[0](**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) __snake_case : str = scheduler.timesteps[0] __snake_case : str = scheduler.timesteps[1] __snake_case : Dict = self.dummy_sample __snake_case : List[str] = 0.1 * sample __snake_case : Optional[Any] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample __snake_case : List[str] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase_ ( self ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowercase_ ( self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Dict = self.scheduler_classes[0] __snake_case : List[str] = self.get_scheduler_config() __snake_case : List[Any] = scheduler_class(**_UpperCAmelCase ) __snake_case : Union[str, Any] = 1 scheduler.set_timesteps(_UpperCAmelCase ) __snake_case : Dict = scheduler.timesteps __snake_case : str = torch.manual_seed(0 ) __snake_case : List[str] = self.dummy_model() __snake_case : int = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_UpperCAmelCase ): # 1. scale model input __snake_case : int = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict noise residual __snake_case : Tuple = model(_UpperCAmelCase , _UpperCAmelCase ) # 3. predict previous sample x_t-1 __snake_case : Any = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample __snake_case : str = pred_prev_sample __snake_case : List[str] = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : str = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def lowercase_ ( self ): __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : List[str] = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**_UpperCAmelCase ) __snake_case : Union[str, Any] = [106, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __snake_case : Any = scheduler.timesteps __snake_case : Union[str, Any] = torch.manual_seed(0 ) __snake_case : str = self.dummy_model() __snake_case : str = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input __snake_case : Optional[Any] = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict noise residual __snake_case : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 3. predict previous sample x_t-1 __snake_case : List[Any] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample __snake_case : Tuple = pred_prev_sample __snake_case : Optional[Any] = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : Dict = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def lowercase_ ( self ): __snake_case : List[str] = self.scheduler_classes[0] __snake_case : Any = self.get_scheduler_config() __snake_case : Any = scheduler_class(**_UpperCAmelCase ) __snake_case : str = [39, 30, 12, 15, 0] with self.assertRaises(_UpperCAmelCase , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = self.scheduler_classes[0] __snake_case : int = self.get_scheduler_config() __snake_case : int = scheduler_class(**_UpperCAmelCase ) __snake_case : List[str] = [39, 30, 12, 1, 0] __snake_case : Optional[Any] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.scheduler_classes[0] __snake_case : Dict = self.get_scheduler_config() __snake_case : str = scheduler_class(**_UpperCAmelCase ) __snake_case : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
679
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ): __snake_case : Tuple = nn.functional.normalize(__UpperCAmelCase ) __snake_case : List[str] = nn.functional.normalize(__UpperCAmelCase ) return torch.mm(__UpperCAmelCase , normalized_text_embeds.t() ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = CLIPConfig __UpperCAmelCase = ["CLIPEncoderLayer"] def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : int = CLIPVisionModel(config.vision_config ) __snake_case : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) __snake_case : int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) __snake_case : Union[str, Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) __snake_case : int = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) __snake_case : Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = self.vision_model(_UpperCAmelCase )[1] # pooled_output __snake_case : int = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Tuple = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() __snake_case : Any = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() __snake_case : str = [] __snake_case : Dict = image_embeds.shape[0] for i in range(_UpperCAmelCase ): __snake_case : str = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __snake_case : Dict = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __snake_case : Optional[int] = special_cos_dist[i][concept_idx] __snake_case : Tuple = self.special_care_embeds_weights[concept_idx].item() __snake_case : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) __snake_case : List[str] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): __snake_case : Dict = cos_dist[i][concept_idx] __snake_case : Optional[int] = self.concept_embeds_weights[concept_idx].item() __snake_case : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) __snake_case : Dict = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.vision_model(_UpperCAmelCase )[1] # pooled_output __snake_case : int = self.visual_projection(_UpperCAmelCase ) __snake_case : Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) __snake_case : Union[str, Any] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __snake_case : Tuple = 0.0 __snake_case : Optional[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __snake_case : int = torch.any(special_scores > 0 , dim=1 ) __snake_case : Optional[Any] = special_care * 0.01 __snake_case : List[Any] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __snake_case : Dict = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __snake_case : Dict = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
679
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None ): if attention_mask is None: __snake_case : List[str] = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = OPTConfig __UpperCAmelCase = {} __UpperCAmelCase = "gelu" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=16 , _UpperCAmelCase=16 , ): __snake_case : Optional[int] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = seq_length __snake_case : str = is_training __snake_case : List[str] = use_labels __snake_case : str = vocab_size __snake_case : str = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : str = intermediate_size __snake_case : int = hidden_act __snake_case : List[str] = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Optional[Any] = max_position_embeddings __snake_case : Tuple = eos_token_id __snake_case : Optional[Any] = pad_token_id __snake_case : List[Any] = bos_token_id __snake_case : Any = embed_dim __snake_case : int = word_embed_proj_dim __snake_case : Union[str, Any] = False def lowercase_ ( self ): __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __snake_case : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __snake_case : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) __snake_case : Any = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_UpperCAmelCase , **self.config_updates , ) __snake_case : Any = prepare_opt_inputs_dict(_UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Union[str, Any] = TFOPTModel(config=_UpperCAmelCase ) __snake_case : Union[str, Any] = inputs_dict['input_ids'] __snake_case : Any = input_ids[:1, :] __snake_case : List[Any] = inputs_dict['attention_mask'][:1, :] __snake_case : Optional[int] = 1 # first forward pass __snake_case : Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __snake_case , __snake_case : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __snake_case : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __snake_case : str = tf.concat([input_ids, next_tokens] , axis=-1 ) __snake_case : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __snake_case : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __snake_case : Union[str, Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __snake_case : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] __snake_case : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-3 ) @require_tf class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __UpperCAmelCase = (TFOPTForCausalLM,) if is_tf_available() else () __UpperCAmelCase = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = 1_0 def lowercase_ ( self ): __snake_case : Any = TFOPTModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_UpperCAmelCase , _UpperCAmelCase ): if hasattr(_UpperCAmelCase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_UpperCAmelCase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __snake_case : Tuple = model_class(config=_UpperCAmelCase ) __snake_case : Any = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings() ) __snake_case : Optional[Any] = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_UpperCAmelCase ) __snake_case : int = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings() ) __snake_case : str = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __snake_case : List[str] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _UpperCAmelCase ) # check that weights remain the same after resizing __snake_case : Any = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __snake_case : Any = False self.assertTrue(_UpperCAmelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _UpperCAmelCase ) __snake_case : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __snake_case : Any = False self.assertTrue(_UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : int ): return tf.constant(__UpperCAmelCase , dtype=tf.intaa ) @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" __UpperCAmelCase = 9_9 def lowercase_ ( self ): __snake_case : Any = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __snake_case : Dict = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __snake_case : Tuple = input_ids.shape[0] __snake_case : str = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def lowercase_ ( self ): __snake_case : str = TFOPTModel.from_pretrained('facebook/opt-350m' ) __snake_case : List[Any] = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __snake_case : Optional[int] = tf.not_equal(_UpperCAmelCase , model.config.pad_token_id ) with tf.GradientTape(): __snake_case : int = model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ).last_hidden_state __snake_case : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , _UpperCAmelCase ) __snake_case : List[str] = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4E-3 ) ) __snake_case : int = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase ) __snake_case : Any = xla_generate(_UpperCAmelCase , _UpperCAmelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4E-2 ) ) @require_tf @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): super().setUp() __snake_case : str = 'facebook/opt-350m' def lowercase_ ( self ): __snake_case : Dict = TFOPTForCausalLM.from_pretrained(self.path_model ) __snake_case : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) __snake_case : Tuple = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __snake_case : int = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __snake_case : Tuple = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __snake_case : Optional[Any] = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4 ) ) __snake_case : str = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase ) __snake_case : Union[str, Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4 ) ) @require_tf @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @property def lowercase_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowercase_ ( self ): __snake_case : Tuple = 'facebook/opt-125m' __snake_case : Any = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] __snake_case : Union[str, Any] = [] __snake_case : int = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) __snake_case : Union[str, Any] = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) for prompt in self.prompts: __snake_case : Optional[int] = tokenizer(_UpperCAmelCase , return_tensors='tf' ).input_ids __snake_case : Optional[Any] = model.generate(_UpperCAmelCase , max_length=10 ) __snake_case : Any = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = 'facebook/opt-350m' __snake_case : Dict = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) __snake_case : Tuple = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = 'left' # use different length sentences to test batching __snake_case : Optional[Any] = [ 'Hello, my dog is a little', 'Today, I', ] __snake_case : Optional[int] = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding=_UpperCAmelCase ) __snake_case : str = inputs['input_ids'] __snake_case : List[Any] = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs['attention_mask'] ) __snake_case : List[str] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __snake_case : Dict = model.generate(input_ids=_UpperCAmelCase ) __snake_case : str = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) __snake_case : List[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __snake_case : Optional[int] = model.generate(input_ids=_UpperCAmelCase , max_length=model.config.max_length - num_paddings ) __snake_case : Optional[Any] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __snake_case : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) __snake_case : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) __snake_case : Tuple = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] ) def lowercase_ ( self ): __snake_case : Tuple = 'facebook/opt-350m' __snake_case : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] __snake_case : List[Any] = [] __snake_case : List[str] = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) for prompt in self.prompts: __snake_case : List[str] = tokenizer(_UpperCAmelCase , return_tensors='tf' ).input_ids __snake_case : int = model.generate(_UpperCAmelCase , max_length=10 ) __snake_case : str = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
679
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
1
import qiskit def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int ): __snake_case : str = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __snake_case : Tuple = qiskit.QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __snake_case : int = qiskit.execute(__UpperCAmelCase , __UpperCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
679
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase__( ): __snake_case : Dict = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=__UpperCAmelCase ) __snake_case : int = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=__UpperCAmelCase ) env_command_parser(subparsers=__UpperCAmelCase ) launch_command_parser(subparsers=__UpperCAmelCase ) tpu_command_parser(subparsers=__UpperCAmelCase ) test_command_parser(subparsers=__UpperCAmelCase ) # Let's go __snake_case : Union[str, Any] = parser.parse_args() if not hasattr(__UpperCAmelCase , 'func' ): parser.print_help() exit(1 ) # Run args.func(__UpperCAmelCase ) if __name__ == "__main__": main()
679
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __magic_name__ = { '''allenai/led-base-16384''': 16_384, } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = LEDTokenizer __UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , **_UpperCAmelCase , ) __snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: __snake_case : List[str] = getattr(_UpperCAmelCase , pre_tok_state.pop('type' ) ) __snake_case : Dict = add_prefix_space __snake_case : int = pre_tok_class(**_UpperCAmelCase ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : int = 'post_processor' __snake_case : Any = getattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) if tokenizer_component_instance: __snake_case : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Dict = tuple(state['sep'] ) if "cls" in state: __snake_case : int = tuple(state['cls'] ) __snake_case : Optional[int] = False if state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: __snake_case : Optional[int] = add_prefix_space __snake_case : Optional[Any] = True if state.get('trim_offsets' , _UpperCAmelCase ) != trim_offsets: __snake_case : Dict = trim_offsets __snake_case : List[str] = True if changes_to_apply: __snake_case : List[Any] = getattr(_UpperCAmelCase , state.pop('type' ) ) __snake_case : Union[str, Any] = component_class(**_UpperCAmelCase ) setattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowercase_ ( self ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else value __snake_case : Union[str, Any] = value def lowercase_ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __snake_case : Union[str, Any] = kwargs.get('is_split_into_words' , _UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __snake_case : Union[str, Any] = kwargs.get('is_split_into_words' , _UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Union[str, Any] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Union[str, Any] = [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , _UpperCAmelCase = None , _UpperCAmelCase = None , ): __snake_case : Any = super()._pad( encoded_inputs=_UpperCAmelCase , max_length=_UpperCAmelCase , padding_strategy=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: __snake_case : List[str] = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __snake_case : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __snake_case : Optional[Any] = len(encoded_inputs['global_attention_mask'] ) != len(_UpperCAmelCase ) if needs_to_be_padded: __snake_case : Dict = len(_UpperCAmelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __snake_case : Dict = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": __snake_case : Optional[int] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
679
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) __magic_name__ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: __snake_case : Any = TOKENIZER_CLASSES else: __snake_case : Dict = {tokenizer_name: getattr(__UpperCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: __snake_case : Tuple = TOKENIZER_CLASSES[tokenizer_name] __snake_case : Tuple = True if checkpoint_name is None: __snake_case : List[str] = list(tokenizer_class.max_model_input_sizes.keys() ) else: __snake_case : Dict = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer __snake_case : Tuple = tokenizer_class.from_pretrained(__UpperCAmelCase , force_download=__UpperCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: __snake_case , __snake_case : Dict = checkpoint.split('/' ) __snake_case : Any = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) elif add_prefix: __snake_case : Tuple = checkpoint __snake_case : str = dump_path else: __snake_case : Dict = None __snake_case : Tuple = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __snake_case : List[str] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __snake_case : Optional[int] = file_path.split(__UpperCAmelCase )[-1][0] if next_char == "/": __snake_case : Tuple = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Tuple = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) __snake_case : Dict = tokenizer.save_pretrained( __UpperCAmelCase , legacy_format=__UpperCAmelCase , filename_prefix=__UpperCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__UpperCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) __magic_name__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
679
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None __UpperCAmelCase = None __magic_name__ = namedtuple('''CoinsDistribResult''', '''moves excess''') def UpperCAmelCase__( __UpperCAmelCase : TreeNode | None ): if root is None: return 0 # Validation def count_nodes(__UpperCAmelCase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__UpperCAmelCase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__UpperCAmelCase ) != count_coins(__UpperCAmelCase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(__UpperCAmelCase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __snake_case , __snake_case : Optional[int] = get_distrib(node.left ) __snake_case , __snake_case : Dict = get_distrib(node.right ) __snake_case : Optional[int] = 1 - left_distrib_excess __snake_case : Dict = 1 - right_distrib_excess __snake_case : int = ( left_distrib_moves + right_distrib_moves + abs(__UpperCAmelCase ) + abs(__UpperCAmelCase ) ) __snake_case : int = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__UpperCAmelCase , __UpperCAmelCase ) return get_distrib(__UpperCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
679
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
1
from sklearn.metrics import mean_squared_error import datasets __magic_name__ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' __magic_name__ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' __magic_name__ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def lowercase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def lowercase_ ( self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase="uniform_average" , _UpperCAmelCase=True ): __snake_case : int = mean_squared_error( _UpperCAmelCase , _UpperCAmelCase , sample_weight=_UpperCAmelCase , multioutput=_UpperCAmelCase , squared=_UpperCAmelCase ) return {"mse": mse}
679
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
1
from PIL import Image def UpperCAmelCase__( __UpperCAmelCase : Image , __UpperCAmelCase : float ): def brightness(__UpperCAmelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(__UpperCAmelCase ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 __magic_name__ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
679
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __SCREAMING_SNAKE_CASE ( tf.keras.optimizers.schedules.LearningRateSchedule): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1.0 , _UpperCAmelCase = None , ): super().__init__() __snake_case : Union[str, Any] = initial_learning_rate __snake_case : List[Any] = warmup_steps __snake_case : Tuple = power __snake_case : Any = decay_schedule_fn __snake_case : str = name def __call__( self , _UpperCAmelCase ): with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __snake_case : int = tf.cast(_UpperCAmelCase , tf.floataa ) __snake_case : Union[str, Any] = tf.cast(self.warmup_steps , tf.floataa ) __snake_case : Optional[Any] = global_step_float / warmup_steps_float __snake_case : Optional[int] = self.initial_learning_rate * tf.math.pow(_UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_UpperCAmelCase , ) def lowercase_ ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__( __UpperCAmelCase : float , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : float = 0.9 , __UpperCAmelCase : float = 0.999 , __UpperCAmelCase : float = 1E-8 , __UpperCAmelCase : Optional[float] = None , __UpperCAmelCase : Optional[float] = None , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : float = 1.0 , __UpperCAmelCase : Optional[List[str]] = None , ): __snake_case : Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__UpperCAmelCase , ) if num_warmup_steps: __snake_case : str = WarmUp( initial_learning_rate=__UpperCAmelCase , decay_schedule_fn=__UpperCAmelCase , warmup_steps=__UpperCAmelCase , ) if weight_decay_rate > 0.0: __snake_case : Union[str, Any] = AdamWeightDecay( learning_rate=__UpperCAmelCase , weight_decay_rate=__UpperCAmelCase , beta_a=__UpperCAmelCase , beta_a=__UpperCAmelCase , epsilon=__UpperCAmelCase , clipnorm=__UpperCAmelCase , global_clipnorm=__UpperCAmelCase , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=__UpperCAmelCase , ) else: __snake_case : Tuple = tf.keras.optimizers.Adam( learning_rate=__UpperCAmelCase , beta_a=__UpperCAmelCase , beta_a=__UpperCAmelCase , epsilon=__UpperCAmelCase , clipnorm=__UpperCAmelCase , global_clipnorm=__UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase = 0.001 , _UpperCAmelCase = 0.9 , _UpperCAmelCase = 0.999 , _UpperCAmelCase = 1E-7 , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "AdamWeightDecay" , **_UpperCAmelCase , ): super().__init__(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) __snake_case : List[Any] = weight_decay_rate __snake_case : List[Any] = include_in_weight_decay __snake_case : List[str] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , _UpperCAmelCase ): __snake_case : int = {'WarmUp': WarmUp} return super(_UpperCAmelCase , cls ).from_config(_UpperCAmelCase , custom_objects=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): super(_UpperCAmelCase , self )._prepare_local(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): __snake_case , __snake_case : int = list(zip(*_UpperCAmelCase ) ) return super(_UpperCAmelCase , self ).apply_gradients(zip(_UpperCAmelCase , _UpperCAmelCase ) , name=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} __snake_case : str = apply_state or {} __snake_case : List[Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __snake_case : Tuple = self._fallback_apply_state(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case , __snake_case : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , _UpperCAmelCase ) __snake_case : Union[str, Any] = self._decay_weights_op(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(_UpperCAmelCase , self )._resource_apply_dense(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case , __snake_case : List[Any] = self._get_lr(var.device , var.dtype.base_dtype , _UpperCAmelCase ) __snake_case : Optional[int] = self._decay_weights_op(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(_UpperCAmelCase , self )._resource_apply_sparse(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : str = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , _UpperCAmelCase ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_UpperCAmelCase , _UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_UpperCAmelCase , _UpperCAmelCase ) is not None: return False return True class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self ): __snake_case : Dict = [] __snake_case : List[str] = None @property def lowercase_ ( self ): if self._accum_steps is None: __snake_case : List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ): if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , _UpperCAmelCase ): if not self._gradients: __snake_case : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_UpperCAmelCase ) , trainable=_UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_UpperCAmelCase ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(_UpperCAmelCase )}""" ) for accum_gradient, gradient in zip(self._gradients , _UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_UpperCAmelCase ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_UpperCAmelCase ) )
679
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
1
from __future__ import annotations import os from typing import Any import requests __magic_name__ = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __magic_name__ = BASE_URL + '''/user''' # https://github.com/settings/tokens __magic_name__ = os.environ.get('''USER_TOKEN''', '''''') def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Any = { 'Authorization': F"""token {auth_token}""", 'Accept': 'application/vnd.github.v3+json', } return requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
679
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''PoolFormerFeatureExtractor'''] __magic_name__ = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
679
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ): __snake_case : Optional[int] = [] for part_id in partition_order: __snake_case : str = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(__UpperCAmelCase ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__( ): __snake_case : Dict = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __snake_case : str = spark.range(1_00 ).repartition(1 ) __snake_case : Union[str, Any] = Spark(__UpperCAmelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__( ): __snake_case : Union[str, Any] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __snake_case : List[str] = spark.range(10 ).repartition(2 ) __snake_case : Any = [1, 0] __snake_case : Dict = _generate_iterable_examples(__UpperCAmelCase , __UpperCAmelCase ) # Reverse the partitions. __snake_case : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCAmelCase , __UpperCAmelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __snake_case , __snake_case : Union[str, Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__( ): __snake_case : str = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __snake_case : Dict = spark.range(10 ).repartition(1 ) __snake_case : List[str] = SparkExamplesIterable(__UpperCAmelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__UpperCAmelCase ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__( ): __snake_case : Any = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __snake_case : Tuple = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: __snake_case : List[Any] = lambda __UpperCAmelCase : x.reverse() __snake_case : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCAmelCase , [2, 1, 0] ) __snake_case : int = SparkExamplesIterable(__UpperCAmelCase ).shuffle_data_sources(__UpperCAmelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__UpperCAmelCase ): __snake_case , __snake_case : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__( ): __snake_case : List[str] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __snake_case : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __snake_case : List[str] = SparkExamplesIterable(__UpperCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __snake_case : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCAmelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__UpperCAmelCase ): __snake_case , __snake_case : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __snake_case : Any = SparkExamplesIterable(__UpperCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __snake_case : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCAmelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__UpperCAmelCase ): __snake_case , __snake_case : Union[str, Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__( ): __snake_case : Any = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __snake_case : int = spark.range(1_00 ).repartition(1 ) __snake_case : Optional[int] = Spark(__UpperCAmelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
679
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
1
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): __snake_case : Optional[int] = parent __snake_case : int = batch_size __snake_case : str = seq_length __snake_case : List[str] = is_training __snake_case : int = use_input_mask __snake_case : Optional[int] = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : List[Any] = vocab_size __snake_case : Any = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : Optional[Any] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : str = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[str] = max_position_embeddings __snake_case : Optional[Any] = type_vocab_size __snake_case : Any = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = num_labels __snake_case : Union[str, Any] = num_choices __snake_case : Tuple = scope def lowercase_ ( self ): __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[str] = None if self.use_input_mask: __snake_case : Any = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[Any] = None __snake_case : Dict = None __snake_case : str = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Any = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=_UpperCAmelCase , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = OpenLlamaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) __snake_case : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __snake_case : Union[str, Any] = True __snake_case : List[Any] = OpenLlamaModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : Union[str, Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) __snake_case : Dict = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __snake_case : Optional[Any] = OpenLlamaForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Optional[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __snake_case : Any = True __snake_case : int = True __snake_case : Optional[int] = OpenLlamaForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # first forward pass __snake_case : int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase , ) __snake_case : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] __snake_case : Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] # select random slice __snake_case : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : Any = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[str] = config_and_inputs __snake_case : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Any = OpenLlamaModelTester(self ) __snake_case : List[Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : List[Any] = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = 3 __snake_case : Optional[int] = input_dict['input_ids'] __snake_case : Optional[Any] = input_ids.ne(1 ).to(_UpperCAmelCase ) __snake_case : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : List[str] = OpenLlamaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self ): __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = 3 __snake_case : Optional[Any] = 'single_label_classification' __snake_case : List[str] = input_dict['input_ids'] __snake_case : Optional[int] = input_ids.ne(1 ).to(_UpperCAmelCase ) __snake_case : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : Any = OpenLlamaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self ): __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = 3 __snake_case : List[Any] = 'multi_label_classification' __snake_case : str = input_dict['input_ids'] __snake_case : str = input_ids.ne(1 ).to(_UpperCAmelCase ) __snake_case : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __snake_case : List[Any] = OpenLlamaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def lowercase_ ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : str = ids_tensor([1, 10] , config.vocab_size ) __snake_case : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : List[Any] = OpenLlamaModel(_UpperCAmelCase ) original_model.to(_UpperCAmelCase ) original_model.eval() __snake_case : Dict = original_model(_UpperCAmelCase ).last_hidden_state __snake_case : str = original_model(_UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : List[Any] = {'type': scaling_type, 'factor': 10.0} __snake_case : List[Any] = OpenLlamaModel(_UpperCAmelCase ) scaled_model.to(_UpperCAmelCase ) scaled_model.eval() __snake_case : Any = scaled_model(_UpperCAmelCase ).last_hidden_state __snake_case : Tuple = scaled_model(_UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) )
679
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
1
import argparse from collections import defaultdict def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] ): __snake_case : Union[str, Any] = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , 'r' ) as f: __snake_case : str = f.readlines() __snake_case : Any = F"""class {class_name}(""" __snake_case : Any = F"""{4 * " "}def {test_name}(""" __snake_case : str = F"""{8 * " "}{correct_line.split()[0]}""" __snake_case : List[str] = F"""{16 * " "}{correct_line.split()[0]}""" __snake_case : Dict = False __snake_case : Tuple = False __snake_case : List[str] = False __snake_case : Dict = False __snake_case : Union[str, Any] = 0 __snake_case : str = 0 __snake_case : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): __snake_case : str = True elif in_class and line.startswith(__UpperCAmelCase ): __snake_case : Any = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): __snake_case : str = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __snake_case : str = True if in_class and in_func and in_line: if ")" not in line: continue else: __snake_case : Union[str, Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) __snake_case : str = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , 'w' ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str]=None ): if fail is not None: with open(__UpperCAmelCase , 'r' ) as f: __snake_case : Dict = {l.strip() for l in f.readlines()} else: __snake_case : List[str] = None with open(__UpperCAmelCase , 'r' ) as f: __snake_case : List[Any] = f.readlines() __snake_case : List[Any] = defaultdict(__UpperCAmelCase ) for line in correct_lines: __snake_case , __snake_case , __snake_case , __snake_case : Tuple = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) __magic_name__ = parser.parse_args() main(args.correct_filename, args.fail_filename)
679
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCAmelCase__( __UpperCAmelCase : Tuple ): __snake_case : Tuple = os.path.join(args.tf_model_dir , 'parameters.json' ) __snake_case : Optional[Any] = json.loads(open(__UpperCAmelCase ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('.pt' ): __snake_case : Optional[Any] = args.output + '.pt' __snake_case : List[Any] = OrderedDict() with tf.device('/CPU:0' ): __snake_case : Tuple = tf.train.load_checkpoint(args.tf_model_dir ) __snake_case : Union[str, Any] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): __snake_case : Union[str, Any] = reader.get_tensor(__UpperCAmelCase ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): __snake_case : Optional[Any] = int(key_name[9] ) elif key_name.startswith('pasts/out' ): __snake_case : Dict = 8 __snake_case : Optional[Any] = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time __snake_case : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case : Optional[int] = torch.tensor(__UpperCAmelCase ) elif key_name.startswith('model/moe' ): __snake_case : Optional[int] = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): __snake_case : str = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player __snake_case : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case : Optional[int] = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/softmlp/kernel' ): __snake_case : List[str] = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player __snake_case : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case : Optional[Any] = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): __snake_case : Tuple = key_name[-9:-7] for i in range(16 ): __snake_case : Union[str, Any] = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) __snake_case : str = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided __snake_case : Tuple = torch.tensor(__UpperCAmelCase ) elif key_name.startswith('model/mlp' ): __snake_case : int = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): __snake_case : int = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player __snake_case : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case : Any = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/p1/bias' ): __snake_case : Any = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player __snake_case : str = vnp.copy() # same because it is one dimensional __snake_case : str = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/p2/kernel' ): __snake_case : Any = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player __snake_case : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case : Optional[Any] = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/p2/bias' ): __snake_case : str = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player __snake_case : int = vnp.copy() # same because it is one dimensional __snake_case : Optional[Any] = torch.tensor(__UpperCAmelCase ) elif key_name.startswith('model/ln' ): __snake_case : str = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): __snake_case : Any = 'model.blocks.%d.feed_forward.norm.bias' % player __snake_case : str = vnp.copy() # same because it is one dimensional __snake_case : List[Any] = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/g' ): __snake_case : Union[str, Any] = 'model.blocks.%d.feed_forward.norm.weight' % player __snake_case : List[str] = vnp.copy() # same because it is one dimensional __snake_case : List[str] = torch.tensor(__UpperCAmelCase ) elif key_name.startswith('model/att' ): __snake_case : Optional[int] = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): __snake_case : List[Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum __snake_case : str = state[:, 0, :, :] __snake_case : Tuple = state[:, 1, :, :] __snake_case : int = state[:, 2, :, :] __snake_case : Any = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __snake_case : Union[str, Any] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __snake_case : Union[str, Any] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __snake_case : Optional[int] = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player __snake_case : str = torch.tensor(__UpperCAmelCase ) __snake_case : List[str] = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player __snake_case : Union[str, Any] = torch.tensor(__UpperCAmelCase ) __snake_case : Optional[Any] = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player __snake_case : Tuple = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/o/kernel' ): __snake_case : Dict = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player __snake_case : Union[str, Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix __snake_case : str = torch.tensor(__UpperCAmelCase ) elif key_name.startswith('model/an' ): __snake_case : str = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): __snake_case : List[Any] = 'model.blocks.%d.self_attn.norm.bias' % player __snake_case : Optional[Any] = vnp.copy() # same because it is one dimensional __snake_case : List[str] = torch.tensor(__UpperCAmelCase ) elif key_name.endswith('/g' ): __snake_case : str = 'model.blocks.%d.self_attn.norm.weight' % player __snake_case : Optional[int] = vnp.copy() # same because it is one dimensional __snake_case : Dict = torch.tensor(__UpperCAmelCase ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): __snake_case : str = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] __snake_case : Dict = 'model.%s.weight' % nlayer __snake_case : Union[str, Any] = vnp.copy() # same in embedded __snake_case : Tuple = torch.tensor(__UpperCAmelCase ) if key_name.startswith('model/wte' ): __snake_case : Union[str, Any] = 'lm_head.weight' __snake_case : List[str] = vnp.copy() # same in embedded __snake_case : Optional[Any] = torch.tensor(__UpperCAmelCase ) elif key_name.startswith('model/wob' ): __snake_case : Union[str, Any] = 'final_logits_bias' __snake_case : Optional[int] = vnp.copy() # same in embedded __snake_case : Tuple = state.reshape((1, -1) ) __snake_case : List[Any] = torch.tensor(__UpperCAmelCase ) elif key_name == "model/dense/kernel": __snake_case : List[str] = 'model.last_project.weight' __snake_case : Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case : Dict = torch.tensor(__UpperCAmelCase ) elif key_name == "model/dense_1/bias": __snake_case : Optional[int] = 'model.last_project.bias' __snake_case : Union[str, Any] = vnp.copy() # same because it is one dimensional __snake_case : Any = torch.tensor(__UpperCAmelCase ) torch.save(__UpperCAmelCase , args.output ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') __magic_name__ = parser.parse_args() convert_tf_gptsan_to_pt(args)
679
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __magic_name__ = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" pass @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __snake_case : Any = torch.manual_seed(0 ) __snake_case : Optional[int] = pipe.dual_guided( prompt='first prompt' , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) __snake_case : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained(_UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[int] = generator.manual_seed(0 ) __snake_case : List[Any] = pipe.dual_guided( prompt='first prompt' , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowercase_ ( self ): __snake_case : List[Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 'cyberpunk 2077' __snake_case : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __snake_case : Any = torch.manual_seed(0 ) __snake_case : Any = pipe.dual_guided( prompt=_UpperCAmelCase , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __snake_case : int = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case : Optional[Any] = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __snake_case : List[str] = 'A painting of a squirrel eating a burger ' __snake_case : Tuple = torch.manual_seed(0 ) __snake_case : int = pipe.text_to_image( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images __snake_case : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case : str = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __snake_case : Optional[Any] = pipe.image_variation(_UpperCAmelCase , generator=_UpperCAmelCase , output_type='numpy' ).images __snake_case : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case : int = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
679
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
1
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __magic_name__ = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
679
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() __snake_case : Optional[int] = module __snake_case : Optional[Any] = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) __snake_case : Optional[int] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase_ ( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ): return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" __UpperCAmelCase = "bigscience/bloom-1b7" # Constant values __UpperCAmelCase = 2.109659552692574 __UpperCAmelCase = "Hello my name is" __UpperCAmelCase = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I") EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n") EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University") __UpperCAmelCase = 1_0 def lowercase_ ( self ): # Models and tokenizer __snake_case : str = AutoTokenizer.from_pretrained(self.model_name ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): super().setUp() # Models and tokenizer __snake_case : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def lowercase_ ( self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : Any = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) __snake_case : Dict = config.to_dict() __snake_case : List[str] = config.to_diff_dict() __snake_case : Optional[Any] = config.to_json_string() def lowercase_ ( self ): from bitsandbytes.nn import Paramsabit __snake_case : Tuple = self.model_fpaa.get_memory_footprint() __snake_case : Union[str, Any] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case : Any = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase_ ( self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase_ ( self ): __snake_case : str = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case : Optional[int] = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowercase_ ( self ): __snake_case : Union[str, Any] = BitsAndBytesConfig() __snake_case : int = True __snake_case : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) __snake_case : int = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case : Any = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowercase_ ( self ): with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): __snake_case : Any = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def lowercase_ ( self ): with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case : Tuple = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case : str = self.model_fpaa.to(torch.floataa ) __snake_case : Tuple = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case : int = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case : int = self.model_fpaa.half() # Check this does not throw an error __snake_case : str = self.model_fpaa.float() def lowercase_ ( self ): __snake_case : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def lowercase_ ( cls ): __snake_case : str = 't5-small' __snake_case : int = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case : Optional[int] = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case : Any = 'Translate in German: Hello, my dog is cute' def lowercase_ ( self ): gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): from transformers import TaForConditionalGeneration __snake_case : Optional[Any] = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case : List[Any] = None # test with `t5-small` __snake_case : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __snake_case : int = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case : List[Any] = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __snake_case : Optional[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __snake_case : Any = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case : Optional[int] = model.generate(**_UpperCAmelCase ) __snake_case : int = modules def lowercase_ ( self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case : str = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __snake_case : Tuple = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __snake_case : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case : Union[str, Any] = model.generate(**_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): super().setUp() # model_name __snake_case : Optional[Any] = 'bigscience/bloom-560m' __snake_case : Dict = 't5-small' # Different types of model __snake_case : int = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model __snake_case : Any = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model __snake_case : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model __snake_case : List[Any] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def lowercase_ ( self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): super().setUp() def lowercase_ ( self ): del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : Tuple = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case : Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): super().setUp() def lowercase_ ( self ): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case : Dict = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case : List[Any] = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : str = 'facebook/opt-350m' super().setUp() def lowercase_ ( self ): if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case : Union[str, Any] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case : Union[str, Any] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): __snake_case : List[Any] = LoRALayer(module.q_proj , rank=16 ) __snake_case : Optional[Any] = LoRALayer(module.k_proj , rank=16 ) __snake_case : List[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case : Optional[int] = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case : List[str] = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "gpt2-xl" __UpperCAmelCase = 3.3191854854152187
679
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "mobilenet_v2" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=224 , _UpperCAmelCase=1.0 , _UpperCAmelCase=8 , _UpperCAmelCase=8 , _UpperCAmelCase=6 , _UpperCAmelCase=32 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu6" , _UpperCAmelCase=True , _UpperCAmelCase=0.8 , _UpperCAmelCase=0.02 , _UpperCAmelCase=0.001 , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) __snake_case : Optional[Any] = num_channels __snake_case : str = image_size __snake_case : List[Any] = depth_multiplier __snake_case : Any = depth_divisible_by __snake_case : Optional[int] = min_depth __snake_case : Union[str, Any] = expand_ratio __snake_case : Optional[int] = output_stride __snake_case : Optional[int] = first_layer_is_expansion __snake_case : int = finegrained_output __snake_case : Any = hidden_act __snake_case : Tuple = tf_padding __snake_case : Optional[Any] = classifier_dropout_prob __snake_case : List[str] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = semantic_loss_ignore_index class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = version.parse("1.11") @property def lowercase_ ( self ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def lowercase_ ( self ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def lowercase_ ( self ): return 1E-4
679
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
1
def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) __snake_case : List[Any] = str(bin(__UpperCAmelCase ) )[2:] # remove the leading "0b" __snake_case : Optional[int] = str(bin(__UpperCAmelCase ) )[2:] # remove the leading "0b" __snake_case : List[Any] = max(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCAmelCase ) , b_binary.zfill(__UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
679
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : PreTrainedTokenizer , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] = None , ): __snake_case : Dict = {} if train_file is not None: __snake_case : List[Any] = [train_file] if eval_file is not None: __snake_case : Tuple = [eval_file] if test_file is not None: __snake_case : str = [test_file] __snake_case : List[Any] = datasets.load_dataset('csv' , data_files=__UpperCAmelCase ) __snake_case : str = list(ds[list(files.keys() )[0]].features.keys() ) __snake_case : Dict = features_name.pop(__UpperCAmelCase ) __snake_case : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) __snake_case : List[Any] = {label: i for i, label in enumerate(__UpperCAmelCase )} __snake_case : Optional[Any] = tokenizer.model_input_names __snake_case : Any = {} if len(__UpperCAmelCase ) == 1: for k in files.keys(): __snake_case : Tuple = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) , batched=__UpperCAmelCase , ) elif len(__UpperCAmelCase ) == 2: for k in files.keys(): __snake_case : int = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' , ) , batched=__UpperCAmelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __snake_case : Any = {k: v for k, v in ex.items() if k in input_names} __snake_case : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __snake_case : Optional[int] = {k: v for k, v in ex.items() if k in input_names} __snake_case : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __snake_case : Any = {k: v for k, v in ex.items() if k in input_names} __snake_case : Optional[Any] = labelaid[ex[label_name]] yield (d, label) __snake_case : List[str] = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __snake_case : Union[str, Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __snake_case : List[Any] = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __snake_case : str = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __snake_case : Optional[Any] = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __snake_case : Union[str, Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(metadata={"help": "Which column contains the label"}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The path of the training file"}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The path of the development file"}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The path of the test file"}) __UpperCAmelCase = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "Set this flag to use fast tokenization."}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __snake_case , __snake_case , __snake_case : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case , __snake_case , __snake_case , __snake_case : Tuple = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__UpperCAmelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __snake_case : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__UpperCAmelCase ) , labelaid=__UpperCAmelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCAmelCase : EvalPrediction ) -> Dict: __snake_case : List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __snake_case : Tuple = TFTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case : Tuple = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Optional[int] = trainer.evaluate() __snake_case : Union[str, Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(__UpperCAmelCase ) return results if __name__ == "__main__": main()
679
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
1
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __magic_name__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) __magic_name__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } __magic_name__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __magic_name__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' __magic_name__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } __magic_name__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __magic_name__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) __magic_name__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __magic_name__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) __magic_name__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __magic_name__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' __magic_name__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' __magic_name__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' __magic_name__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' __magic_name__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' __magic_name__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' __magic_name__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' __magic_name__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' __magic_name__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' __magic_name__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __magic_name__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' __magic_name__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' __magic_name__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' __magic_name__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __magic_name__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' __magic_name__ = '''''' __magic_name__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' __magic_name__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' __magic_name__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : Dict ): assert ReadMe.from_string(__UpperCAmelCase , __UpperCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] ): with pytest.raises(__UpperCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __snake_case : Union[str, Any] = ReadMe.from_string(__UpperCAmelCase , __UpperCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ): with pytest.raises(__UpperCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(__UpperCAmelCase , __UpperCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase__( __UpperCAmelCase : str ): ReadMe.from_string(__UpperCAmelCase , __UpperCAmelCase , suppress_parsing_errors=__UpperCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ): with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Union[str, Any] = Path(__UpperCAmelCase ) / 'README.md' with open(__UpperCAmelCase , 'w+' ) as readme_file: readme_file.write(__UpperCAmelCase ) __snake_case : Optional[int] = ReadMe.from_readme(__UpperCAmelCase , __UpperCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : int = Path(__UpperCAmelCase ) / 'README.md' with open(__UpperCAmelCase , 'w+' ) as readme_file: readme_file.write(__UpperCAmelCase ) __snake_case : Tuple = expected_error.format(path=__UpperCAmelCase ) with pytest.raises(__UpperCAmelCase , match=re.escape(__UpperCAmelCase ) ): __snake_case : int = ReadMe.from_readme(__UpperCAmelCase , __UpperCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ): with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Union[str, Any] = Path(__UpperCAmelCase ) / 'README.md' with open(__UpperCAmelCase , 'w+' ) as readme_file: readme_file.write(__UpperCAmelCase ) __snake_case : Any = expected_error.format(path=__UpperCAmelCase ) with pytest.raises(__UpperCAmelCase , match=re.escape(__UpperCAmelCase ) ): ReadMe.from_readme(__UpperCAmelCase , __UpperCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase__( __UpperCAmelCase : str ): with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = Path(__UpperCAmelCase ) / 'README.md' with open(__UpperCAmelCase , 'w+' ) as readme_file: readme_file.write(__UpperCAmelCase ) ReadMe.from_readme(__UpperCAmelCase , __UpperCAmelCase , suppress_parsing_errors=__UpperCAmelCase )
679
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __magic_name__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self , _UpperCAmelCase = 1 , _UpperCAmelCase = 100 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , ): if audio_length_in_s is None: __snake_case : str = self.unet.config.sample_size / self.unet.config.sample_rate __snake_case : Any = audio_length_in_s * self.unet.config.sample_rate __snake_case : Union[str, Any] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) __snake_case : Dict = int(_UpperCAmelCase ) if sample_size % down_scale_factor != 0: __snake_case : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) __snake_case : Union[str, Any] = int(_UpperCAmelCase ) __snake_case : Tuple = next(iter(self.unet.parameters() ) ).dtype __snake_case : str = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __snake_case : Optional[int] = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase , device=audio.device ) __snake_case : List[str] = self.scheduler.timesteps.to(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __snake_case : Dict = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 __snake_case : Any = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample __snake_case : List[str] = audio.clamp(-1 , 1 ).float().cpu().numpy() __snake_case : List[Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_UpperCAmelCase )
679
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
1
from decimal import Decimal, getcontext from math import ceil, factorial def UpperCAmelCase__( __UpperCAmelCase : int ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) __snake_case : Optional[int] = precision __snake_case : List[str] = ceil(precision / 14 ) __snake_case : Optional[int] = 42_68_80 * Decimal(1_00_05 ).sqrt() __snake_case : List[str] = 1 __snake_case : Dict = 13_59_14_09 __snake_case : Tuple = Decimal(__UpperCAmelCase ) for k in range(1 , __UpperCAmelCase ): __snake_case : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(__UpperCAmelCase ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __magic_name__ = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
679
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
679
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
1
def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ): if exponent == 1: return base if exponent % 2 == 0: __snake_case : Optional[Any] = _modexpt(__UpperCAmelCase , exponent // 2 , __UpperCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCAmelCase , exponent - 1 , __UpperCAmelCase )) % modulo_value def UpperCAmelCase__( __UpperCAmelCase : int = 17_77 , __UpperCAmelCase : int = 18_55 , __UpperCAmelCase : int = 8 ): __snake_case : List[str] = base for _ in range(1 , __UpperCAmelCase ): __snake_case : Optional[Any] = _modexpt(__UpperCAmelCase , __UpperCAmelCase , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
679
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PegasusTokenizer __UpperCAmelCase = PegasusTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = True def lowercase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing __snake_case : Union[str, Any] = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def lowercase_ ( self , **_UpperCAmelCase ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return ("This is a test", "This is a test") def lowercase_ ( self ): __snake_case : Optional[Any] = '</s>' __snake_case : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(_UpperCAmelCase ) , 1_103 ) def lowercase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __snake_case : str = self.tokenizer_class.from_pretrained(self.tmpdirname ) __snake_case : int = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) __snake_case : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] __snake_case : Tuple = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __snake_case : Any = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' __snake_case : int = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] __snake_case : Tuple = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 __snake_case : List[Any] = 'To ensure a smooth flow of bank resolutions.' __snake_case : Dict = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] __snake_case : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase_ ( self ): __snake_case : str = ['This is going to be way too long.' * 150, 'short example'] __snake_case : Union[str, Any] = ['not super long but more than 5 tokens', 'tiny'] __snake_case : int = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='pt' ) __snake_case : str = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowercase_ ( self ): # fmt: off __snake_case : Optional[int] = {'input_ids': [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PegasusTokenizer __UpperCAmelCase = PegasusTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = True def lowercase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing __snake_case : Tuple = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def lowercase_ ( self , **_UpperCAmelCase ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return ("This is a test", "This is a test") def lowercase_ ( self ): __snake_case : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __snake_case : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __snake_case : Tuple = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) __snake_case : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] __snake_case : List[str] = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowercase_ ( self ): __snake_case : Union[str, Any] = ['This is going to be way too long.' * 1_000, 'short example'] __snake_case : List[str] = ['not super long but more than 5 tokens', 'tiny'] __snake_case : int = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='pt' ) __snake_case : int = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowercase_ ( self ): __snake_case : Union[str, Any] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) __snake_case : str = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
679
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = RobertaTokenizer __UpperCAmelCase = RobertaTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = {"cls_token": "<s>"} def lowercase_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __snake_case : Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __snake_case : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __snake_case : List[Any] = {'unk_token': '<unk>'} __snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def lowercase_ ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Union[str, Any] = 'lower newer' __snake_case : List[Any] = 'lower newer' return input_text, output_text def lowercase_ ( self ): __snake_case : str = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case : Optional[int] = 'lower newer' __snake_case : Union[str, Any] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __snake_case : List[str] = tokenizer.tokenize(_UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[int] = tokens + [tokenizer.unk_token] __snake_case : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_UpperCAmelCase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_UpperCAmelCase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowercase_ ( self ): __snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained('roberta-base' ) __snake_case : List[Any] = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __snake_case : str = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __snake_case : Tuple = tokenizer.encode( 'sequence builders' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __snake_case : str = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase_ ( self ): __snake_case : str = self.get_tokenizer() __snake_case : str = 'Encode this sequence.' __snake_case : Dict = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments __snake_case : List[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __snake_case : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __snake_case : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing spaces after special tokens __snake_case : Optional[Any] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )} ) # mask token has a left space __snake_case : str = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) __snake_case : Optional[Any] = 'Encode <mask> sequence' __snake_case : List[str] = 'Encode <mask>sequence' __snake_case : Optional[Any] = tokenizer.encode(_UpperCAmelCase ) __snake_case : int = encoded.index(_UpperCAmelCase ) __snake_case : Tuple = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : str = tokenizer.encode(_UpperCAmelCase ) __snake_case : Optional[int] = encoded.index(_UpperCAmelCase ) __snake_case : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): pass def lowercase_ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : Dict = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Optional[Any] = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : int = 'A, <mask> AllenNLP sentence.' __snake_case : Dict = tokenizer_r.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) __snake_case : List[Any] = tokenizer_p.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __snake_case : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __snake_case : List[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowercase_ ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __snake_case : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __snake_case : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _UpperCAmelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _UpperCAmelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _UpperCAmelCase ) def lowercase_ ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : Union[str, Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __snake_case : int = F"""{text_of_1_token} {text_of_1_token}""" __snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : Tuple = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : Optional[int] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __snake_case : int = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : Tuple = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __snake_case : Dict = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : Tuple = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __snake_case : Tuple = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __snake_case : Tuple = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : List[Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ) + 1, 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __snake_case : int = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : List[str] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : Optional[Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , )
679
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
1
def UpperCAmelCase__( __UpperCAmelCase : int = 10_00 ): __snake_case : Union[str, Any] = -1 __snake_case : Optional[Any] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __snake_case : Dict = (n * n - 2 * a * n) // (2 * n - 2 * a) __snake_case : Dict = n - a - b if c * c == (a * a + b * b): __snake_case : str = a * b * c if candidate >= product: __snake_case : List[str] = candidate return product if __name__ == "__main__": print(F'''{solution() = }''')
679
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "dpr" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase = 0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Any = vocab_size __snake_case : Dict = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : Any = intermediate_size __snake_case : Tuple = hidden_dropout_prob __snake_case : List[str] = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : int = type_vocab_size __snake_case : Tuple = initializer_range __snake_case : Union[str, Any] = layer_norm_eps __snake_case : int = projection_dim __snake_case : Any = position_embedding_type
679
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): __snake_case : Optional[int] = parent __snake_case : Optional[int] = batch_size __snake_case : Union[str, Any] = seq_length __snake_case : int = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : Optional[int] = use_token_type_ids __snake_case : str = use_labels __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : str = intermediate_size __snake_case : Tuple = hidden_act __snake_case : List[Any] = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[str] = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : Tuple = initializer_range __snake_case : Tuple = num_labels __snake_case : Tuple = num_choices __snake_case : List[Any] = scope def lowercase_ ( self ): return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def lowercase_ ( self ): __snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None __snake_case : int = None __snake_case : Dict = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = MPNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : int = model(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = MPNetForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Any = MPNetForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Optional[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_choices __snake_case : Tuple = MPNetForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Any = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = self.num_labels __snake_case : Optional[int] = MPNetForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self ): __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Optional[Any] = config_and_inputs __snake_case : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = True def lowercase_ ( self ): __snake_case : Union[str, Any] = MPNetModelTester(self ) __snake_case : List[Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_UpperCAmelCase ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def lowercase_ ( self ): __snake_case : List[str] = MPNetModel.from_pretrained('microsoft/mpnet-base' ) __snake_case : List[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __snake_case : Dict = model(_UpperCAmelCase )[0] __snake_case : List[Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) __snake_case : List[Any] = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
679
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
1
def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int ): # Base Case if curr_ind == len(__UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(__UpperCAmelCase ) ): if valid_connection(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): # Insert current vertex into path as next transition __snake_case : Optional[int] = next_ver # Validate created path if util_hamilton_cycle(__UpperCAmelCase , __UpperCAmelCase , curr_ind + 1 ): return True # Backtrack __snake_case : Dict = -1 return False def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : int = 0 ): __snake_case : int = [-1] * (len(__UpperCAmelCase ) + 1) # initialize start and end of path with starting index __snake_case : Union[str, Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__UpperCAmelCase , __UpperCAmelCase , 1 ) else []
679
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=None ): __snake_case : Tuple = None if token is not None: __snake_case : Any = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} __snake_case : Tuple = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" __snake_case : Any = requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json() __snake_case : Optional[Any] = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) __snake_case : Tuple = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__UpperCAmelCase ): __snake_case : str = requests.get(url + F"""&page={i + 2}""" , headers=__UpperCAmelCase ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : Dict=None ): __snake_case : List[str] = None if token is not None: __snake_case : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} __snake_case : Tuple = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" __snake_case : Union[str, Any] = requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json() __snake_case : List[str] = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) __snake_case : List[Any] = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__UpperCAmelCase ): __snake_case : str = requests.get(url + F"""&page={i + 2}""" , headers=__UpperCAmelCase ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : str ): __snake_case : Any = None if token is not None: __snake_case : Optional[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} __snake_case : List[str] = requests.get(__UpperCAmelCase , headers=__UpperCAmelCase , allow_redirects=__UpperCAmelCase ) __snake_case : Dict = result.headers['Location'] __snake_case : List[str] = requests.get(__UpperCAmelCase , allow_redirects=__UpperCAmelCase ) __snake_case : Optional[Any] = os.path.join(__UpperCAmelCase , F"""{artifact_name}.zip""" ) with open(__UpperCAmelCase , 'wb' ) as fp: fp.write(response.content ) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : List[Any]=None ): __snake_case : Dict = [] __snake_case : str = [] __snake_case : List[str] = None with zipfile.ZipFile(__UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__UpperCAmelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__UpperCAmelCase ) as f: for line in f: __snake_case : int = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __snake_case : List[str] = line[: line.index(': ' )] __snake_case : Union[str, Any] = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed __snake_case : Any = line[len('FAILED ' ) :] failed_tests.append(__UpperCAmelCase ) elif filename == "job_name.txt": __snake_case : int = line if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(__UpperCAmelCase )} for `errors` """ F"""and {len(__UpperCAmelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ' problem.' ) __snake_case : List[Any] = None if job_name and job_links: __snake_case : Tuple = job_links.get(__UpperCAmelCase , __UpperCAmelCase ) # A list with elements of the form (line of error, error, failed test) __snake_case : List[Any] = [x + [y] + [job_link] for x, y in zip(__UpperCAmelCase , __UpperCAmelCase )] return result def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any]=None ): __snake_case : Dict = [] __snake_case : str = [os.path.join(__UpperCAmelCase , __UpperCAmelCase ) for p in os.listdir(__UpperCAmelCase ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(__UpperCAmelCase , job_links=__UpperCAmelCase ) ) return errors def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any]=None ): __snake_case : Any = Counter() counter.update([x[1] for x in logs] ) __snake_case : List[Any] = counter.most_common() __snake_case : Optional[int] = {} for error, count in counts: if error_filter is None or error not in error_filter: __snake_case : Dict = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} __snake_case : Optional[Any] = dict(sorted(r.items() , key=lambda __UpperCAmelCase : item[1]["count"] , reverse=__UpperCAmelCase ) ) return r def UpperCAmelCase__( __UpperCAmelCase : Dict ): __snake_case : int = test.split('::' )[0] if test.startswith('tests/models/' ): __snake_case : str = test.split('/' )[2] else: __snake_case : Optional[Any] = None return test def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Tuple=None ): __snake_case : int = [(x[0], x[1], get_model(x[2] )) for x in logs] __snake_case : List[Any] = [x for x in logs if x[2] is not None] __snake_case : str = {x[2] for x in logs} __snake_case : Dict = {} for test in tests: __snake_case : List[str] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __snake_case : List[str] = counter.most_common() __snake_case : int = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __snake_case : Optional[int] = sum(error_counts.values() ) if n_errors > 0: __snake_case : Optional[Any] = {'count': n_errors, 'errors': error_counts} __snake_case : List[Any] = dict(sorted(r.items() , key=lambda __UpperCAmelCase : item[1]["count"] , reverse=__UpperCAmelCase ) ) return r def UpperCAmelCase__( __UpperCAmelCase : List[str] ): __snake_case : Optional[int] = '| no. | error | status |' __snake_case : Tuple = '|-:|:-|:-|' __snake_case : List[Any] = [header, sep] for error in reduced_by_error: __snake_case : Optional[Any] = reduced_by_error[error]['count'] __snake_case : Optional[int] = F"""| {count} | {error[:1_00]} | |""" lines.append(__UpperCAmelCase ) return "\n".join(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): __snake_case : Dict = '| model | no. of errors | major error | count |' __snake_case : Optional[Any] = '|-:|-:|-:|-:|' __snake_case : Optional[Any] = [header, sep] for model in reduced_by_model: __snake_case : Optional[int] = reduced_by_model[model]['count'] __snake_case , __snake_case : List[Any] = list(reduced_by_model[model]['errors'].items() )[0] __snake_case : Dict = F"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(__UpperCAmelCase ) return "\n".join(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') __magic_name__ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __magic_name__ = get_job_links(args.workflow_run_id, token=args.token) __magic_name__ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __magic_name__ = k.find(''' / ''') __magic_name__ = k[index + len(''' / ''') :] __magic_name__ = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __magic_name__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __magic_name__ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __magic_name__ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __magic_name__ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __magic_name__ = reduce_by_error(errors) __magic_name__ = reduce_by_model(errors) __magic_name__ = make_github_table(reduced_by_error) __magic_name__ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
679
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
1
__magic_name__ = [ '''DownloadConfig''', '''DownloadManager''', '''DownloadMode''', '''StreamingDownloadManager''', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
679
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=100 , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=[0, 1, 2, 3] , ): __snake_case : List[str] = parent __snake_case : str = 100 __snake_case : List[Any] = batch_size __snake_case : Dict = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Dict = num_channels __snake_case : Tuple = is_training __snake_case : List[Any] = use_labels __snake_case : Union[str, Any] = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : List[str] = type_sequence_label_size __snake_case : int = initializer_range __snake_case : List[Any] = scope __snake_case : str = out_indices __snake_case : Any = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case : Tuple = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = num_patches + 1 def lowercase_ ( self ): __snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : List[Any] = None __snake_case : List[str] = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = BeitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Dict = BeitForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.type_sequence_label_size __snake_case : Union[str, Any] = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Dict = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case : List[Any] = 1 __snake_case : Optional[Any] = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Optional[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[int] = self.num_labels __snake_case : Dict = BeitForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[str] = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __snake_case : int = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowercase_ ( self ): __snake_case : str = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : str = config_and_inputs __snake_case : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Union[str, Any] = BeitModelTester(self ) __snake_case : str = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def lowercase_ ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Any = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowercase_ ( self ): __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def lowercase_ ( self ): if not self.model_tester.is_training: return __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling]: continue __snake_case : int = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() __snake_case : Optional[Any] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) __snake_case : str = model(**_UpperCAmelCase ).loss loss.backward() def lowercase_ ( self ): __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __snake_case : Dict = False __snake_case : Dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __snake_case : Optional[Any] = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() __snake_case : List[Any] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) __snake_case : Union[str, Any] = model(**_UpperCAmelCase ).loss loss.backward() def lowercase_ ( self ): __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : str = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: __snake_case : int = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def lowercase_ ( self ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[str] = BeitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Optional[int] = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(_UpperCAmelCase ) __snake_case : Any = self.default_image_processor __snake_case : Optional[int] = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values.to(_UpperCAmelCase ) # prepare bool_masked_pos __snake_case : List[str] = torch.ones((1, 196) , dtype=torch.bool ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Any = model(pixel_values=_UpperCAmelCase , bool_masked_pos=_UpperCAmelCase ) __snake_case : Any = outputs.logits # verify the logits __snake_case : int = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : List[Any] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _UpperCAmelCase , atol=1E-2 ) ) @slow def lowercase_ ( self ): __snake_case : Union[str, Any] = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(_UpperCAmelCase ) __snake_case : List[Any] = self.default_image_processor __snake_case : Tuple = prepare_img() __snake_case : List[str] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : Dict = outputs.logits # verify the logits __snake_case : Dict = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Dict = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) __snake_case : Dict = 281 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowercase_ ( self ): __snake_case : Tuple = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( _UpperCAmelCase ) __snake_case : List[str] = self.default_image_processor __snake_case : List[Any] = prepare_img() __snake_case : Dict = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : List[str] = model(**_UpperCAmelCase ) __snake_case : Any = outputs.logits # verify the logits __snake_case : Optional[int] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Union[str, Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) __snake_case : Dict = 2_396 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowercase_ ( self ): __snake_case : Union[str, Any] = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __snake_case : List[str] = model.to(_UpperCAmelCase ) __snake_case : List[Any] = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) __snake_case : Optional[int] = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __snake_case : List[Any] = Image.open(ds[0]['file'] ) __snake_case : str = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : Tuple = outputs.logits # verify the logits __snake_case : Any = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : List[str] = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __snake_case : Any = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_UpperCAmelCase , ) else: __snake_case : str = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __snake_case : Tuple = model.to(_UpperCAmelCase ) __snake_case : List[Any] = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) __snake_case : int = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __snake_case : Optional[int] = Image.open(ds[0]['file'] ) __snake_case : int = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Any = model(**_UpperCAmelCase ) __snake_case : Optional[Any] = outputs.logits.detach().cpu() __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(500, 300)] ) __snake_case : int = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : Union[str, Any] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
1
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ): __snake_case : Any = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict ): __snake_case : Dict = 0 while b > 0: if b & 1: __snake_case : Dict = ((res % c) + (a % c)) % c a += a b >>= 1 return res
679
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) __UpperCAmelCase = "CIDAS/clipseg-rd64-refined" __UpperCAmelCase = "image_segmenter" __UpperCAmelCase = CLIPSegForImageSegmentation __UpperCAmelCase = ["image", "text"] __UpperCAmelCase = ["image"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['vision'] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): return self.pre_processor(text=[label] , images=[image] , padding=_UpperCAmelCase , return_tensors='pt' ) def lowercase_ ( self , _UpperCAmelCase ): with torch.no_grad(): __snake_case : str = self.model(**_UpperCAmelCase ).logits return logits def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = outputs.cpu().detach().numpy() __snake_case : Optional[int] = 0 __snake_case : int = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
679
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] __magic_name__ = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } __magic_name__ = {F'''funnel-transformer/{name}''': 512 for name in _model_names} __magic_name__ = {F'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = FunnelTokenizer __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = 2 def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<sep>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<cls>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase="##" , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , clean_text=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , wordpieces_prefix=_UpperCAmelCase , **_UpperCAmelCase , ) __snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCAmelCase ) != tokenize_chinese_chars ): __snake_case : Any = getattr(_UpperCAmelCase , normalizer_state.pop('type' ) ) __snake_case : Tuple = do_lower_case __snake_case : Optional[Any] = strip_accents __snake_case : List[Any] = tokenize_chinese_chars __snake_case : Dict = normalizer_class(**_UpperCAmelCase ) __snake_case : Dict = do_lower_case def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Optional[int] = [self.sep_token_id] __snake_case : str = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Tuple = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
679
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
1
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str = " " ): __snake_case : Tuple = [] __snake_case : Optional[int] = 0 for index, char in enumerate(__UpperCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) __snake_case : Tuple = index + 1 elif index + 1 == len(__UpperCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
679
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = BartphoTokenizer __UpperCAmelCase = False __UpperCAmelCase = True def lowercase_ ( self ): super().setUp() __snake_case : Tuple = ['▁This', '▁is', '▁a', '▁t', 'est'] __snake_case : Dict = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __snake_case : str = {'unk_token': '<unk>'} __snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) __snake_case : List[str] = BartphoTokenizer(_UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = 'This is a là test' __snake_case : Optional[Any] = 'This is a<unk><unk> test' return input_text, output_text def lowercase_ ( self ): __snake_case : List[Any] = BartphoTokenizer(_UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case : Tuple = 'This is a là test' __snake_case : Tuple = '▁This ▁is ▁a ▁l à ▁t est'.split() __snake_case : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : List[str] = tokens + [tokenizer.unk_token] __snake_case : Dict = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
679
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = WavaVecaPhonemeCTCTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : Union[str, Any] = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) __snake_case : str = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __snake_case : List[str] = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} __snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): __snake_case : Tuple = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase )) for i in range(len(_UpperCAmelCase ) )] __snake_case : int = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Union[str, Any] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[str] = [t[0] for t in toks] # Ensure consistency __snake_case : List[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : Tuple = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : Optional[Any] = ' ' + output_txt __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) __snake_case : Optional[int] = tokenizer('m xxx ɪ' , do_phonemize=_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) __snake_case : Tuple = tokenizer('m aaa ɪ ccc' , do_phonemize=_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa __snake_case : Optional[int] = tokenizer('maɪ c' , do_phonemize=_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , [3, 200] ) # mai should be <unk> (=3) def lowercase_ ( self ): __snake_case : Any = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : Optional[int] = 'Hello how are you' __snake_case : str = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(_UpperCAmelCase , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : Union[str, Any] = 'Hello how are you' __snake_case : str = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(_UpperCAmelCase ).input_ids , tokenizer(_UpperCAmelCase , do_phonemize=_UpperCAmelCase ).input_ids ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : List[Any] = 'Hello how are you' __snake_case : Dict = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) __snake_case : Optional[Any] = tokenizer.decode(tokenizer(_UpperCAmelCase ).input_ids ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : str = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] __snake_case : Optional[int] = tokenizer.decode(sample_ids[0] ) __snake_case : List[Any] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , batch_tokens[0] ) self.assertEqual(_UpperCAmelCase , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def lowercase_ ( self ): __snake_case : Dict = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __snake_case : List[str] = 'Hello how are you' __snake_case : str = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(_UpperCAmelCase , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def lowercase_ ( self ): __snake_case : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __snake_case : List[Any] = 'Hello how are you' __snake_case : List[str] = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(_UpperCAmelCase ).input_ids , tokenizer(_UpperCAmelCase , do_phonemize=_UpperCAmelCase ).input_ids ) def lowercase_ ( self ): __snake_case : Optional[int] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off __snake_case : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter __snake_case : Dict = tokenizer.decode(sample_ids[0] ) __snake_case : List[Any] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , batch_tokens[0] ) self.assertEqual(_UpperCAmelCase , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter __snake_case : Tuple = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=_UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase , filter_word_delimiter_token=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , batch_tokens[0] ) self.assertEqual(_UpperCAmelCase , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def lowercase_ ( self ): __snake_case : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __snake_case : Any = 'Hello how are you' __snake_case : Any = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) __snake_case : int = tokenizer.decode(tokenizer(_UpperCAmelCase ).input_ids , filter_word_delimiter_token=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __snake_case : Optional[int] = 'Hello how are you' __snake_case : Any = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) __snake_case : List[Any] = tokenizer.decode(tokenizer(_UpperCAmelCase ).input_ids , filter_word_delimiter_token=_UpperCAmelCase ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=_UpperCAmelCase ) __snake_case : Optional[Any] = 'Hello how are you' __snake_case : Optional[Any] = tokenizer(_UpperCAmelCase , phonemizer_lang='en-us' ).input_ids __snake_case : Optional[Any] = tokenizer(_UpperCAmelCase , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase ) __snake_case : Tuple = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(_UpperCAmelCase , 'ɛ l o h aʊ a ʁ j u' ) def lowercase_ ( self ): __snake_case : List[str] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __snake_case : str = 'Hello how Are you' __snake_case : Optional[Any] = 'hello how are you' __snake_case : str = tokenizer(_UpperCAmelCase ).input_ids __snake_case : Tuple = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : str = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off __snake_case : Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on __snake_case : Any = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self ): __snake_case : List[Any] = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __snake_case : str = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on __snake_case : List[Any] = tokenizer.decode(_UpperCAmelCase , output_char_offsets=_UpperCAmelCase , filter_word_delimiter_token=_UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def lowercase_ ( self ): __snake_case : Any = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(isinstance(outputs_list[0] , _UpperCAmelCase ) ) # transform list to ModelOutput __snake_case : int = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(_UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): [recursive_check(_UpperCAmelCase , _UpperCAmelCase ) for la, la in zip(_UpperCAmelCase , _UpperCAmelCase )] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off __snake_case : Union[str, Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __snake_case : int = tokenizer.batch_decode(_UpperCAmelCase , output_char_offsets=_UpperCAmelCase ) __snake_case : List[Any] = [tokenizer.decode(_UpperCAmelCase , output_char_offsets=_UpperCAmelCase ) for ids in sample_ids] check_list_tuples_equal(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def lowercase_ ( self ): pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def lowercase_ ( self ): pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def lowercase_ ( self ): pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Dict = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Any = tokenizer.vocab_size __snake_case : Optional[Any] = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __snake_case : Union[str, Any] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] __snake_case : List[str] = tokenizer.add_tokens(_UpperCAmelCase ) __snake_case : int = tokenizer.vocab_size __snake_case : Optional[int] = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) ) __snake_case : str = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __snake_case : Union[str, Any] = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} __snake_case : Tuple = tokenizer.add_special_tokens(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.vocab_size __snake_case : Dict = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) ) __snake_case : Dict = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def lowercase_ ( self ): pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Tuple = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] __snake_case : Any = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(output['text'] , _UpperCAmelCase )
679
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __magic_name__ = None __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } __magic_name__ = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off __magic_name__ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = MBartTokenizer __UpperCAmelCase = [] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it __snake_case : str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( vocab_file=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __snake_case : Any = vocab_file __snake_case : Tuple = False if not self.vocab_file else True __snake_case : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __snake_case : Dict = { lang_code: self.convert_tokens_to_ids(_UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : str = src_lang if src_lang is not None else 'en_XX' __snake_case : List[Any] = self.convert_tokens_to_ids(self._src_lang ) __snake_case : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowercase_ ( self ): return self._src_lang @src_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : int = [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __snake_case : Tuple = src_lang __snake_case : Optional[Any] = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Dict = self.convert_tokens_to_ids(_UpperCAmelCase ) __snake_case : Union[str, Any] = tgt_lang_id return inputs def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = "en_XX" , _UpperCAmelCase = None , _UpperCAmelCase = "ro_RO" , **_UpperCAmelCase , ): __snake_case : Optional[Any] = src_lang __snake_case : List[str] = tgt_lang return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def lowercase_ ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : int = self.convert_tokens_to_ids(_UpperCAmelCase ) __snake_case : int = [] __snake_case : List[str] = [self.eos_token_id, self.cur_lang_code] __snake_case : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[str] = self.convert_tokens_to_ids(_UpperCAmelCase ) __snake_case : List[str] = [] __snake_case : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
679
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
1
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
1
import os def UpperCAmelCase__( ): with open(os.path.dirname(__UpperCAmelCase ) + '/grid.txt' ) as f: __snake_case : str = [] # noqa: E741 for _ in range(20 ): l.append([int(__UpperCAmelCase ) for x in f.readline().split()] ) __snake_case : Tuple = 0 # right for i in range(20 ): for j in range(17 ): __snake_case : Tuple = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __snake_case : Any = temp # down for i in range(17 ): for j in range(20 ): __snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __snake_case : Any = temp # diagonal 1 for i in range(17 ): for j in range(17 ): __snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __snake_case : Optional[int] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): __snake_case : int = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __snake_case : int = temp return maximum if __name__ == "__main__": print(solution())
679
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
1
import math import tensorflow as tf from packaging import version def UpperCAmelCase__( __UpperCAmelCase : List[str] ): __snake_case : str = tf.convert_to_tensor(__UpperCAmelCase ) __snake_case : Optional[int] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def UpperCAmelCase__( __UpperCAmelCase : Dict ): __snake_case : List[str] = tf.convert_to_tensor(__UpperCAmelCase ) __snake_case : List[Any] = tf.cast(math.pi , x.dtype ) __snake_case : List[str] = tf.cast(0.044715 , x.dtype ) __snake_case : int = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCAmelCase , 3 )) )) return x * cdf def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): __snake_case : List[Any] = tf.convert_to_tensor(__UpperCAmelCase ) return x * tf.tanh(tf.math.softplus(__UpperCAmelCase ) ) def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Optional[int] = tf.convert_to_tensor(__UpperCAmelCase ) __snake_case : Union[str, Any] = tf.cast(0.044715 , x.dtype ) __snake_case : List[str] = tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : int = tf.convert_to_tensor(__UpperCAmelCase ) __snake_case : Any = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): return tf.clip_by_value(_gelu(__UpperCAmelCase ) , -10 , 10 ) def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple=-1 ): __snake_case , __snake_case : Dict = tf.split(__UpperCAmelCase , 2 , axis=__UpperCAmelCase ) return a * tf.math.sigmoid(__UpperCAmelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def UpperCAmelCase__( __UpperCAmelCase : Dict ): return tf.keras.activations.gelu(__UpperCAmelCase , approximate=__UpperCAmelCase ) __magic_name__ = tf.keras.activations.gelu __magic_name__ = approximate_gelu_wrap else: __magic_name__ = _gelu __magic_name__ = _gelu_new __magic_name__ = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def UpperCAmelCase__( __UpperCAmelCase : Any ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
679
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
1
def UpperCAmelCase__( __UpperCAmelCase : Tuple ): for i in range(len(SCREAMING_SNAKE_CASE_ ) - 1 , 0 , -1 ): __snake_case : Optional[Any] = False for j in range(SCREAMING_SNAKE_CASE_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __snake_case , __snake_case : Tuple = unsorted[j - 1], unsorted[j] __snake_case : List[str] = True for j in range(SCREAMING_SNAKE_CASE_ ): if unsorted[j] > unsorted[j + 1]: __snake_case , __snake_case : str = unsorted[j + 1], unsorted[j] __snake_case : Optional[int] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = input('''Enter numbers separated by a comma:\n''').strip() __magic_name__ = [int(item) for item in user_input.split(''',''')] print(F'''{cocktail_shaker_sort(unsorted) = }''')
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ): __snake_case : Any = 1 __snake_case : Union[str, Any] = 3 __snake_case : Tuple = (32, 32) __snake_case : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCAmelCase__ ) @property def lowercase_ ( self ): def extract(*_UpperCAmelCase , **_UpperCAmelCase ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self ): __snake_case : List[Any] = torch.ones([0] ) def lowercase_ ( self , _UpperCAmelCase ): self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def lowercase_ ( self ): __snake_case : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator __snake_case : int = self.dummy_cond_unet __snake_case : Tuple = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) __snake_case : str = self.dummy_vae __snake_case : Union[str, Any] = self.dummy_text_encoder __snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __snake_case : Optional[Any] = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) __snake_case : Tuple = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __snake_case : Tuple = 'A painting of a squirrel eating a burger' __snake_case : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) __snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) __snake_case : List[Any] = output.images __snake_case : Tuple = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) __snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCAmelCase__ , )[0] __snake_case : Any = image[0, -3:, -3:, -1] __snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : Union[str, Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator __snake_case : Optional[int] = self.dummy_cond_unet __snake_case : Tuple = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) __snake_case : str = self.dummy_vae __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __snake_case : int = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) __snake_case : List[str] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __snake_case : Optional[int] = 'A painting of a squirrel eating a burger' __snake_case : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) __snake_case : Optional[Any] = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) __snake_case : Union[str, Any] = output.images __snake_case : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) __snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCAmelCase__ , )[0] __snake_case : Tuple = image[0, -3:, -3:, -1] __snake_case : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): __snake_case : List[str] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert isinstance(pipe.scheduler , lowerCAmelCase__ ) assert pipe.safety_checker is None __snake_case : Any = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__ ) __snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None __snake_case : Optional[int] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowercase_ ( self ): __snake_case : Tuple = self.dummy_cond_unet __snake_case : Any = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) __snake_case : str = self.dummy_vae __snake_case : str = self.dummy_text_encoder __snake_case : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 __snake_case : Any = unet.half() __snake_case : List[str] = vae.half() __snake_case : Any = bert.half() # make sure here that pndm scheduler skips prk __snake_case : int = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) __snake_case : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __snake_case : Optional[int] = 'A painting of a squirrel eating a burger' __snake_case : str = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCAmelCase__ ) __snake_case : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __snake_case : Dict = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) __snake_case : Union[str, Any] = 4_003_660_346 __snake_case : Optional[int] = 7 # without safety guidance (sld_guidance_scale = 0) __snake_case : Dict = torch.manual_seed(lowerCAmelCase__ ) __snake_case : List[Any] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) __snake_case : Dict = output.images __snake_case : Dict = image[0, -3:, -3:, -1] __snake_case : List[Any] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __snake_case : int = torch.manual_seed(lowerCAmelCase__ ) __snake_case : Any = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __snake_case : int = output.images __snake_case : Union[str, Any] = image[0, -3:, -3:, -1] __snake_case : Union[str, Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): __snake_case : Tuple = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCAmelCase__ ) __snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __snake_case : Dict = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __snake_case : Optional[Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' __snake_case : Optional[int] = 2_734_971_755 __snake_case : Optional[Any] = 7 __snake_case : str = torch.manual_seed(lowerCAmelCase__ ) __snake_case : Optional[Any] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) __snake_case : Dict = output.images __snake_case : Union[str, Any] = image[0, -3:, -3:, -1] __snake_case : int = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __snake_case : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) __snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __snake_case : Tuple = output.images __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): __snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) __snake_case : List[str] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __snake_case : Dict = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) __snake_case : Any = 1_044_355_234 __snake_case : Dict = 12 __snake_case : int = torch.manual_seed(lowerCAmelCase__ ) __snake_case : Dict = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) __snake_case : Optional[Any] = output.images __snake_case : Dict = image[0, -3:, -3:, -1] __snake_case : Tuple = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __snake_case : Dict = torch.manual_seed(lowerCAmelCase__ ) __snake_case : List[Any] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __snake_case : List[str] = output.images __snake_case : str = image[0, -3:, -3:, -1] __snake_case : Any = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
701
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __magic_name__ = get_logger(__name__) __magic_name__ = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class __SCREAMING_SNAKE_CASE : """simple docstring""" @add_start_docstrings(UpperCAmelCase_ ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __SCREAMING_SNAKE_CASE : """simple docstring""" @add_start_docstrings(UpperCAmelCase_ ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" @add_start_docstrings(UpperCAmelCase_ ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): for processor in self: __snake_case : Optional[Any] = inspect.signature(processor.__call__ ).parameters if len(UpperCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) __snake_case : int = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) else: __snake_case : Optional[Any] = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return scores class __SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" def __init__( self , _UpperCAmelCase ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) __snake_case : List[str] = temperature def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = scores / self.temperature return scores class __SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = -float('Inf' ) , _UpperCAmelCase = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) __snake_case : Tuple = top_p __snake_case : Union[str, Any] = filter_value __snake_case : int = min_tokens_to_keep def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case , __snake_case : Tuple = lax.top_k(UpperCAmelCase_ , scores.shape[-1] ) __snake_case : Union[str, Any] = jnp.full_like(UpperCAmelCase_ , self.filter_value ) __snake_case : Dict = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) __snake_case : Any = cumulative_probs < self.top_p # include the token that is higher than top_p as well __snake_case : str = jnp.roll(UpperCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase_ ) # min tokens to keep __snake_case : List[str] = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase_ ) __snake_case : str = jnp.where(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : Any = jax.lax.sort_key_val(UpperCAmelCase_ , UpperCAmelCase_ )[-1] return next_scores class __SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = -float('Inf' ) , _UpperCAmelCase = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) __snake_case : int = max(UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : List[Any] = filter_value def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case , __snake_case : Any = scores.shape __snake_case : int = jnp.full(batch_size * vocab_size , self.filter_value ) __snake_case : List[str] = min(self.top_k , scores.shape[-1] ) # Safety check __snake_case , __snake_case : int = lax.top_k(UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : List[Any] = jnp.broadcast_to((jnp.arange(UpperCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __snake_case : Dict = topk_scores.flatten() __snake_case : Dict = topk_indices.flatten() + shift __snake_case : Dict = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase_ ) __snake_case : List[str] = next_scores_flat.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) return next_scores class __SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Dict = bos_token_id def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Union[str, Any] = jnp.full(scores.shape , -float('inf' ) ) __snake_case : Dict = 1 - jnp.bool_(cur_len - 1 ) __snake_case : List[str] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class __SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = max_length __snake_case : Optional[Any] = eos_token_id def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = jnp.full(scores.shape , -float('inf' ) ) __snake_case : List[str] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __snake_case : Optional[int] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class __SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) __snake_case : Optional[int] = min_length __snake_case : Any = eos_token_id def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __snake_case : str = jnp.where(UpperCAmelCase_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , UpperCAmelCase_ ) return scores class __SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Union[str, Any] = list(UpperCAmelCase_ ) __snake_case : Tuple = begin_index def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Any = 1 - jnp.bool_(cur_len - self.begin_index ) __snake_case : List[Any] = jnp.where(UpperCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , UpperCAmelCase_ ) return scores class __SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : int = list(UpperCAmelCase_ ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class __SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Any = dict(UpperCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __snake_case : List[str] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __snake_case : str = force_token_array.at[index].set(UpperCAmelCase_ ) __snake_case : List[str] = jnp.intaa(UpperCAmelCase_ ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): def _force_token(_UpperCAmelCase ): __snake_case : Any = scores.shape[0] __snake_case : List[str] = self.force_token_array[generation_idx] __snake_case : int = jnp.ones_like(UpperCAmelCase_ , dtype=scores.dtype ) * -float('inf' ) __snake_case : Any = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __snake_case : List[Any] = lax.dynamic_update_slice(UpperCAmelCase_ , UpperCAmelCase_ , (0, current_token) ) return new_scores __snake_case : List[Any] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase_ ) , lambda: scores , ) , ) return scores class __SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[int] = generate_config.eos_token_id __snake_case : List[Any] = generate_config.no_timestamps_token_id __snake_case : Optional[int] = generate_config.no_timestamps_token_id + 1 __snake_case : List[Any] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase_ , 'max_initial_timestamp_index' ): __snake_case : Any = generate_config.max_initial_timestamp_index else: __snake_case : str = model_config.vocab_size if self.max_initial_timestamp_index is None: __snake_case : Optional[Any] = model_config.vocab_size def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(_UpperCAmelCase , _UpperCAmelCase ): __snake_case : Union[str, Any] = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : str = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase_ , ) __snake_case : Dict = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : Dict = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase_ , UpperCAmelCase_ , ) return jnp.where( UpperCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , UpperCAmelCase_ , ) __snake_case : Tuple = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : Optional[Any] = jnp.where(cur_len == self.begin_index , UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : Optional[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase_ , ) __snake_case : Union[str, Any] = self.timestamp_begin + self.max_initial_timestamp_index __snake_case : int = jnp.where( UpperCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , UpperCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp __snake_case : Any = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) def handle_cumulative_probs(_UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __snake_case : Optional[int] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , UpperCAmelCase_ , ) __snake_case : Dict = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) return scores
702
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
0
from __future__ import annotations import bisect def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str = 0 , __UpperCAmelCase : List[Any] = -1 ): if hi < 0: __snake_case : Tuple = len(__UpperCAmelCase ) while lo < hi: __snake_case : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __snake_case : Tuple = mid + 1 else: __snake_case : List[str] = mid return lo def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any = 0 , __UpperCAmelCase : Dict = -1 ): if hi < 0: __snake_case : List[str] = len(__UpperCAmelCase ) while lo < hi: __snake_case : List[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __snake_case : Dict = mid + 1 else: __snake_case : Union[str, Any] = mid return lo def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict = 0 , __UpperCAmelCase : Union[str, Any] = -1 ): sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] = 0 , __UpperCAmelCase : Optional[Any] = -1 ): sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : int ): __snake_case : Optional[int] = 0 __snake_case : str = len(__UpperCAmelCase ) - 1 while left <= right: __snake_case : int = left + (right - left) // 2 __snake_case : List[str] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __snake_case : Union[str, Any] = midpoint - 1 else: __snake_case : Union[str, Any] = midpoint + 1 return None def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : str ): __snake_case : Optional[int] = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : Any ): if right < left: return None __snake_case : int = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = input('''Enter numbers separated by comma:\n''').strip() __magic_name__ = sorted(int(item) for item in user_input.split(''',''')) __magic_name__ = int(input('''Enter a single number to be found in the list:\n''')) __magic_name__ = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
703
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "beit" def __init__( self , _UpperCAmelCase=8_192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**UpperCamelCase_ ) __snake_case : Union[str, Any] = vocab_size __snake_case : Dict = hidden_size __snake_case : Dict = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_act __snake_case : str = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : int = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = image_size __snake_case : Optional[int] = patch_size __snake_case : List[Any] = num_channels __snake_case : Union[str, Any] = use_mask_token __snake_case : int = use_absolute_position_embeddings __snake_case : Union[str, Any] = use_relative_position_bias __snake_case : List[Any] = use_shared_relative_position_bias __snake_case : int = layer_scale_init_value __snake_case : Union[str, Any] = drop_path_rate __snake_case : List[Any] = use_mean_pooling # decode head attributes (semantic segmentation) __snake_case : Dict = out_indices __snake_case : Dict = pool_scales # auxiliary head attributes (semantic segmentation) __snake_case : List[str] = use_auxiliary_head __snake_case : str = auxiliary_loss_weight __snake_case : List[Any] = auxiliary_channels __snake_case : Union[str, Any] = auxiliary_num_convs __snake_case : int = auxiliary_concat_input __snake_case : Union[str, Any] = semantic_loss_ignore_index class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = version.parse("1.11") @property def lowercase_ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase_ ( self ): return 1E-4
704
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCAmelCase__( __UpperCAmelCase : str ): return x + 2 class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Optional[Any] = "x = 3" __snake_case : Optional[int] = {} __snake_case : Tuple = evaluate(__lowerCamelCase , {} , state=__lowerCamelCase ) assert result == 3 self.assertDictEqual(__lowerCamelCase , {'x': 3} ) __snake_case : Dict = "x = y" __snake_case : List[Any] = {"y": 5} __snake_case : List[Any] = evaluate(__lowerCamelCase , {} , state=__lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__lowerCamelCase , {'x': 5, 'y': 5} ) def lowercase_ ( self ): __snake_case : Tuple = "y = add_two(x)" __snake_case : Dict = {"x": 3} __snake_case : Optional[int] = evaluate(__lowerCamelCase , {'add_two': add_two} , state=__lowerCamelCase ) assert result == 5 self.assertDictEqual(__lowerCamelCase , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: __snake_case : Union[str, Any] = evaluate(__lowerCamelCase , {} , state=__lowerCamelCase ) assert result is None assert "tried to execute add_two" in out.out def lowercase_ ( self ): __snake_case : Optional[int] = "x = 3" __snake_case : Optional[Any] = {} __snake_case : Tuple = evaluate(__lowerCamelCase , {} , state=__lowerCamelCase ) assert result == 3 self.assertDictEqual(__lowerCamelCase , {'x': 3} ) def lowercase_ ( self ): __snake_case : List[str] = "test_dict = {'x': x, 'y': add_two(x)}" __snake_case : List[Any] = {"x": 3} __snake_case : Any = evaluate(__lowerCamelCase , {'add_two': add_two} , state=__lowerCamelCase ) self.assertDictEqual(__lowerCamelCase , {'x': 3, 'y': 5} ) self.assertDictEqual(__lowerCamelCase , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase_ ( self ): __snake_case : str = "x = 3\ny = 5" __snake_case : Optional[int] = {} __snake_case : Any = evaluate(__lowerCamelCase , {} , state=__lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__lowerCamelCase , {'x': 3, 'y': 5} ) def lowercase_ ( self ): __snake_case : Any = "text = f'This is x: {x}.'" __snake_case : Union[str, Any] = {"x": 3} __snake_case : Optional[int] = evaluate(__lowerCamelCase , {} , state=__lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__lowerCamelCase , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase_ ( self ): __snake_case : Tuple = "if x <= 3:\n y = 2\nelse:\n y = 5" __snake_case : Any = {"x": 3} __snake_case : Union[str, Any] = evaluate(__lowerCamelCase , {} , state=__lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__lowerCamelCase , {'x': 3, 'y': 2} ) __snake_case : Union[str, Any] = {"x": 8} __snake_case : Any = evaluate(__lowerCamelCase , {} , state=__lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__lowerCamelCase , {'x': 8, 'y': 5} ) def lowercase_ ( self ): __snake_case : str = "test_list = [x, add_two(x)]" __snake_case : Dict = {"x": 3} __snake_case : List[str] = evaluate(__lowerCamelCase , {'add_two': add_two} , state=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [3, 5] ) self.assertDictEqual(__lowerCamelCase , {'x': 3, 'test_list': [3, 5]} ) def lowercase_ ( self ): __snake_case : Any = "y = x" __snake_case : Any = {"x": 3} __snake_case : Optional[int] = evaluate(__lowerCamelCase , {} , state=__lowerCamelCase ) assert result == 3 self.assertDictEqual(__lowerCamelCase , {'x': 3, 'y': 3} ) def lowercase_ ( self ): __snake_case : List[str] = "test_list = [x, add_two(x)]\ntest_list[1]" __snake_case : int = {"x": 3} __snake_case : Union[str, Any] = evaluate(__lowerCamelCase , {'add_two': add_two} , state=__lowerCamelCase ) assert result == 5 self.assertDictEqual(__lowerCamelCase , {'x': 3, 'test_list': [3, 5]} ) __snake_case : List[str] = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" __snake_case : Optional[Any] = {"x": 3} __snake_case : Optional[int] = evaluate(__lowerCamelCase , {'add_two': add_two} , state=__lowerCamelCase ) assert result == 5 self.assertDictEqual(__lowerCamelCase , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase_ ( self ): __snake_case : Optional[int] = "x = 0\nfor i in range(3):\n x = i" __snake_case : Dict = {} __snake_case : int = evaluate(__lowerCamelCase , {'range': range} , state=__lowerCamelCase ) assert result == 2 self.assertDictEqual(__lowerCamelCase , {'x': 2, 'i': 2} )
705
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
0
import operator def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] = False , __UpperCAmelCase : Union[str, Any] = None ): __snake_case : Union[str, Any] = operator.lt if reverse else operator.gt __snake_case : List[str] = solution or [] if not arr: return solution __snake_case : Tuple = [arr.pop(0 )] for i, item in enumerate(lowerCamelCase_ ): if _operator(lowerCamelCase_ , sublist[-1] ): sublist.append(lowerCamelCase_ ) arr.pop(lowerCamelCase_ ) # merging sublist into solution list if not solution: solution.extend(lowerCamelCase_ ) else: while sublist: __snake_case : List[Any] = sublist.pop(0 ) for i, xx in enumerate(lowerCamelCase_ ): if not _operator(lowerCamelCase_ , lowerCamelCase_ ): solution.insert(lowerCamelCase_ , lowerCamelCase_ ) break else: solution.append(lowerCamelCase_ ) strand_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
706
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
0
import math from datetime import datetime, timedelta def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : str = year % 19 __snake_case : Optional[int] = year % 4 __snake_case : int = year % 7 __snake_case : int = math.floor(year / 1_00 ) __snake_case : Optional[int] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) __snake_case : List[Any] = leap_day_inhibits / 4 __snake_case : Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __snake_case : List[str] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __snake_case : List[str] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __snake_case : Union[str, Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__UpperCAmelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__UpperCAmelCase , 4 , 18 ) else: return datetime(__UpperCAmelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): __magic_name__ = "will be" if year > datetime.now().year else "was" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
707
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
0
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __magic_name__ = object() # For specifying empty leaf dict `{}` __magic_name__ = object() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : int ): __snake_case : str = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__A ) - len(__A ) + 1 ): __snake_case : Optional[int] = [x.match(__A ) for x, y in zip(__A , ks[i:] )] if matches and all(__A ): return True return False def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def replace(__UpperCAmelCase : str , __UpperCAmelCase : Tuple ): for rule, replacement in rules: if _match(__A , __A ): return replacement return val return replace def UpperCAmelCase__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __A )), (("transformer", "wte", "embedding"), P('mp' , __A )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__A , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __A )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__A , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __A )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase__( __UpperCAmelCase : Any ): __snake_case : int = _get_partition_rules() __snake_case : Optional[int] = _replacement_rules(__A ) __snake_case : Dict = {k: _unmatched for k in flatten_dict(__A )} __snake_case : int = {k: replace(__A , __A ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__A ) )
708
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
0
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): super().__init__( features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase , streaming=_lowerCAmelCase , num_proc=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : Dict = Generator( cache_dir=_lowerCAmelCase , features=_lowerCAmelCase , generator=_lowerCAmelCase , gen_kwargs=_lowerCAmelCase , **_lowerCAmelCase , ) def lowercase_ ( self ): # Build iterable dataset if self.streaming: __snake_case : List[str] = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: __snake_case : Union[str, Any] = None __snake_case : Optional[int] = None __snake_case : Tuple = None __snake_case : Tuple = None self.builder.download_and_prepare( download_config=_lowerCAmelCase , download_mode=_lowerCAmelCase , verification_mode=_lowerCAmelCase , base_path=_lowerCAmelCase , num_proc=self.num_proc , ) __snake_case : Dict = self.builder.as_dataset( split='train' , verification_mode=_lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset
709
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
0
def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __snake_case : Optional[Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCamelCase__ ) if number < 1: __snake_case : str = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCamelCase__ ) __snake_case : Optional[Any] = 1 for i in range(1 , lowerCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
710
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __magic_name__ = logging.get_logger(__name__) # General docstring __magic_name__ = 'RegNetConfig' # Base docstring __magic_name__ = 'facebook/regnet-y-040' __magic_name__ = [1, 1_088, 7, 7] # Image classification docstring __magic_name__ = 'facebook/regnet-y-040' __magic_name__ = 'tabby, tabby cat' __magic_name__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = 3 , _UpperCAmelCase = 1 , _UpperCAmelCase = 1 , _UpperCAmelCase = "relu" , **_UpperCAmelCase , ): super().__init__(**__A ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __snake_case : Optional[int] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __snake_case : str = tf.keras.layers.ConvaD( filters=__A , kernel_size=__A , strides=__A , padding='VALID' , groups=__A , use_bias=__A , name='convolution' , ) __snake_case : List[str] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) __snake_case : Tuple = ACTaFN[activation] if activation is not None else tf.identity def lowercase_ ( self , _UpperCAmelCase ): __snake_case : int = self.convolution(self.padding(__A ) ) __snake_case : List[str] = self.normalization(__A ) __snake_case : Union[str, Any] = self.activation(__A ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer): """simple docstring""" def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ): super().__init__(**__A ) __snake_case : Tuple = config.num_channels __snake_case : int = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[str] = shape_list(__A )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __snake_case : str = tf.transpose(__A , perm=(0, 2, 3, 1) ) __snake_case : Optional[int] = self.embedder(__A ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = 2 , **_UpperCAmelCase ): super().__init__(**__A ) __snake_case : List[str] = tf.keras.layers.ConvaD( filters=__A , kernel_size=1 , strides=__A , use_bias=__A , name='convolution' ) __snake_case : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = False ): return self.normalization(self.convolution(__A ) , training=__A ) class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): super().__init__(**__A ) __snake_case : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__A , name='pooler' ) __snake_case : Optional[Any] = [ tf.keras.layers.ConvaD(filters=__A , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=__A , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def lowercase_ ( self , _UpperCAmelCase ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __snake_case : Union[str, Any] = self.pooler(__A ) for layer_module in self.attention: __snake_case : List[Any] = layer_module(__A ) __snake_case : List[str] = hidden_state * pooled return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , **_UpperCAmelCase ): super().__init__(**__A ) __snake_case : Dict = in_channels != out_channels or stride != 1 __snake_case : Dict = max(1 , out_channels // config.groups_width ) __snake_case : Any = ( TFRegNetShortCut(__A , stride=__A , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __snake_case : Optional[int] = [ TFRegNetConvLayer(__A , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( __A , stride=__A , groups=__A , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(__A , kernel_size=1 , activation=__A , name='layer.2' ), ] __snake_case : Union[str, Any] = ACTaFN[config.hidden_act] def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[str] = hidden_state for layer_module in self.layers: __snake_case : int = layer_module(__A ) __snake_case : int = self.shortcut(__A ) hidden_state += residual __snake_case : int = self.activation(__A ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , **_UpperCAmelCase ): super().__init__(**__A ) __snake_case : str = in_channels != out_channels or stride != 1 __snake_case : str = max(1 , out_channels // config.groups_width ) __snake_case : Optional[Any] = ( TFRegNetShortCut(__A , stride=__A , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) __snake_case : Dict = [ TFRegNetConvLayer(__A , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( __A , stride=__A , groups=__A , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(__A , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(__A , kernel_size=1 , activation=__A , name='layer.3' ), ] __snake_case : Any = ACTaFN[config.hidden_act] def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = hidden_state for layer_module in self.layers: __snake_case : Optional[int] = layer_module(__A ) __snake_case : Optional[Any] = self.shortcut(__A ) hidden_state += residual __snake_case : Optional[int] = self.activation(__A ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , **_UpperCAmelCase ): super().__init__(**__A ) __snake_case : List[str] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __snake_case : int = [ # downsampling is done in the first layer with stride of 2 layer(__A , __A , __A , stride=__A , name='layers.0' ), *[layer(__A , __A , __A , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowercase_ ( self , _UpperCAmelCase ): for layer_module in self.layers: __snake_case : str = layer_module(__A ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer): """simple docstring""" def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ): super().__init__(**__A ) __snake_case : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __A , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) __snake_case : str = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__A , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__A , __A , __A , depth=__A , name=F"""stages.{i+1}""" ) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = True ): __snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case : str = hidden_states + (hidden_state,) __snake_case : List[Any] = stage_module(__A ) if output_hidden_states: __snake_case : List[str] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) @keras_serializable class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer): """simple docstring""" __UpperCAmelCase = RegNetConfig def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ): super().__init__(**__A ) __snake_case : List[Any] = config __snake_case : str = TFRegNetEmbeddings(__A , name='embedder' ) __snake_case : str = TFRegNetEncoder(__A , name='encoder' ) __snake_case : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__A , name='pooler' ) @unpack_inputs def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , ): __snake_case : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Union[str, Any] = self.embedder(__A , training=__A ) __snake_case : Any = self.encoder( __A , output_hidden_states=__A , return_dict=__A , training=__A ) __snake_case : Union[str, Any] = encoder_outputs[0] __snake_case : str = self.pooler(__A ) # Change to NCHW output format have uniformity in the modules __snake_case : Optional[Any] = tf.transpose(__A , perm=(0, 3, 1, 2) ) __snake_case : str = tf.transpose(__A , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __snake_case : Tuple = tuple([tf.transpose(__A , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__A , pooler_output=__A , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = RegNetConfig __UpperCAmelCase = "regnet" __UpperCAmelCase = "pixel_values" @property def lowercase_ ( self ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __magic_name__ = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' __magic_name__ = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ): super().__init__(__A , *__A , **__A ) __snake_case : Union[str, Any] = TFRegNetMainLayer(__A , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , ): __snake_case : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : str = self.regnet( pixel_values=__A , output_hidden_states=__A , return_dict=__A , training=__A , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ): super().__init__(__A , *__A , **__A ) __snake_case : List[Any] = config.num_labels __snake_case : Union[str, Any] = TFRegNetMainLayer(__A , name='regnet' ) # classification head __snake_case : Dict = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase_ ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , ): __snake_case : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Tuple = self.regnet( __A , output_hidden_states=__A , return_dict=__A , training=__A ) __snake_case : Optional[int] = outputs.pooler_output if return_dict else outputs[1] __snake_case : int = self.classifier[0](__A ) __snake_case : Optional[int] = self.classifier[1](__A ) __snake_case : List[str] = None if labels is None else self.hf_compute_loss(labels=__A , logits=__A ) if not return_dict: __snake_case : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
711
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
0
def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : str ): if index == r: for j in range(__lowerCAmelCase ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Optional[int] = arr[i] combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index + 1 , __lowerCAmelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): # A temporary array to store all combination one by one __snake_case : Optional[Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 0 , __lowerCAmelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above __magic_name__ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
712
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
0
'''simple docstring''' import math def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : Tuple = 1_00_01 ): try: __snake_case : int = int(__UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) __snake_case : Dict = [] __snake_case : str = 2 while len(__UpperCAmelCase ) < nth: if is_prime(__UpperCAmelCase ): primes.append(__UpperCAmelCase ) num += 1 else: num += 1 return primes[len(__UpperCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
713
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __magic_name__ = get_tests_dir('''fixtures''') class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : str = mock.Mock() __snake_case : str = 500 __snake_case : List[str] = {} __snake_case : str = HTTPError __snake_case : Any = {} # Download this model to make sure it's in the cache. __snake_case : Any = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase ) as mock_head: __snake_case : Optional[int] = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def lowercase_ ( self ): __snake_case : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def lowercase_ ( cls ): __snake_case : Optional[int] = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def lowercase_ ( cls ): try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def lowercase_ ( self ): __snake_case : str = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) __snake_case : str = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCAmelCase , repo_id='test-feature-extractor' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) __snake_case : Dict = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : List[str] = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) __snake_case : Any = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCAmelCase , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) __snake_case : Tuple = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) def lowercase_ ( self ): CustomFeatureExtractor.register_for_auto_class() __snake_case : List[str] = CustomFeatureExtractor.from_pretrained(_UpperCAmelCase ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) __snake_case : Union[str, Any] = AutoFeatureExtractor.from_pretrained( F"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
714
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __magic_name__ = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" pass @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : int = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) __snake_case : Optional[Any] = """A painting of a squirrel eating a burger """ __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : Tuple = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCamelCase ) __snake_case : Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) __snake_case : List[Any] = generator.manual_seed(0 ) __snake_case : str = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowercase_ ( self ): __snake_case : Dict = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) __snake_case : List[str] = """A painting of a squirrel eating a burger """ __snake_case : Union[str, Any] = torch.manual_seed(0 ) __snake_case : Union[str, Any] = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images __snake_case : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case : Optional[int] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
715
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
0
from __future__ import annotations import math def UpperCAmelCase__( __UpperCAmelCase : Any ): if num <= 0: __snake_case : int = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(_lowerCamelCase ) __snake_case : Optional[Any] = [True] * (num + 1) __snake_case : List[str] = [] __snake_case : Dict = 2 __snake_case : str = int(math.sqrt(_lowerCamelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_lowerCamelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , _lowerCamelCase ): if sieve[i] is True: __snake_case : List[Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_lowerCamelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
716
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
0
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __magic_name__ = '''bert-base-cased''' __magic_name__ = '''google/pegasus-xsum''' __magic_name__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] __magic_name__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] __magic_name__ = '''patrickvonplaten/t5-tiny-random''' __magic_name__ = '''sshleifer/bart-tiny-random''' __magic_name__ = '''sshleifer/tiny-mbart''' __magic_name__ = '''sshleifer/tiny-marian-en-de''' def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ): __snake_case : str = "\n".join(_lowerCamelCase ) Path(_lowerCamelCase ).open('w' ).writelines(_lowerCamelCase ) def UpperCAmelCase__( __UpperCAmelCase : int ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(_lowerCamelCase , F"""{split}.source""" ) , _lowerCamelCase ) _dump_articles(os.path.join(_lowerCamelCase , F"""{split}.target""" ) , _lowerCamelCase ) return tmp_dir class __SCREAMING_SNAKE_CASE ( _A): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[str] = AutoTokenizer.from_pretrained(__lowerCamelCase ) __snake_case : Tuple = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __snake_case : Optional[Any] = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in ARTICLES ) __snake_case : Optional[Any] = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in SUMMARIES ) __snake_case : Tuple = 4 __snake_case : int = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __snake_case : Optional[Any] = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __snake_case : Any = SeqaSeqDataset( __lowerCamelCase , data_dir=__lowerCamelCase , type_path='train' , max_source_length=__lowerCamelCase , max_target_length=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , ) __snake_case : List[Any] = DataLoader(__lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __snake_case : str = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCamelCase ) __snake_case : Any = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __snake_case : List[Any] = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in ARTICLES ) __snake_case : int = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in SUMMARIES ) __snake_case : List[str] = 4 __snake_case : str = LegacySeqaSeqDataset( __lowerCamelCase , data_dir=__lowerCamelCase , type_path='train' , max_source_length=20 , max_target_length=__lowerCamelCase , ) __snake_case : List[str] = DataLoader(__lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowercase_ ( self ): __snake_case : Tuple = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) __snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __snake_case : Optional[int] = tmp_dir.joinpath('train.source' ).open().readlines() __snake_case : Union[str, Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__lowerCamelCase , __lowerCamelCase , 128 , __lowerCamelCase ) __snake_case : List[str] = {x.name for x in tmp_dir.iterdir()} __snake_case : Tuple = {x.name for x in save_dir.iterdir()} __snake_case : List[str] = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__lowerCamelCase ) < len(__lowerCamelCase ) assert len(__lowerCamelCase ) == 1 assert len(packed_examples[0] ) == sum(len(__lowerCamelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def lowercase_ ( self ): if not FAIRSEQ_AVAILABLE: return __snake_case : Any = self._get_dataset(max_len=64 ) __snake_case : List[Any] = 64 __snake_case : str = ds.make_dynamic_sampler(__lowerCamelCase , required_batch_size_multiple=__lowerCamelCase ) __snake_case : Optional[Any] = [len(__lowerCamelCase ) for x in batch_sampler] assert len(set(__lowerCamelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__lowerCamelCase ) == len(__lowerCamelCase ) # no dropped or added examples __snake_case : Any = DataLoader(__lowerCamelCase , batch_sampler=__lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) __snake_case : List[Any] = [] __snake_case : Union[str, Any] = [] for batch in data_loader: __snake_case : Union[str, Any] = batch["input_ids"].shape __snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(__lowerCamelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(__lowerCamelCase ) assert num_src_per_batch[0] == max(__lowerCamelCase ) if failures: raise AssertionError(F"""too many tokens in {len(__lowerCamelCase )} batches""" ) def lowercase_ ( self ): __snake_case : Dict = self._get_dataset(max_len=512 ) __snake_case : List[str] = 2 __snake_case : List[str] = ds.make_sortish_sampler(__lowerCamelCase , shuffle=__lowerCamelCase ) __snake_case : Any = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) __snake_case : List[str] = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__lowerCamelCase ) __snake_case : Optional[Any] = tokenizer.pad_token_id def count_pad_tokens(_UpperCAmelCase , _UpperCAmelCase="input_ids" ): return [batch[k].eq(__lowerCamelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__lowerCamelCase , k='labels' ) ) < sum(count_pad_tokens(__lowerCamelCase , k='labels' ) ) assert sum(count_pad_tokens(__lowerCamelCase ) ) < sum(count_pad_tokens(__lowerCamelCase ) ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) def lowercase_ ( self , _UpperCAmelCase=1_000 , _UpperCAmelCase=128 ): if os.getenv('USE_REAL_DATA' , __lowerCamelCase ): __snake_case : List[Any] = "examples/seq2seq/wmt_en_ro" __snake_case : Dict = max_len * 2 * 64 if not Path(__lowerCamelCase ).joinpath('train.len' ).exists(): save_len_file(__lowerCamelCase , __lowerCamelCase ) else: __snake_case : Tuple = "examples/seq2seq/test_data/wmt_en_ro" __snake_case : List[str] = max_len * 4 save_len_file(__lowerCamelCase , __lowerCamelCase ) __snake_case : Any = AutoTokenizer.from_pretrained(__lowerCamelCase ) __snake_case : Tuple = SeqaSeqDataset( __lowerCamelCase , data_dir=__lowerCamelCase , type_path='train' , max_source_length=__lowerCamelCase , max_target_length=__lowerCamelCase , n_obs=__lowerCamelCase , ) return ds, max_tokens, tokenizer def lowercase_ ( self ): __snake_case : Any = self._get_dataset() __snake_case : Dict = set(DistributedSortishSampler(__lowerCamelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=__lowerCamelCase ) ) __snake_case : Union[str, Any] = set(DistributedSortishSampler(__lowerCamelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=__lowerCamelCase ) ) assert idsa.intersection(__lowerCamelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[str] = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase ) if tok_name == MBART_TINY: __snake_case : str = SeqaSeqDataset( __lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) __snake_case : int = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __snake_case : Dict = SeqaSeqDataset( __lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) __snake_case : int = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__lowerCamelCase ) == 1 if tok_name == BART_TINY else len(__lowerCamelCase ) == 0
717
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
0
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __magic_name__ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase): """simple docstring""" def __init__( self , **_UpperCAmelCase ): super().__init__(**lowerCamelCase_ ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self , _UpperCAmelCase , **_UpperCAmelCase ): return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def lowercase_ ( self , **_UpperCAmelCase ): __snake_case : List[str] = {} if "candidate_labels" in kwargs: __snake_case : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __snake_case : Any = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase="This is a sound of {}." ): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __snake_case : Optional[Any] = requests.get(lowerCamelCase_ ).content else: with open(lowerCamelCase_ , 'rb' ) as f: __snake_case : Any = f.read() if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __snake_case : str = ffmpeg_read(lowerCamelCase_ , self.feature_extractor.sampling_rate ) if not isinstance(lowerCamelCase_ , np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) __snake_case : Any = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' ) __snake_case : Union[str, Any] = candidate_labels __snake_case : Any = [hypothesis_template.format(lowerCamelCase_ ) for x in candidate_labels] __snake_case : Union[str, Any] = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_ ) __snake_case : Dict = [text_inputs] return inputs def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Union[str, Any] = model_inputs.pop('candidate_labels' ) __snake_case : Union[str, Any] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , lowerCamelCase_ ): __snake_case : Union[str, Any] = text_inputs[0] else: # Batching case. __snake_case : List[str] = text_inputs[0][0] __snake_case : Union[str, Any] = self.model(**lowerCamelCase_ , **lowerCamelCase_ ) __snake_case : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = model_outputs.pop('candidate_labels' ) __snake_case : Optional[int] = model_outputs['''logits'''][0] if self.framework == "pt": __snake_case : Dict = logits.softmax(dim=0 ) __snake_case : Dict = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) __snake_case : Dict = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_ ) , key=lambda _UpperCAmelCase : -x[0] ) ] return result
718
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
0
'''simple docstring''' def UpperCAmelCase__( ): __snake_case : Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __snake_case : Optional[int] = 6 __snake_case : Tuple = 1 __snake_case : List[Any] = 19_01 __snake_case : List[str] = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __snake_case : List[Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __snake_case : str = day - 29 else: if day > days_per_month[month - 1]: month += 1 __snake_case : Union[str, Any] = day - days_per_month[month - 2] if month > 12: year += 1 __snake_case : List[str] = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
719
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __magic_name__ = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__): """simple docstring""" __UpperCAmelCase = (KDPMaDiscreteScheduler,) __UpperCAmelCase = 1_0 def lowercase_ ( self , **_UpperCAmelCase ): __snake_case : int = { """num_train_timesteps""": 1_100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_lowercase ) return config def lowercase_ ( self ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def lowercase_ ( self ): for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def lowercase_ ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowercase ) def lowercase_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def lowercase_ ( self ): __snake_case : str = self.scheduler_classes[0] __snake_case : Union[str, Any] = self.get_scheduler_config(prediction_type='v_prediction' ) __snake_case : Union[str, Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) __snake_case : Any = self.dummy_model() __snake_case : int = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : Optional[int] = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): __snake_case : Tuple = scheduler.scale_model_input(_lowercase , _lowercase ) __snake_case : List[str] = model(_lowercase , _lowercase ) __snake_case : Optional[Any] = scheduler.step(_lowercase , _lowercase , _lowercase ) __snake_case : int = output.prev_sample __snake_case : List[str] = torch.sum(torch.abs(_lowercase ) ) __snake_case : Tuple = torch.mean(torch.abs(_lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34E-07 ) < 1E-2 assert abs(result_mean.item() - 6.11_12E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def lowercase_ ( self ): if torch_device == "mps": return __snake_case : Optional[Any] = self.scheduler_classes[0] __snake_case : str = self.get_scheduler_config() __snake_case : List[str] = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) __snake_case : int = self.dummy_model() __snake_case : str = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : List[str] = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): __snake_case : List[Any] = scheduler.scale_model_input(_lowercase , _lowercase ) __snake_case : str = model(_lowercase , _lowercase ) __snake_case : str = scheduler.step(_lowercase , _lowercase , _lowercase ) __snake_case : int = output.prev_sample __snake_case : int = torch.sum(torch.abs(_lowercase ) ) __snake_case : Optional[Any] = torch.mean(torch.abs(_lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def lowercase_ ( self ): if torch_device == "mps": return __snake_case : Tuple = self.scheduler_classes[0] __snake_case : Optional[Any] = self.get_scheduler_config() __snake_case : Dict = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) __snake_case : str = self.dummy_model() __snake_case : List[Any] = self.dummy_sample_deter.to(_lowercase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __snake_case : Tuple = scheduler.scale_model_input(_lowercase , _lowercase ) __snake_case : List[Any] = model(_lowercase , _lowercase ) __snake_case : str = scheduler.step(_lowercase , _lowercase , _lowercase ) __snake_case : Optional[Any] = output.prev_sample __snake_case : int = torch.sum(torch.abs(_lowercase ) ) __snake_case : str = torch.mean(torch.abs(_lowercase ) ) if str(_lowercase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
721
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=14 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , ): __snake_case : int = parent __snake_case : List[str] = batch_size __snake_case : int = seq_length __snake_case : Optional[Any] = is_training __snake_case : Union[str, Any] = use_input_mask __snake_case : List[Any] = use_token_type_ids __snake_case : Optional[int] = use_labels __snake_case : Optional[int] = vocab_size __snake_case : Dict = hidden_size __snake_case : Any = rotary_dim __snake_case : int = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : List[str] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : List[str] = max_position_embeddings __snake_case : Any = initializer_range __snake_case : List[Any] = None __snake_case : str = vocab_size - 1 __snake_case : List[str] = vocab_size - 1 __snake_case : List[str] = vocab_size - 1 def lowercase_ ( self ): __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[str] = None if self.use_input_mask: __snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : int = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=A_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ): __snake_case : Any = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : int = config_and_inputs __snake_case : Optional[Any] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = 20 __snake_case : Any = model_class_name(A_ ) __snake_case : int = model.init_cache(input_ids.shape[0] , A_ ) __snake_case : Tuple = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __snake_case : Union[str, Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __snake_case : Optional[Any] = model( input_ids[:, :-1] , attention_mask=A_ , past_key_values=A_ , position_ids=A_ , ) __snake_case : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __snake_case : Optional[int] = model( input_ids[:, -1:] , attention_mask=A_ , past_key_values=outputs_cache.past_key_values , position_ids=A_ , ) __snake_case : Union[str, Any] = model(A_ ) __snake_case : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = 20 __snake_case : str = model_class_name(A_ ) __snake_case : Optional[Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __snake_case : Tuple = model.init_cache(input_ids.shape[0] , A_ ) __snake_case : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __snake_case : Optional[int] = model( input_ids[:, :-1] , attention_mask=A_ , past_key_values=A_ , position_ids=A_ , ) __snake_case : Optional[int] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __snake_case : int = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=A_ , position_ids=A_ , ) __snake_case : str = model(A_ , attention_mask=A_ ) __snake_case : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class __SCREAMING_SNAKE_CASE ( _lowercase , _lowercase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __UpperCAmelCase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ): __snake_case : Dict = FlaxGPTJModelTester(self ) def lowercase_ ( self ): for model_class_name in self.all_model_classes: __snake_case , __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(A_ , A_ , A_ , A_ ) def lowercase_ ( self ): for model_class_name in self.all_model_classes: __snake_case , __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( A_ , A_ , A_ , A_ ) @tooslow def lowercase_ ( self ): __snake_case : Tuple = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __snake_case : Union[str, Any] = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=A_ , truncation=A_ ) __snake_case : Dict = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __snake_case : int = False __snake_case : Dict = model.config.eos_token_id __snake_case : Tuple = jax.jit(model.generate ) __snake_case : Optional[int] = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __snake_case : Dict = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) __snake_case : Tuple = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(A_ , A_ ) @is_pt_flax_cross_test def lowercase_ ( self ): __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __snake_case : str = self._prepare_for_class(A_ , A_ ) __snake_case : Optional[int] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __snake_case : Optional[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning __snake_case : Any = getattr(A_ , A_ ) __snake_case , __snake_case : Dict = pt_inputs['input_ids'].shape __snake_case : Any = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(A_ ): __snake_case : Optional[Any] = 0 __snake_case : Optional[int] = 1 __snake_case : List[str] = 0 __snake_case : List[str] = 1 __snake_case : Tuple = pt_model_class(A_ ).eval() __snake_case : List[Any] = model_class(A_ , dtype=jnp.floataa ) __snake_case : Optional[int] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , A_ ) __snake_case : List[str] = fx_state with torch.no_grad(): __snake_case : Optional[int] = pt_model(**A_ ).to_tuple() __snake_case : Optional[int] = fx_model(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(A_ , A_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(A_ ) __snake_case : Any = model_class.from_pretrained(A_ , from_pt=A_ ) __snake_case : Optional[Any] = fx_model_loaded(**A_ ).to_tuple() self.assertEqual( len(A_ ) , len(A_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(A_ , A_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def lowercase_ ( self ): __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __snake_case : Optional[Any] = self._prepare_for_class(A_ , A_ ) __snake_case : Optional[int] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __snake_case : str = model_class.__name__[4:] # Skip the "Flax" at the beginning __snake_case : Union[str, Any] = getattr(A_ , A_ ) __snake_case : List[str] = pt_model_class(A_ ).eval() __snake_case : Union[str, Any] = model_class(A_ , dtype=jnp.floataa ) __snake_case : List[str] = load_flax_weights_in_pytorch_model(A_ , fx_model.params ) __snake_case , __snake_case : int = pt_inputs['input_ids'].shape __snake_case : List[str] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(A_ ): __snake_case : List[Any] = 0 __snake_case : str = 1 __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __snake_case : List[str] = pt_model(**A_ ).to_tuple() __snake_case : int = fx_model(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(A_ , A_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(A_ ) __snake_case : Any = pt_model_class.from_pretrained(A_ , from_flax=A_ ) with torch.no_grad(): __snake_case : Optional[Any] = pt_model_loaded(**A_ ).to_tuple() self.assertEqual( len(A_ ) , len(A_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(A_ , A_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def lowercase_ ( self ): for model_class_name in self.all_model_classes: __snake_case : Dict = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __snake_case : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(A_ )
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" __UpperCAmelCase = inspect.getfile(accelerate.test_utils) __UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_cli.py"]) __UpperCAmelCase = ['accelerate', 'launch'] __UpperCAmelCase = Path.home() / '.cache/huggingface/accelerate' __UpperCAmelCase = 'default_config.yaml' __UpperCAmelCase = config_folder / config_file __UpperCAmelCase = config_folder / '_default_config.yaml' __UpperCAmelCase = Path("tests/test_configs") @classmethod def lowercase_ ( cls ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase_ ( cls ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase_ ( self ): for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=_UpperCAmelCase ): execute_subprocess_async( self.base_cmd + ['--config_file', str(_UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def lowercase_ ( self ): execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" __UpperCAmelCase = 'test-tpu' __UpperCAmelCase = 'us-central1-a' __UpperCAmelCase = 'ls' __UpperCAmelCase = ['accelerate', 'tpu-config'] __UpperCAmelCase = 'cd /usr/share' __UpperCAmelCase = 'tests/test_samples/test_command_file.sh' __UpperCAmelCase = 'Running gcloud compute tpus tpu-vm ssh' def lowercase_ ( self ): __snake_case : Optional[int] = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : List[str] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Union[str, Any] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_UpperCAmelCase ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : str = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : List[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo \"Hello World\"', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : int = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : List[Any] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , )
701
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
0
import random def UpperCAmelCase__( __UpperCAmelCase : list , __UpperCAmelCase : List[Any] ): __snake_case , __snake_case , __snake_case : Optional[int] = [], [], [] for element in data: if element < pivot: less.append(__UpperCAmelCase ) elif element > pivot: greater.append(__UpperCAmelCase ) else: equal.append(__UpperCAmelCase ) return less, equal, greater def UpperCAmelCase__( __UpperCAmelCase : list , __UpperCAmelCase : int ): if index >= len(__UpperCAmelCase ) or index < 0: return None __snake_case : int = items[random.randint(0 , len(__UpperCAmelCase ) - 1 )] __snake_case : Tuple = 0 __snake_case , __snake_case , __snake_case : List[Any] = _partition(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : List[str] = len(__UpperCAmelCase ) __snake_case : str = len(__UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__UpperCAmelCase , __UpperCAmelCase ) # must be in larger else: return quick_select(__UpperCAmelCase , index - (m + count) )
702
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __magic_name__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __SCREAMING_SNAKE_CASE ( datasets.BuilderConfig): """simple docstring""" __UpperCAmelCase = None def UpperCAmelCase__( __UpperCAmelCase : "pyspark.sql.DataFrame" , __UpperCAmelCase : List[int] , ): import pyspark def generate_fn(): __snake_case : str = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: __snake_case : Tuple = df_with_partition_id.select('*' ).where(F"""part_id = {partition_id}""" ).drop('part_id' ) __snake_case : Any = partition_df.collect() __snake_case : List[str] = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class __SCREAMING_SNAKE_CASE ( _BaseExamplesIterable): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None , ): __snake_case : Any = df __snake_case : Union[str, Any] = partition_order or range(self.df.rdd.getNumPartitions() ) __snake_case : Dict = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__A ) return SparkExamplesIterable(self.df , partition_order=__A ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Union[str, Any] = self.split_shard_indices_by_worker(__A , __A ) return SparkExamplesIterable(self.df , partition_order=__A ) @property def lowercase_ ( self ): return len(self.partition_order ) class __SCREAMING_SNAKE_CASE ( datasets.DatasetBuilder): """simple docstring""" __UpperCAmelCase = SparkConfig def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): import pyspark __snake_case : List[str] = pyspark.sql.SparkSession.builder.getOrCreate() __snake_case : int = df __snake_case : Dict = working_dir super().__init__( cache_dir=__A , config_name=str(self.df.semanticHash() ) , **__A , ) def lowercase_ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(_UpperCAmelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__A ) __snake_case : List[str] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__A , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __snake_case : int = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def lowercase_ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowercase_ ( self , _UpperCAmelCase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowercase_ ( self , _UpperCAmelCase ): import pyspark def get_arrow_batch_size(_UpperCAmelCase ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) __snake_case : List[str] = self.df.count() __snake_case : Dict = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __snake_case : int = ( self.df.limit(__A ) .repartition(1 ) .mapInArrow(__A , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __snake_case : List[str] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __snake_case : int = min(__A , int(approx_total_size / max_shard_size ) ) __snake_case : Any = self.df.repartition(__A ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): import pyspark __snake_case : str = ParquetWriter if file_format == "parquet" else ArrowWriter __snake_case : List[str] = os.path.join(self._working_dir , os.path.basename(__A ) ) if self._working_dir else fpath __snake_case : Tuple = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __snake_case : str = self.config.features __snake_case : Tuple = self._writer_batch_size __snake_case : str = self._fs.storage_options def write_arrow(_UpperCAmelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __snake_case : Tuple = pyspark.TaskContext().taskAttemptId() __snake_case : int = next(__A , __A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) __snake_case : int = 0 __snake_case : Dict = writer_class( features=__A , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) __snake_case : Union[str, Any] = pa.Table.from_batches([first_batch] ) writer.write_table(__A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __snake_case : Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 __snake_case : Dict = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) __snake_case : int = pa.Table.from_batches([batch] ) writer.write_table(__A ) if writer._num_bytes > 0: __snake_case : List[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__A ) ): __snake_case : Optional[int] = os.path.join(os.path.dirname(__A ) , os.path.basename(__A ) ) shutil.move(__A , __A ) __snake_case : Dict = ( self.df.mapInArrow(__A , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = "arrow" , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): self._validate_cache_dir() __snake_case : str = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__A ) __snake_case : int = not is_remote_filesystem(self._fs ) __snake_case : List[Any] = os.path.join if is_local else posixpath.join __snake_case : List[Any] = "-TTTTT-SSSSS-of-NNNNN" __snake_case : Optional[int] = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" __snake_case : Union[str, Any] = path_join(self._output_dir , __A ) __snake_case : Tuple = 0 __snake_case : Tuple = 0 __snake_case : Optional[int] = 0 __snake_case : Union[str, Any] = [] __snake_case : Dict = [] for task_id, content in self._prepare_split_single(__A , __A , __A ): ( __snake_case ) : Optional[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__A ) __snake_case : Dict = total_num_examples __snake_case : Tuple = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: __snake_case : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __snake_case : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): rename( __A , fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace('TTTTT-SSSSS' , F"""{global_shard_id:05d}""" ).replace('NNNNN' , F"""{total_shards:05d}""" ) , ) __snake_case : Optional[Any] = [] __snake_case : List[str] = 0 for i in range(len(__A ) ): __snake_case : Optional[int] = task_id_and_num_shards[i] for shard_id in range(__A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__A , len(__A ) ).map(lambda _UpperCAmelCase : _rename_shard(*__A ) ).collect() else: # don't use any pattern __snake_case : Dict = 0 __snake_case : Optional[int] = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace(__A , '' ) , ) def lowercase_ ( self , _UpperCAmelCase , ): return SparkExamplesIterable(self.df )
703
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase_ ( self ): __snake_case : Dict = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=_UpperCAmelCase , dtype=jnp.bfloataa ) __snake_case : Dict = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_UpperCAmelCase , from_pt=_UpperCAmelCase , dtype=jnp.bfloataa ) __snake_case : List[Any] = controlnet_params __snake_case : Dict = "bird" __snake_case : List[Any] = jax.device_count() __snake_case : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) __snake_case : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) __snake_case : Union[str, Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) __snake_case : List[Any] = jax.random.PRNGKey(0 ) __snake_case : int = jax.random.split(_UpperCAmelCase , jax.device_count() ) __snake_case : List[Any] = replicate(_UpperCAmelCase ) __snake_case : List[str] = shard(_UpperCAmelCase ) __snake_case : Optional[Any] = shard(_UpperCAmelCase ) __snake_case : Dict = pipe( prompt_ids=_UpperCAmelCase , image=_UpperCAmelCase , params=_UpperCAmelCase , prng_seed=_UpperCAmelCase , num_inference_steps=50 , jit=_UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __snake_case : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __snake_case : List[Any] = images[0, 253:256, 253:256, -1] __snake_case : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __snake_case : Optional[int] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowercase_ ( self ): __snake_case : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=_UpperCAmelCase , dtype=jnp.bfloataa ) __snake_case : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_UpperCAmelCase , from_pt=_UpperCAmelCase , dtype=jnp.bfloataa ) __snake_case : Optional[int] = controlnet_params __snake_case : Any = "Chef in the kitchen" __snake_case : Union[str, Any] = jax.device_count() __snake_case : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) __snake_case : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) __snake_case : str = pipe.prepare_image_inputs([pose_image] * num_samples ) __snake_case : Any = jax.random.PRNGKey(0 ) __snake_case : List[str] = jax.random.split(_UpperCAmelCase , jax.device_count() ) __snake_case : Optional[Any] = replicate(_UpperCAmelCase ) __snake_case : Tuple = shard(_UpperCAmelCase ) __snake_case : Optional[Any] = shard(_UpperCAmelCase ) __snake_case : Union[str, Any] = pipe( prompt_ids=_UpperCAmelCase , image=_UpperCAmelCase , params=_UpperCAmelCase , prng_seed=_UpperCAmelCase , num_inference_steps=50 , jit=_UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __snake_case : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __snake_case : str = images[0, 253:256, 253:256, -1] __snake_case : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __snake_case : Union[str, Any] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
704
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: __snake_case : Union[str, Any] = ksize + 1 __snake_case : Union[str, Any] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__UpperCAmelCase ): for x in range(__UpperCAmelCase ): # distance from center __snake_case : Optional[int] = x - ksize // 2 __snake_case : Any = y - ksize // 2 # degree to radiant __snake_case : Dict = theta / 1_80 * np.pi __snake_case : int = np.cos(_theta ) __snake_case : List[Any] = np.sin(_theta ) # get kernel x __snake_case : Dict = cos_theta * px + sin_theta * py # get kernel y __snake_case : Tuple = -sin_theta * px + cos_theta * py # fill kernel __snake_case : List[Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __magic_name__ = imread('''../image_data/lena.jpg''') # turn image in gray scale value __magic_name__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __magic_name__ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __magic_name__ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __magic_name__ = out / out.max() * 255 __magic_name__ = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
705
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCAmelCase__( *__UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Union[Dict, Any]] = None , __UpperCAmelCase : str=True , __UpperCAmelCase : Dict=2 ): from .. import __version__ __snake_case : Tuple = take_from __snake_case : Tuple = () if not isinstance(args[0] , snake_case__ ): __snake_case : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(snake_case__ ).base_version ) >= version.parse(snake_case__ ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) __snake_case : Optional[Any] = None if isinstance(snake_case__ , snake_case__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(snake_case__ ),) __snake_case : List[Any] = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(snake_case__ , snake_case__ ): values += (getattr(snake_case__ , snake_case__ ),) __snake_case : Union[str, Any] = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: __snake_case : List[Any] = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: __snake_case : Any = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , snake_case__ , stacklevel=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0: __snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1] __snake_case : str = call_frame.filename __snake_case : int = call_frame.lineno __snake_case : Any = call_frame.function __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(snake_case__ ) == 0: return elif len(snake_case__ ) == 1: return values[0] return values
706
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
0
import math def UpperCAmelCase__( __UpperCAmelCase : Any ): assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __snake_case : Optional[Any] = range(3 , int(math.sqrt(__snake_case ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : int=1 , **__UpperCAmelCase : str ): __snake_case : int = factor * value __snake_case : Union[str, Any] = value while not is_prime(__snake_case ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__snake_case ) return value
707
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __magic_name__ = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
708
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( a__): """simple docstring""" __UpperCAmelCase = """roberta""" def __init__( self , _UpperCAmelCase=50_265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __snake_case : str = vocab_size __snake_case : Optional[Any] = hidden_size __snake_case : int = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = intermediate_size __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Optional[Any] = initializer_range __snake_case : List[str] = layer_norm_eps __snake_case : List[str] = position_embedding_type __snake_case : List[str] = use_cache __snake_case : str = classifier_dropout class __SCREAMING_SNAKE_CASE ( a__): """simple docstring""" @property def lowercase_ ( self ): if self.task == "multiple-choice": __snake_case : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
709
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __SCREAMING_SNAKE_CASE ( UpperCAmelCase__): """simple docstring""" __UpperCAmelCase = 4_2 __UpperCAmelCase = 4_2 def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self , _UpperCAmelCase = 1 , _UpperCAmelCase = 2_000 , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , **_UpperCAmelCase , ): __snake_case : Tuple = self.unet.config.sample_size __snake_case : Optional[Any] = (batch_size, 3, img_size, img_size) __snake_case : Optional[int] = self.unet __snake_case : Tuple = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase ) * self.scheduler.init_noise_sigma __snake_case : Any = sample.to(self.device ) self.scheduler.set_timesteps(__lowerCAmelCase ) self.scheduler.set_sigmas(__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __snake_case : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __snake_case : int = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample __snake_case : str = self.scheduler.step_correct(__lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample # prediction step __snake_case : List[str] = model(__lowerCAmelCase , __lowerCAmelCase ).sample __snake_case : Optional[Any] = self.scheduler.step_pred(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ) __snake_case , __snake_case : List[Any] = output.prev_sample, output.prev_sample_mean __snake_case : Optional[Any] = sample_mean.clamp(0 , 1 ) __snake_case : List[str] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case : Optional[Any] = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__lowerCAmelCase )
710
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
0