code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
@property
def __A ( self ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
@property
def __A ( self ) -> List[Any]:
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , )
return model
@property
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(A )
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = self.dummy_uncond_unet
__magic_name__ = DDIMScheduler()
__magic_name__ = self.dummy_vq_model
__magic_name__ = LDMPipeline(unet=A , vqvae=A , scheduler=A )
ldm.to(A )
ldm.set_progress_bar_config(disable=A )
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = ldm(generator=A , num_inference_steps=2 , output_type='''numpy''' ).images
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = ldm(generator=A , num_inference_steps=2 , output_type='''numpy''' , return_dict=A )[0]
__magic_name__ = image[0, -3:, -3:, -1]
__magic_name__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__magic_name__ = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] )
__magic_name__ = 1E-2 if torch_device != '''mps''' else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' )
ldm.to(A )
ldm.set_progress_bar_config(disable=A )
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = ldm(generator=A , num_inference_steps=5 , output_type='''numpy''' ).images
__magic_name__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__magic_name__ = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] )
__magic_name__ = 1E-2 if torch_device != '''mps''' else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance | 719 |
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ):
# Initialise PyTorch model
__magic_name__ = LxmertConfig.from_json_file(snake_case_ )
print(f'Building PyTorch model from configuration: {config}' )
__magic_name__ = LxmertForPreTraining(snake_case_ )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(snake_case_ , snake_case_ , snake_case_ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , snake_case_ )
if __name__ == "__main__":
a_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
a_ : Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) | 678 | 0 |
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> List[Any]:
'''simple docstring'''
__magic_name__ = parent
__magic_name__ = batch_size
__magic_name__ = seq_length
__magic_name__ = is_training
__magic_name__ = use_input_mask
__magic_name__ = use_token_type_ids
__magic_name__ = use_labels
__magic_name__ = vocab_size
__magic_name__ = hidden_size
__magic_name__ = num_hidden_layers
__magic_name__ = num_attention_heads
__magic_name__ = intermediate_size
__magic_name__ = hidden_act
__magic_name__ = hidden_dropout_prob
__magic_name__ = attention_probs_dropout_prob
__magic_name__ = max_position_embeddings
__magic_name__ = type_vocab_size
__magic_name__ = type_sequence_label_size
__magic_name__ = initializer_range
__magic_name__ = num_labels
__magic_name__ = num_choices
__magic_name__ = scope
def __A ( self ) -> List[Any]:
'''simple docstring'''
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ = None
if self.use_input_mask:
__magic_name__ = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ = None
if self.use_token_type_ids:
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
if self.use_labels:
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Dict:
'''simple docstring'''
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , )
def __A ( self , A , A , A , A , A , A , A ) -> int:
'''simple docstring'''
__magic_name__ = BioGptModel(config=A )
model.to(A )
model.eval()
__magic_name__ = model(A , attention_mask=A )
__magic_name__ = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]:
'''simple docstring'''
__magic_name__ = BioGptForCausalLM(config=A )
model.to(A )
model.eval()
__magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , A , A , A , A , A , *A ) -> Tuple:
'''simple docstring'''
__magic_name__ = BioGptModel(config=A )
model.to(A )
model.eval()
# create attention mask
__magic_name__ = torch.ones(input_ids.shape , dtype=torch.long , device=A )
__magic_name__ = self.seq_length // 2
__magic_name__ = 0
# first forward pass
__magic_name__ , __magic_name__ = model(A , attention_mask=A ).to_tuple()
# create hypothetical next token and extent to next_input_ids
__magic_name__ = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
__magic_name__ = ids_tensor((1,) , A ).item() + 1
__magic_name__ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
__magic_name__ = random_other_next_tokens
# append to next input_ids and attn_mask
__magic_name__ = torch.cat([input_ids, next_tokens] , dim=-1 )
__magic_name__ = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=A )] , dim=1 , )
# get two different outputs
__magic_name__ = model(A , attention_mask=A )['''last_hidden_state''']
__magic_name__ = model(A , past_key_values=A , attention_mask=A )['''last_hidden_state''']
# select random slice
__magic_name__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__magic_name__ = output_from_no_past[:, -1, random_slice_idx].detach()
__magic_name__ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) )
def __A ( self , A , A , A , A , A , *A ) -> Any:
'''simple docstring'''
__magic_name__ = BioGptModel(config=A ).to(A ).eval()
__magic_name__ = torch.ones(input_ids.shape , dtype=torch.long , device=A )
# first forward pass
__magic_name__ = model(A , attention_mask=A , use_cache=A )
__magic_name__ , __magic_name__ = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
__magic_name__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
__magic_name__ = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
__magic_name__ = torch.cat([input_ids, next_tokens] , dim=-1 )
__magic_name__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
__magic_name__ = model(A , attention_mask=A )['''last_hidden_state''']
__magic_name__ = model(A , attention_mask=A , past_key_values=A )[
'''last_hidden_state'''
]
# select random slice
__magic_name__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__magic_name__ = output_from_no_past[:, -3:, random_slice_idx].detach()
__magic_name__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) )
def __A ( self , A , A , A , A , A , *A , A=False ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = BioGptForCausalLM(A )
model.to(A )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
__magic_name__ = model(A , labels=A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def __A ( self , A , *A ) -> Tuple:
'''simple docstring'''
__magic_name__ = BioGptModel(A )
__magic_name__ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def __A ( self , A , A , A , A , A , *A ) -> Optional[Any]:
'''simple docstring'''
__magic_name__ = self.num_labels
__magic_name__ = BioGptForTokenClassification(A )
model.to(A )
model.eval()
__magic_name__ = model(A , attention_mask=A , token_type_ids=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) = config_and_inputs
__magic_name__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
_a = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
_a = (BioGptForCausalLM,) if is_torch_available() else ()
_a = (
{
"""feature-extraction""": BioGptModel,
"""text-classification""": BioGptForSequenceClassification,
"""text-generation""": BioGptForCausalLM,
"""token-classification""": BioGptForTokenClassification,
"""zero-shot""": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
_a = False
def __A ( self ) -> Any:
'''simple docstring'''
__magic_name__ = BioGptModelTester(self )
__magic_name__ = ConfigTester(self , config_class=A , hidden_size=37 )
def __A ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> int:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def __A ( self ) -> Any:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__magic_name__ = type
self.model_tester.create_and_check_model(*A )
def __A ( self ) -> int:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*A )
def __A ( self ) -> Tuple:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*A , gradient_checkpointing=A )
def __A ( self ) -> int:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*A )
def __A ( self ) -> Tuple:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*A )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*A )
@slow
def __A ( self ) -> List[Any]:
'''simple docstring'''
__magic_name__ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(A )
__magic_name__ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
__magic_name__ = '''left'''
# Define PAD Token = EOS Token = 50256
__magic_name__ = tokenizer.eos_token
__magic_name__ = model.config.eos_token_id
# use different length sentences to test batching
__magic_name__ = [
'''Hello, my dog is a little''',
'''Today, I''',
]
__magic_name__ = tokenizer(A , return_tensors='''pt''' , padding=A )
__magic_name__ = inputs['''input_ids'''].to(A )
__magic_name__ = model.generate(
input_ids=A , attention_mask=inputs['''attention_mask'''].to(A ) , )
__magic_name__ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(A )
__magic_name__ = model.generate(input_ids=A )
__magic_name__ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
__magic_name__ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(A )
__magic_name__ = model.generate(input_ids=A , max_length=model.config.max_length - num_paddings )
__magic_name__ = tokenizer.batch_decode(A , skip_special_tokens=A )
__magic_name__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A )
__magic_name__ = tokenizer.decode(output_padded[0] , skip_special_tokens=A )
__magic_name__ = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(A , A )
self.assertListEqual(A , [non_padded_sentence, padded_sentence] )
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ = BioGptModel.from_pretrained(A )
self.assertIsNotNone(A )
def __A ( self ) -> Any:
'''simple docstring'''
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ = 3
__magic_name__ = input_dict['''input_ids''']
__magic_name__ = input_ids.ne(1 ).to(A )
__magic_name__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__magic_name__ = BioGptForSequenceClassification(A )
model.to(A )
model.eval()
__magic_name__ = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ = 3
__magic_name__ = '''multi_label_classification'''
__magic_name__ = input_dict['''input_ids''']
__magic_name__ = input_ids.ne(1 ).to(A )
__magic_name__ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__magic_name__ = BioGptForSequenceClassification(A )
model.to(A )
model.eval()
__magic_name__ = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__magic_name__ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
__magic_name__ = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
__magic_name__ = model(A )[0]
__magic_name__ = 4_23_84
__magic_name__ = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , A )
__magic_name__ = torch.tensor(
[[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1E-4 ) )
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
__magic_name__ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
__magic_name__ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(A )
torch.manual_seed(0 )
__magic_name__ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(A )
__magic_name__ = model.generate(
**A , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=A , )
__magic_name__ = tokenizer.decode(output_ids[0] , skip_special_tokens=A )
__magic_name__ = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(A , A ) | 720 |
# Usage:
# ./gen-card-allenai-wmt16.py
import os
from pathlib import Path
def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ):
__magic_name__ = {
'''en''': '''Machine learning is great, isn\'t it?''',
'''ru''': '''Машинное обучение - это здорово, не так ли?''',
'''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
__magic_name__ = {
'''wmt16-en-de-dist-12-1''': [28.3, 27.52],
'''wmt16-en-de-dist-6-1''': [27.4, 27.11],
'''wmt16-en-de-12-1''': [26.9, 25.75],
}
__magic_name__ = f'{src_lang}-{tgt_lang}'
__magic_name__ = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n'
model_card_dir.mkdir(parents=snake_case_ , exist_ok=snake_case_ )
__magic_name__ = os.path.join(snake_case_ , '''README.md''' )
print(f'Generating {path}' )
with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(snake_case_ )
# make sure we are under the root of the project
a_ : Tuple = Path(__file__).resolve().parent.parent.parent
a_ : Dict = repo_dir / 'model_cards'
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]:
a_ : List[str] = model_cards_dir / 'allenai' / model_name
write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name) | 678 | 0 |
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ):
# Initialise PyTorch model
__magic_name__ = LxmertConfig.from_json_file(snake_case_ )
print(f'Building PyTorch model from configuration: {config}' )
__magic_name__ = LxmertForPreTraining(snake_case_ )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(snake_case_ , snake_case_ , snake_case_ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , snake_case_ )
if __name__ == "__main__":
a_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
a_ : Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) | 721 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : list[int] ):
__magic_name__ = len(snake_case_ )
print('''The following activities are selected:''' )
# The first activity is always selected
__magic_name__ = 0
print(snake_case_ , end=''',''' )
# Consider rest of the activities
for j in range(snake_case_ ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(snake_case_ , end=''',''' )
__magic_name__ = j
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : Dict = [1, 3, 0, 5, 8, 5]
a_ : Union[str, Any] = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish) | 678 | 0 |
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
a_ : Dict = trt.Logger(trt.Logger.WARNING)
a_ : int = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
a_ : Optional[int] = logging.getLogger(__name__)
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--onnx_model_path',
default=None,
type=str,
required=True,
help='Path to ONNX model: ',
)
parser.add_argument(
'--output_dir',
default=None,
type=str,
required=True,
help='The output directory where the model checkpoints and predictions will be written.',
)
# Other parameters
parser.add_argument(
'--tokenizer_name',
default='',
type=str,
required=True,
help='Pretrained tokenizer name or path if not the same as model_name',
)
parser.add_argument(
'--version_2_with_negative',
action='store_true',
help='If true, the SQuAD examples contain some that do not have an answer.',
)
parser.add_argument(
'--null_score_diff_threshold',
type=float,
default=0.0,
help='If null_score - best_non_null is greater than the threshold predict null.',
)
parser.add_argument(
'--max_seq_length',
default=384,
type=int,
help=(
'The maximum total input sequence length after WordPiece tokenization. Sequences '
'longer than this will be truncated, and sequences shorter than this will be padded.'
),
)
parser.add_argument(
'--doc_stride',
default=128,
type=int,
help='When splitting up a long document into chunks, how much stride to take between chunks.',
)
parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.')
parser.add_argument(
'--n_best_size',
default=20,
type=int,
help='The total number of n-best predictions to generate in the nbest_predictions.json output file.',
)
parser.add_argument(
'--max_answer_length',
default=30,
type=int,
help=(
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
),
)
parser.add_argument('--seed', type=int, default=42, help='random seed for initialization')
parser.add_argument(
'--dataset_name',
type=str,
default=None,
required=True,
help='The name of the dataset to use (via the datasets library).',
)
parser.add_argument(
'--dataset_config_name',
type=str,
default=None,
help='The configuration name of the dataset to use (via the datasets library).',
)
parser.add_argument(
'--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.'
)
parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets')
parser.add_argument(
'--fp16',
action='store_true',
help='Whether to use 16-bit (mixed) precision instead of 32-bit',
)
parser.add_argument(
'--int8',
action='store_true',
help='Whether to use INT8',
)
a_ : str = parser.parse_args()
if args.tokenizer_name:
a_ : int = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
'You are instantiating a new tokenizer from scratch. This is not supported by this script.'
'You can do it from another script, save it, and load it from here, using --tokenizer_name.'
)
logger.info('Training/evaluation parameters %s', args)
a_ : Tuple = args.per_device_eval_batch_size
a_ : Optional[Any] = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
a_ : Optional[Any] = True
a_ : List[Any] = 'temp_engine/bert-fp32.engine'
if args.fpaa:
a_ : Any = 'temp_engine/bert-fp16.engine'
if args.inta:
a_ : int = 'temp_engine/bert-int8.engine'
# import ONNX file
if not os.path.exists('temp_engine'):
os.makedirs('temp_engine')
a_ : List[Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, 'rb') as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
a_ : List[str] = [network.get_input(i) for i in range(network.num_inputs)]
a_ : int = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
a_ : Optional[Any] = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
a_ : List[str] = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
a_ : List[str] = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, 'wb') as f:
f.write(engine.serialize())
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ):
__magic_name__ = np.asarray(inputs['''input_ids'''] , dtype=np.intaa )
__magic_name__ = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa )
__magic_name__ = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , snake_case_ )
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , snake_case_ )
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , snake_case_ )
# start time
__magic_name__ = time.time()
# Run inference
context.execute_async(
bindings=[int(snake_case_ ) for d_inp in d_inputs] + [int(snake_case_ ), int(snake_case_ )] , stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(snake_case_ , snake_case_ , snake_case_ )
cuda.memcpy_dtoh_async(snake_case_ , snake_case_ , snake_case_ )
# Synchronize the stream and take time
stream.synchronize()
# end time
__magic_name__ = time.time()
__magic_name__ = end_time - start_time
__magic_name__ = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
a_ : Tuple = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
a_ : Dict = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError('Evaluation requires a dataset name')
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
a_ : Tuple = raw_datasets['validation'].column_names
a_ : Optional[int] = 'question' if 'question' in column_names else column_names[0]
a_ : List[Any] = 'context' if 'context' in column_names else column_names[1]
a_ : Optional[Any] = 'answers' if 'answers' in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
a_ : Optional[int] = tokenizer.padding_side == 'right'
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."""
)
a_ : Tuple = min(args.max_seq_length, tokenizer.model_max_length)
def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ):
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
# left whitespace
__magic_name__ = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
__magic_name__ = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=snake_case_ , stride=args.doc_stride , return_overflowing_tokens=snake_case_ , return_offsets_mapping=snake_case_ , padding='''max_length''' , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
__magic_name__ = tokenized_examples.pop('''overflow_to_sample_mapping''' )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
__magic_name__ = []
for i in range(len(tokenized_examples['''input_ids'''] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
__magic_name__ = tokenized_examples.sequence_ids(snake_case_ )
__magic_name__ = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
__magic_name__ = sample_mapping[i]
tokenized_examples["example_id"].append(examples['''id'''][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
__magic_name__ = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] )
]
return tokenized_examples
a_ : Dict = raw_datasets['validation']
# Validation Feature Creation
a_ : int = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc='Running tokenizer on validation dataset',
)
a_ : List[str] = default_data_collator
a_ : Tuple = eval_dataset.remove_columns(['example_id', 'offset_mapping'])
a_ : Optional[int] = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Dict="eval" ):
# Post-processing: we match the start logits and end logits to answers in the original context.
__magic_name__ = postprocess_qa_predictions(
examples=snake_case_ , features=snake_case_ , predictions=snake_case_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=snake_case_ , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
__magic_name__ = [
{'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items()
]
else:
__magic_name__ = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()]
__magic_name__ = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=snake_case_ , label_ids=snake_case_ )
a_ : Any = load_metric('squad_v2' if args.version_2_with_negative else 'squad')
# Evaluation!
logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path)
with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ):
return trt.volume(engine.get_binding_shape(snake_case_ ) ) * engine.get_binding_dtype(snake_case_ ).itemsize
# Allocate device memory for inputs and outputs.
a_ : Any = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
a_ : Tuple = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
a_ : Union[str, Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
a_ : Union[str, Any] = cuda.mem_alloc(h_outputa.nbytes)
a_ : List[str] = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
a_ : Optional[int] = cuda.Stream()
# Evaluation
logger.info('***** Running Evaluation *****')
logger.info(F""" Num examples = {len(eval_dataset)}""")
logger.info(F""" Batch size = {args.per_device_eval_batch_size}""")
a_ : Tuple = 0.0
a_ : List[Any] = 0
a_ : int = timeit.default_timer()
a_ : Dict = None
for step, batch in enumerate(eval_dataloader):
a_ : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
a_ : Union[str, Any] = outputs
a_ : Any = torch.tensor(start_logits)
a_ : Tuple = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
a_ : List[str] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
a_ : List[str] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
a_ : str = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
a_ : Optional[Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if all_preds is not None:
a_ : Optional[Any] = nested_truncate(all_preds, len(eval_dataset))
a_ : Optional[Any] = timeit.default_timer() - start_time
logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1000 / niter))
logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1000))
logger.info('Total Number of Inference = %d', niter)
a_ : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds)
a_ : List[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(F"""Evaluation metrics: {eval_metric}""")
| 700 |
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
a_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
a_ : List[str] = 256
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_a = ["""melgan"""]
def __init__( self , A , A , A , A , A , ) -> None:
'''simple docstring'''
super().__init__()
# From MELGAN
__magic_name__ = math.log(1E-5 ) # Matches MelGAN training.
__magic_name__ = 4.0 # Largest value for most examples
__magic_name__ = 1_28
self.register_modules(
notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , )
def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> List[Any]:
'''simple docstring'''
__magic_name__ , __magic_name__ = output_range
if clip:
__magic_name__ = torch.clip(A , self.min_value , self.max_value )
# Scale to [0, 1].
__magic_name__ = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> Optional[int]:
'''simple docstring'''
__magic_name__ , __magic_name__ = input_range
__magic_name__ = torch.clip(A , A , A ) if clip else outputs
# Scale to [0, 1].
__magic_name__ = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def __A ( self , A , A , A ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = input_tokens > 0
__magic_name__ , __magic_name__ = self.notes_encoder(
encoder_input_tokens=A , encoder_inputs_mask=A )
__magic_name__ , __magic_name__ = self.continuous_encoder(
encoder_inputs=A , encoder_inputs_mask=A )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def __A ( self , A , A , A ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = noise_time
if not torch.is_tensor(A ):
__magic_name__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(A ) and len(timesteps.shape ) == 0:
__magic_name__ = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__magic_name__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
__magic_name__ = self.decoder(
encodings_and_masks=A , decoder_input_tokens=A , decoder_noise_time=A )
return logits
@torch.no_grad()
def __call__( self , A , A = None , A = 1_00 , A = True , A = "numpy" , A = None , A = 1 , ) -> Union[AudioPipelineOutput, Tuple]:
'''simple docstring'''
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0)
):
raise ValueError(
F'`callback_steps` has to be a positive integer but is {callback_steps} of type'
F' {type(A )}.' )
__magic_name__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
__magic_name__ = np.zeros([1, 0, self.n_dims] , np.floataa )
__magic_name__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device )
for i, encoder_input_tokens in enumerate(A ):
if i == 0:
__magic_name__ = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
__magic_name__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
__magic_name__ = ones
__magic_name__ = self.scale_features(
A , output_range=[-1.0, 1.0] , clip=A )
__magic_name__ = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A , continuous_mask=A , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
__magic_name__ = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=A , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(A )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__magic_name__ = self.decode(
encodings_and_masks=A , input_tokens=A , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
__magic_name__ = self.scheduler.step(A , A , A , generator=A ).prev_sample
__magic_name__ = self.scale_to_features(A , input_range=[-1.0, 1.0] )
__magic_name__ = mel[:1]
__magic_name__ = mel.cpu().float().numpy()
__magic_name__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A , A )
logger.info('''Generated segment''' , A )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
'''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
'''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' )
if output_type == "numpy":
__magic_name__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
__magic_name__ = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=A ) | 678 | 0 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : bytes ):
return "".join([hex(snake_case_ )[2:].zfill(2 ).upper() for byte in list(snake_case_ )] )
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ):
# Check data validity, following RFC3548
# https://www.ietf.org/rfc/rfc3548.txt
if (len(snake_case_ ) % 2) != 0:
raise ValueError(
'''Base16 encoded data is invalid:
Data does not have an even number of hex digits.''' )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(snake_case_ ) <= set('''0123456789ABCDEF''' ):
raise ValueError(
'''Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters.''' )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(snake_case_ ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 701 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel | 678 | 0 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : int ):
if n == 1 or not isinstance(snake_case_ , snake_case_ ):
return 0
elif n == 2:
return 1
else:
__magic_name__ = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def _SCREAMING_SNAKE_CASE ( snake_case_ : int ):
__magic_name__ = 0
__magic_name__ = 2
while digits < n:
index += 1
__magic_name__ = len(str(fibonacci(snake_case_ ) ) )
return index
def _SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000 ):
return fibonacci_digits_index(snake_case_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip()))) | 702 |
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ):
__magic_name__ = SwinConfig(image_size=192 )
if "base" in model_name:
__magic_name__ = 6
__magic_name__ = 128
__magic_name__ = (2, 2, 18, 2)
__magic_name__ = (4, 8, 16, 32)
elif "large" in model_name:
__magic_name__ = 12
__magic_name__ = 192
__magic_name__ = (2, 2, 18, 2)
__magic_name__ = (6, 12, 24, 48)
else:
raise ValueError('''Model not supported, only supports base and large variants''' )
__magic_name__ = window_size
__magic_name__ = embed_dim
__magic_name__ = depths
__magic_name__ = num_heads
return config
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ):
if "encoder.mask_token" in name:
__magic_name__ = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' )
if "encoder.patch_embed.proj" in name:
__magic_name__ = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "encoder.patch_embed.norm" in name:
__magic_name__ = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' )
if "attn.proj" in name:
__magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
__magic_name__ = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
__magic_name__ = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
__magic_name__ = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
__magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
__magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "encoder.norm.weight":
__magic_name__ = '''layernorm.weight'''
if name == "encoder.norm.bias":
__magic_name__ = '''layernorm.bias'''
if "decoder" in name:
pass
else:
__magic_name__ = '''swin.''' + name
return name
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Any ):
for key in orig_state_dict.copy().keys():
__magic_name__ = orig_state_dict.pop(snake_case_ )
if "attn_mask" in key:
pass
elif "qkv" in key:
__magic_name__ = key.split('''.''' )
__magic_name__ = int(key_split[2] )
__magic_name__ = int(key_split[4] )
__magic_name__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__magic_name__ = val[:dim, :]
__magic_name__ = val[
dim : dim * 2, :
]
__magic_name__ = val[-dim:, :]
else:
__magic_name__ = val[
:dim
]
__magic_name__ = val[
dim : dim * 2
]
__magic_name__ = val[
-dim:
]
else:
__magic_name__ = val
return orig_state_dict
def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Any , snake_case_ : str ):
__magic_name__ = torch.load(snake_case_ , map_location='''cpu''' )['''model''']
__magic_name__ = get_swin_config(snake_case_ )
__magic_name__ = SwinForMaskedImageModeling(snake_case_ )
model.eval()
__magic_name__ = convert_state_dict(snake_case_ , snake_case_ )
model.load_state_dict(snake_case_ )
__magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__magic_name__ = ViTImageProcessor(size={'''height''': 192, '''width''': 192} )
__magic_name__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw )
__magic_name__ = image_processor(images=snake_case_ , return_tensors='''pt''' )
with torch.no_grad():
__magic_name__ = model(**snake_case_ ).logits
print(outputs.keys() )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case_ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case_ )
if push_to_hub:
print(f'Pushing model and image processor for {model_name} to hub' )
model.push_to_hub(f'microsoft/{model_name}' )
image_processor.push_to_hub(f'microsoft/{model_name}' )
if __name__ == "__main__":
a_ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='swin-base-simmim-window6-192',
type=str,
choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'],
help='Name of the Swin SimMIM model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth',
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
a_ : Optional[Any] = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub) | 678 | 0 |
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE_ ( metaclass=SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_a = ["""torch""", """torchsde"""]
def __init__( self , *A , **A ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['''torch''', '''torchsde'''] )
@classmethod
def __A ( cls , *A , **A ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ['''torch''', '''torchsde'''] )
@classmethod
def __A ( cls , *A , **A ) -> Tuple:
'''simple docstring'''
requires_backends(cls , ['''torch''', '''torchsde'''] ) | 703 |
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ):
return "".join(sorted(snake_case_ ) )
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ):
return word_by_signature[signature(snake_case_ )]
a_ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8')
a_ : Optional[Any] = sorted({word.strip().lower() for word in data.splitlines()})
a_ : List[Any] = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
a_ : Optional[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('anagrams.txt', 'w') as file:
file.write('all_anagrams = \n ')
file.write(pprint.pformat(all_anagrams)) | 678 | 0 |
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any]=1 ):
if n_shave_prefix_segments >= 0:
return ".".join(path.split('''.''' )[n_shave_prefix_segments:] )
else:
return ".".join(path.split('''.''' )[:n_shave_prefix_segments] )
def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : List[str]=0 ):
__magic_name__ = []
for old_item in old_list:
__magic_name__ = old_item.replace('''in_layers.0''' , '''norm1''' )
__magic_name__ = new_item.replace('''in_layers.2''' , '''conv1''' )
__magic_name__ = new_item.replace('''out_layers.0''' , '''norm2''' )
__magic_name__ = new_item.replace('''out_layers.3''' , '''conv2''' )
__magic_name__ = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' )
__magic_name__ = new_item.replace('''skip_connection''' , '''conv_shortcut''' )
__magic_name__ = shave_segments(snake_case_ , n_shave_prefix_segments=snake_case_ )
mapping.append({'''old''': old_item, '''new''': new_item} )
return mapping
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : int=0 ):
__magic_name__ = []
for old_item in old_list:
__magic_name__ = old_item
__magic_name__ = new_item.replace('''norm.weight''' , '''group_norm.weight''' )
__magic_name__ = new_item.replace('''norm.bias''' , '''group_norm.bias''' )
__magic_name__ = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' )
__magic_name__ = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' )
__magic_name__ = shave_segments(snake_case_ , n_shave_prefix_segments=snake_case_ )
mapping.append({'''old''': old_item, '''new''': new_item} )
return mapping
def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : List[str]=None , snake_case_ : int=None , snake_case_ : Any=None ):
assert isinstance(snake_case_ , snake_case_ ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
__magic_name__ = old_checkpoint[path]
__magic_name__ = old_tensor.shape[0] // 3
__magic_name__ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
__magic_name__ = old_tensor.shape[0] // config['''num_head_channels'''] // 3
__magic_name__ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
__magic_name__ , __magic_name__ , __magic_name__ = old_tensor.split(channels // num_heads , dim=1 )
__magic_name__ = query.reshape(snake_case_ )
__magic_name__ = key.reshape(snake_case_ )
__magic_name__ = value.reshape(snake_case_ )
for path in paths:
__magic_name__ = path['''new''']
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
__magic_name__ = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' )
__magic_name__ = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' )
__magic_name__ = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' )
if additional_replacements is not None:
for replacement in additional_replacements:
__magic_name__ = new_path.replace(replacement['''old'''] , replacement['''new'''] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
__magic_name__ = old_checkpoint[path['''old''']][:, :, 0]
else:
__magic_name__ = old_checkpoint[path['''old''']]
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[str] ):
__magic_name__ = {}
__magic_name__ = checkpoint['''time_embed.0.weight''']
__magic_name__ = checkpoint['''time_embed.0.bias''']
__magic_name__ = checkpoint['''time_embed.2.weight''']
__magic_name__ = checkpoint['''time_embed.2.bias''']
__magic_name__ = checkpoint['''input_blocks.0.0.weight''']
__magic_name__ = checkpoint['''input_blocks.0.0.bias''']
__magic_name__ = checkpoint['''out.0.weight''']
__magic_name__ = checkpoint['''out.0.bias''']
__magic_name__ = checkpoint['''out.2.weight''']
__magic_name__ = checkpoint['''out.2.bias''']
# Retrieves the keys for the input blocks only
__magic_name__ = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} )
__magic_name__ = {
layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key]
for layer_id in range(snake_case_ )
}
# Retrieves the keys for the middle blocks only
__magic_name__ = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} )
__magic_name__ = {
layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key]
for layer_id in range(snake_case_ )
}
# Retrieves the keys for the output blocks only
__magic_name__ = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} )
__magic_name__ = {
layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key]
for layer_id in range(snake_case_ )
}
for i in range(1 , snake_case_ ):
__magic_name__ = (i - 1) // (config['''num_res_blocks'''] + 1)
__magic_name__ = (i - 1) % (config['''num_res_blocks'''] + 1)
__magic_name__ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key]
__magic_name__ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key]
if f'input_blocks.{i}.0.op.weight' in checkpoint:
__magic_name__ = checkpoint[
f'input_blocks.{i}.0.op.weight'
]
__magic_name__ = checkpoint[
f'input_blocks.{i}.0.op.bias'
]
continue
__magic_name__ = renew_resnet_paths(snake_case_ )
__magic_name__ = {'''old''': f'input_blocks.{i}.0', '''new''': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'}
__magic_name__ = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''}
assign_to_checkpoint(
snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path, resnet_op] , config=snake_case_ )
if len(snake_case_ ):
__magic_name__ = renew_attention_paths(snake_case_ )
__magic_name__ = {
'''old''': f'input_blocks.{i}.1',
'''new''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}',
}
__magic_name__ = {
f'input_blocks.{i}.1.qkv.bias': {
'''key''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias',
'''query''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias',
'''value''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias',
},
f'input_blocks.{i}.1.qkv.weight': {
'''key''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight',
'''query''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight',
'''value''': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight',
},
}
assign_to_checkpoint(
snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case_ , config=snake_case_ , )
__magic_name__ = middle_blocks[0]
__magic_name__ = middle_blocks[1]
__magic_name__ = middle_blocks[2]
__magic_name__ = renew_resnet_paths(snake_case_ )
assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , config=snake_case_ )
__magic_name__ = renew_resnet_paths(snake_case_ )
assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , config=snake_case_ )
__magic_name__ = renew_attention_paths(snake_case_ )
__magic_name__ = {
'''middle_block.1.qkv.bias''': {
'''key''': '''mid_block.attentions.0.key.bias''',
'''query''': '''mid_block.attentions.0.query.bias''',
'''value''': '''mid_block.attentions.0.value.bias''',
},
'''middle_block.1.qkv.weight''': {
'''key''': '''mid_block.attentions.0.key.weight''',
'''query''': '''mid_block.attentions.0.query.weight''',
'''value''': '''mid_block.attentions.0.value.weight''',
},
}
assign_to_checkpoint(
snake_case_ , snake_case_ , snake_case_ , attention_paths_to_split=snake_case_ , config=snake_case_ )
for i in range(snake_case_ ):
__magic_name__ = i // (config['''num_res_blocks'''] + 1)
__magic_name__ = i % (config['''num_res_blocks'''] + 1)
__magic_name__ = [shave_segments(snake_case_ , 2 ) for name in output_blocks[i]]
__magic_name__ = {}
for layer in output_block_layers:
__magic_name__ , __magic_name__ = layer.split('''.''' )[0], shave_segments(snake_case_ , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(snake_case_ )
else:
__magic_name__ = [layer_name]
if len(snake_case_ ) > 1:
__magic_name__ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key]
__magic_name__ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key]
__magic_name__ = renew_resnet_paths(snake_case_ )
__magic_name__ = renew_resnet_paths(snake_case_ )
__magic_name__ = {'''old''': f'output_blocks.{i}.0', '''new''': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'}
assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ )
if ["conv.weight", "conv.bias"] in output_block_list.values():
__magic_name__ = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] )
__magic_name__ = checkpoint[
f'output_blocks.{i}.{index}.conv.weight'
]
__magic_name__ = checkpoint[
f'output_blocks.{i}.{index}.conv.bias'
]
# Clear attentions as they have been attributed above.
if len(snake_case_ ) == 2:
__magic_name__ = []
if len(snake_case_ ):
__magic_name__ = renew_attention_paths(snake_case_ )
__magic_name__ = {
'''old''': f'output_blocks.{i}.1',
'''new''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}',
}
__magic_name__ = {
f'output_blocks.{i}.1.qkv.bias': {
'''key''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias',
'''query''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias',
'''value''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias',
},
f'output_blocks.{i}.1.qkv.weight': {
'''key''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight',
'''query''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight',
'''value''': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight',
},
}
assign_to_checkpoint(
snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=snake_case_ , )
else:
__magic_name__ = renew_resnet_paths(snake_case_ , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
__magic_name__ = '''.'''.join(['''output_blocks''', str(snake_case_ ), path['''old''']] )
__magic_name__ = '''.'''.join(['''up_blocks''', str(snake_case_ ), '''resnets''', str(snake_case_ ), path['''new''']] )
__magic_name__ = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
a_ = parser.parse_args()
a_ = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
a_ = json.loads(f.read())
a_ = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
a_ = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
a_ = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1]))
a_ = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1]))
a_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path) | 704 |
from __future__ import annotations
from scipy.special import comb # type: ignore
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
def __init__( self , A ) -> Tuple:
'''simple docstring'''
__magic_name__ = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
__magic_name__ = len(A ) - 1
def __A ( self , A ) -> list[float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
__magic_name__ = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , A ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(A ) , 5 ) == 1
return output_values
def __A ( self , A ) -> tuple[float, float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
__magic_name__ = self.basis_function(A )
__magic_name__ = 0.0
__magic_name__ = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def __A ( self , A = 0.01 ) -> Tuple:
'''simple docstring'''
from matplotlib import pyplot as plt # type: ignore
__magic_name__ = [] # x coordinates of points to plot
__magic_name__ = [] # y coordinates of points to plot
__magic_name__ = 0.0
while t <= 1:
__magic_name__ = self.bezier_curve_function(A )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
__magic_name__ = [i[0] for i in self.list_of_points]
__magic_name__ = [i[1] for i in self.list_of_points]
plt.plot(
A , A , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , )
plt.scatter(A , A , color='''red''' , label='''Control Points''' )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3 | 678 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
a_ : Union[str, Any] = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
a_ : Optional[Any] = TaTokenizerFast
a_ : int = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : int = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
a_ : str = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
) | 705 |
import re
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ):
__magic_name__ = re.compile(
r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' )
return bool(re.search(snake_case_ , snake_case_ ) )
if __name__ == "__main__":
a_ : Optional[int] = '0094702343221'
print(is_sri_lankan_phone_number(phone)) | 678 | 0 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
def __init__( self , A , A=13 , A=30 , A=2 , A=3 , A=True , A=True , A=32 , A=2 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.02 , A=3 , A=None , A=2 , ) -> Tuple:
'''simple docstring'''
__magic_name__ = parent
__magic_name__ = batch_size
__magic_name__ = image_size
__magic_name__ = patch_size
__magic_name__ = num_channels
__magic_name__ = is_training
__magic_name__ = use_labels
__magic_name__ = hidden_size
__magic_name__ = num_hidden_layers
__magic_name__ = num_attention_heads
__magic_name__ = intermediate_size
__magic_name__ = hidden_act
__magic_name__ = hidden_dropout_prob
__magic_name__ = attention_probs_dropout_prob
__magic_name__ = type_sequence_label_size
__magic_name__ = initializer_range
__magic_name__ = scope
__magic_name__ = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__magic_name__ = (image_size // patch_size) ** 2
__magic_name__ = num_patches + 2
def __A ( self ) -> List[str]:
'''simple docstring'''
__magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ = None
if self.use_labels:
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = self.get_config()
return config, pixel_values, labels
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __A ( self , A , A , A ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = TFDeiTModel(config=A )
__magic_name__ = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , A , A , A ) -> str:
'''simple docstring'''
__magic_name__ = TFDeiTForMaskedImageModeling(config=A )
__magic_name__ = model(A )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__magic_name__ = 1
__magic_name__ = TFDeiTForMaskedImageModeling(A )
__magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ = model(A )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __A ( self , A , A , A ) -> Tuple:
'''simple docstring'''
__magic_name__ = self.type_sequence_label_size
__magic_name__ = TFDeiTForImageClassification(A )
__magic_name__ = model(A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__magic_name__ = 1
__magic_name__ = TFDeiTForImageClassification(A )
__magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ = model(A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self ) -> Any:
'''simple docstring'''
__magic_name__ = self.prepare_config_and_inputs()
__magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs
__magic_name__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
_a = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
_a = (
{
"""feature-extraction""": TFDeiTModel,
"""image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__magic_name__ = TFDeiTModelTester(self )
__magic_name__ = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 )
def __A ( self ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''DeiT does not use inputs_embeds''' )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
pass
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ = model_class(A )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
__magic_name__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A , tf.keras.layers.Dense ) )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ = model_class(A )
__magic_name__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ = [*signature.parameters.keys()]
__magic_name__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , A )
def __A ( self ) -> int:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def __A ( self , A , A , A=False ) -> Dict:
'''simple docstring'''
__magic_name__ = super()._prepare_for_class(A , A , return_labels=A )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ = TFDeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def _SCREAMING_SNAKE_CASE ( ):
__magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __A ( self ) -> Dict:
'''simple docstring'''
return (
DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
if is_vision_available()
else None
)
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__magic_name__ = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
__magic_name__ = self.default_image_processor
__magic_name__ = prepare_img()
__magic_name__ = image_processor(images=A , return_tensors='''tf''' )
# forward pass
__magic_name__ = model(**A )
# verify the logits
__magic_name__ = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , A )
__magic_name__ = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) )
| 706 |
import os
import sys
import unittest
a_ : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
a_ : Optional[Any] = os.path.join(git_repo_path, 'src', 'diffusers')
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = find_backend(''' if not is_torch_available():''' )
self.assertEqual(A , '''torch''' )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
__magic_name__ = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' )
self.assertEqual(A , '''torch_and_transformers''' )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
__magic_name__ = find_backend(
''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' )
self.assertEqual(A , '''torch_and_transformers_and_onnx''' )
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('''torch''' , A )
self.assertIn('''torch_and_transformers''' , A )
self.assertIn('''flax_and_transformers''' , A )
self.assertIn('''torch_and_transformers_and_onnx''' , A )
# Likewise, we can't assert on the exact content of a key
self.assertIn('''UNet2DModel''' , objects['''torch'''] )
self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] )
self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] )
self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] )
self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] )
self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = create_dummy_object('''CONSTANT''' , '''\'torch\'''' )
self.assertEqual(A , '''\nCONSTANT = None\n''' )
__magic_name__ = create_dummy_object('''function''' , '''\'torch\'''' )
self.assertEqual(
A , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' )
__magic_name__ = '''
class FakeClass(metaclass=DummyObject):
_backends = \'torch\'
def __init__(self, *args, **kwargs):
requires_backends(self, \'torch\')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
'''
__magic_name__ = create_dummy_object('''FakeClass''' , '''\'torch\'''' )
self.assertEqual(A , A )
def __A ( self ) -> int:
'''simple docstring'''
__magic_name__ = '''# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
'''
__magic_name__ = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} )
self.assertEqual(dummy_files['''torch'''] , A ) | 678 | 0 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : int ):
__magic_name__ = 1
for i in range(1 , num + 1 ):
fact *= i
return fact
def _SCREAMING_SNAKE_CASE ( snake_case_ : int ):
__magic_name__ = 0
while number > 0:
__magic_name__ = number % 10
sum_of_digits += last_digit
__magic_name__ = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def _SCREAMING_SNAKE_CASE ( snake_case_ : int = 100 ):
__magic_name__ = factorial(snake_case_ )
__magic_name__ = split_and_add(snake_case_ )
return result
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 707 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : int , snake_case_ : set ):
__magic_name__ , __magic_name__ = len(snake_case_ ), len(grid[0] )
if (
min(snake_case_ , snake_case_ ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
__magic_name__ = 0
count += depth_first_search(snake_case_ , row + 1 , snake_case_ , snake_case_ )
count += depth_first_search(snake_case_ , row - 1 , snake_case_ , snake_case_ )
count += depth_first_search(snake_case_ , snake_case_ , col + 1 , snake_case_ )
count += depth_first_search(snake_case_ , snake_case_ , col - 1 , snake_case_ )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod() | 678 | 0 |
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
_a = MODEL_FOR_CAUSAL_LM_MAPPING
_a = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def __A ( self ) -> Tuple:
'''simple docstring'''
__magic_name__ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' )
# Using `do_sample=False` to force deterministic output
__magic_name__ = text_generator('''This is a test''' , do_sample=A )
self.assertEqual(
A , [
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
] , )
__magic_name__ = text_generator(['''This is a test''', '''This is a second test'''] )
self.assertEqual(
A , [
[
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy'''
''' oscope. oscope. FiliFili@@'''
)
}
],
] , )
__magic_name__ = text_generator('''This is a test''' , do_sample=A , num_return_sequences=2 , return_tensors=A )
self.assertEqual(
A , [
{'''generated_token_ids''': ANY(A )},
{'''generated_token_ids''': ANY(A )},
] , )
__magic_name__ = text_generator.model.config.eos_token_id
__magic_name__ = '''<pad>'''
__magic_name__ = text_generator(
['''This is a test''', '''This is a second test'''] , do_sample=A , num_return_sequences=2 , batch_size=2 , return_tensors=A , )
self.assertEqual(
A , [
[
{'''generated_token_ids''': ANY(A )},
{'''generated_token_ids''': ANY(A )},
],
[
{'''generated_token_ids''': ANY(A )},
{'''generated_token_ids''': ANY(A )},
],
] , )
@require_tf
def __A ( self ) -> int:
'''simple docstring'''
__magic_name__ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' )
# Using `do_sample=False` to force deterministic output
__magic_name__ = text_generator('''This is a test''' , do_sample=A )
self.assertEqual(
A , [
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
] , )
__magic_name__ = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=A )
self.assertEqual(
A , [
[
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes'''
''' Cannes 閲閲Cannes Cannes Cannes 攵 please,'''
)
}
],
] , )
def __A ( self , A , A , A ) -> Dict:
'''simple docstring'''
__magic_name__ = TextGenerationPipeline(model=A , tokenizer=A )
return text_generator, ["This is a test", "Another test"]
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__magic_name__ = '''Hello I believe in'''
__magic_name__ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
__magic_name__ = text_generator(A )
self.assertEqual(
A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , )
__magic_name__ = text_generator(A , stop_sequence=''' fe''' )
self.assertEqual(A , [{'''generated_text''': '''Hello I believe in fe'''}] )
def __A ( self , A , A ) -> Tuple:
'''simple docstring'''
__magic_name__ = text_generator.model
__magic_name__ = text_generator.tokenizer
__magic_name__ = text_generator('''This is a test''' )
self.assertEqual(A , [{'''generated_text''': ANY(A )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
__magic_name__ = text_generator('''This is a test''' , return_full_text=A )
self.assertEqual(A , [{'''generated_text''': ANY(A )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
__magic_name__ = pipeline(task='''text-generation''' , model=A , tokenizer=A , return_full_text=A )
__magic_name__ = text_generator('''This is a test''' )
self.assertEqual(A , [{'''generated_text''': ANY(A )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
__magic_name__ = text_generator('''This is a test''' , return_full_text=A )
self.assertEqual(A , [{'''generated_text''': ANY(A )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
__magic_name__ = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=A )
self.assertEqual(
A , [
[{'''generated_text''': ANY(A )}, {'''generated_text''': ANY(A )}],
[{'''generated_text''': ANY(A )}, {'''generated_text''': ANY(A )}],
] , )
if text_generator.tokenizer.pad_token is not None:
__magic_name__ = text_generator(
['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=A )
self.assertEqual(
A , [
[{'''generated_text''': ANY(A )}, {'''generated_text''': ANY(A )}],
[{'''generated_text''': ANY(A )}, {'''generated_text''': ANY(A )}],
] , )
with self.assertRaises(A ):
__magic_name__ = text_generator('''test''' , return_full_text=A , return_text=A )
with self.assertRaises(A ):
__magic_name__ = text_generator('''test''' , return_full_text=A , return_tensors=A )
with self.assertRaises(A ):
__magic_name__ = text_generator('''test''' , return_text=A , return_tensors=A )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
__magic_name__ = text_generator('''''' )
self.assertEqual(A , [{'''generated_text''': ANY(A )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
__magic_name__ = text_generator('''''' )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
__magic_name__ = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM''']
if (
tokenizer.model_max_length < 1_00_00
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator('''This is a test''' * 5_00 , max_new_tokens=20 )
__magic_name__ = text_generator('''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=20 )
# Hole strategy cannot work
with self.assertRaises(A ):
text_generator(
'''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , )
@require_torch
@require_accelerate
@require_torch_gpu
def __A ( self ) -> Any:
'''simple docstring'''
import torch
# Classic `model_kwargs`
__magic_name__ = pipeline(
model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
__magic_name__ = pipe('''This is a test''' )
self.assertEqual(
A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
__magic_name__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
__magic_name__ = pipe('''This is a test''' )
self.assertEqual(
A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
__magic_name__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa )
__magic_name__ = pipe('''This is a test''' )
self.assertEqual(
A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
@require_torch
@require_torch_gpu
def __A ( self ) -> Tuple:
'''simple docstring'''
import torch
__magic_name__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa )
pipe('''This is a test''' )
@require_torch
@require_accelerate
@require_torch_gpu
def __A ( self ) -> Optional[int]:
'''simple docstring'''
import torch
__magic_name__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa )
pipe('''This is a test''' , do_sample=A , top_p=0.5 )
def __A ( self ) -> Dict:
'''simple docstring'''
__magic_name__ = '''Hello world'''
__magic_name__ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
if text_generator.model.framework == "tf":
__magic_name__ = logging.get_logger('''transformers.generation.tf_utils''' )
else:
__magic_name__ = logging.get_logger('''transformers.generation.utils''' )
__magic_name__ = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(A ) as cl:
__magic_name__ = text_generator(A , max_length=10 , max_new_tokens=1 )
self.assertIn(A , cl.out )
# The user only sets one -> no warning
with CaptureLogger(A ) as cl:
__magic_name__ = text_generator(A , max_new_tokens=1 )
self.assertNotIn(A , cl.out )
with CaptureLogger(A ) as cl:
__magic_name__ = text_generator(A , max_length=10 )
self.assertNotIn(A , cl.out ) | 708 |
a_ : Dict = {
'meter': 'm',
'kilometer': 'km',
'megametre': 'Mm',
'gigametre': 'Gm',
'terametre': 'Tm',
'petametre': 'Pm',
'exametre': 'Em',
'zettametre': 'Zm',
'yottametre': 'Ym',
}
# Exponent of the factor(meter)
a_ : str = {
'm': 0,
'km': 3,
'Mm': 6,
'Gm': 9,
'Tm': 12,
'Pm': 15,
'Em': 18,
'Zm': 21,
'Ym': 24,
}
def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : str , snake_case_ : str ):
__magic_name__ = from_type.lower().strip('''s''' )
__magic_name__ = to_type.lower().strip('''s''' )
__magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ )
__magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ )
if from_sanitized not in METRIC_CONVERSION:
__magic_name__ = (
f'Invalid \'from_type\' value: {from_type!r}.\n'
f'Conversion abbreviations are: {", ".join(snake_case_ )}'
)
raise ValueError(snake_case_ )
if to_sanitized not in METRIC_CONVERSION:
__magic_name__ = (
f'Invalid \'to_type\' value: {to_type!r}.\n'
f'Conversion abbreviations are: {", ".join(snake_case_ )}'
)
raise ValueError(snake_case_ )
__magic_name__ = METRIC_CONVERSION[from_sanitized]
__magic_name__ = METRIC_CONVERSION[to_sanitized]
__magic_name__ = 1
if from_exponent > to_exponent:
__magic_name__ = from_exponent - to_exponent
else:
__magic_name__ = -(to_exponent - from_exponent)
return value * pow(10 , snake_case_ )
if __name__ == "__main__":
from doctest import testmod
testmod() | 678 | 0 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
a_ : Optional[int] = 16
a_ : int = 32
def _SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" ):
__magic_name__ = AutoTokenizer.from_pretrained(snake_case_ )
__magic_name__ = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(snake_case_ : Union[str, Any] ):
# max_length=None => use the model max length (it's actually the default)
__magic_name__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__magic_name__ = datasets.map(
snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__magic_name__ = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(snake_case_ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
__magic_name__ = DataLoader(
tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
__magic_name__ = DataLoader(
tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
return train_dataloader, eval_dataloader
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : str ):
model.eval()
__magic_name__ = 0
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__magic_name__ = model(**snake_case_ )
__magic_name__ = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__magic_name__ , __magic_name__ = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(snake_case_ ) - 1:
__magic_name__ = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__magic_name__ = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=snake_case_ , references=snake_case_ , )
__magic_name__ = metric.compute()
return eval_metric["accuracy"]
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Tuple ):
# Initialize accelerator
__magic_name__ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__magic_name__ = config['''lr''']
__magic_name__ = int(config['''num_epochs'''] )
__magic_name__ = int(config['''seed'''] )
__magic_name__ = int(config['''batch_size'''] )
__magic_name__ = args.model_name_or_path
set_seed(snake_case_ )
__magic_name__ , __magic_name__ = get_dataloaders(snake_case_ , snake_case_ , snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__magic_name__ = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ )
# Instantiate optimizer
__magic_name__ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__magic_name__ = optimizer_cls(params=model.parameters() , lr=snake_case_ )
if accelerator.state.deepspeed_plugin is not None:
__magic_name__ = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
__magic_name__ = 1
__magic_name__ = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__magic_name__ = get_linear_schedule_with_warmup(
optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , )
else:
__magic_name__ = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# We need to keep track of how many total steps we have iterated over
__magic_name__ = 0
# We also need to keep track of the stating epoch so files are named properly
__magic_name__ = 0
__magic_name__ = evaluate.load('''glue''' , '''mrpc''' )
__magic_name__ = num_epochs
if args.partial_train_epoch is not None:
__magic_name__ = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
__magic_name__ = args.resume_from_checkpoint.split('''epoch_''' )[1]
__magic_name__ = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
__magic_name__ = int(snake_case_ ) + 1
__magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
accelerator.print('''resumed checkpoint performance:''' , snake_case_ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , '''r''' ) as f:
__magic_name__ = json.load(snake_case_ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
__magic_name__ = {}
for epoch in range(snake_case_ , snake_case_ ):
model.train()
for step, batch in enumerate(snake_case_ ):
__magic_name__ = model(**snake_case_ )
__magic_name__ = outputs.loss
__magic_name__ = loss / gradient_accumulation_steps
accelerator.backward(snake_case_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
__magic_name__ = f'epoch_{epoch}'
__magic_name__ = os.path.join(args.output_dir , snake_case_ )
accelerator.save_state(snake_case_ )
__magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__magic_name__ = accuracy
__magic_name__ = lr_scheduler.get_lr()[0]
__magic_name__ = optimizer.param_groups[0]['''lr''']
__magic_name__ = epoch
__magic_name__ = overall_step
accelerator.print(f'epoch {epoch}:' , snake_case_ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , '''w''' ) as f:
json.dump(snake_case_ , snake_case_ )
def _SCREAMING_SNAKE_CASE ( ):
__magic_name__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=snake_case_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case_ , )
parser.add_argument(
'''--output_dir''' , type=snake_case_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--resume_from_checkpoint''' , type=snake_case_ , default=snake_case_ , help='''If the training should continue from a checkpoint folder.''' , )
parser.add_argument(
'''--partial_train_epoch''' , type=snake_case_ , default=snake_case_ , help='''If passed, the training will stop after this number of epochs.''' , )
parser.add_argument(
'''--num_epochs''' , type=snake_case_ , default=2 , help='''Number of train epochs.''' , )
__magic_name__ = parser.parse_args()
__magic_name__ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(snake_case_ , snake_case_ )
if __name__ == "__main__":
main() | 709 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
a_ : Union[str, Any] = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : int = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 678 | 0 |
import argparse
a_ : Optional[Any] = 'docs/source/_static/js/custom.js'
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ):
with open(snake_case_ , encoding='''utf-8''' , newline='''\n''' ) as f:
__magic_name__ = f.readlines()
__magic_name__ = 0
# First let's put the right version
while not lines[index].startswith('''const stableVersion =''' ):
index += 1
__magic_name__ = f'const stableVersion = "v{version}"\n'
# Then update the dictionary
while not lines[index].startswith('''const versionMapping = {''' ):
index += 1
# We go until the end
while not lines[index].startswith('''}''' ):
index += 1
# We add the new version at the end
lines[index - 1] += f' "v{version}": "v{version}",\n'
with open(snake_case_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(snake_case_ )
if __name__ == "__main__":
a_ : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--version', help='Release version.')
a_ : List[str] = parser.parse_args()
update_custom_js(args.version) | 710 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str:
'''simple docstring'''
__magic_name__ = parent
__magic_name__ = batch_size
__magic_name__ = seq_length
__magic_name__ = is_training
__magic_name__ = use_token_type_ids
__magic_name__ = use_labels
__magic_name__ = vocab_size
__magic_name__ = hidden_size
__magic_name__ = num_hidden_layers
__magic_name__ = num_attention_heads
__magic_name__ = intermediate_size
__magic_name__ = hidden_act
__magic_name__ = hidden_dropout_prob
__magic_name__ = attention_probs_dropout_prob
__magic_name__ = max_position_embeddings
__magic_name__ = type_vocab_size
__magic_name__ = type_sequence_label_size
__magic_name__ = initializer_range
__magic_name__ = num_labels
__magic_name__ = num_choices
__magic_name__ = scope
__magic_name__ = self.vocab_size - 1
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ = None
if self.use_token_type_ids:
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
if self.use_labels:
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
__magic_name__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def __A ( self , A , A , A , A , *A ) -> Tuple:
'''simple docstring'''
__magic_name__ = OpenAIGPTModel(config=A )
model.to(A )
model.eval()
__magic_name__ = model(A , token_type_ids=A , head_mask=A )
__magic_name__ = model(A , token_type_ids=A )
__magic_name__ = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , A , A , A , A , *A ) -> Dict:
'''simple docstring'''
__magic_name__ = OpenAIGPTLMHeadModel(A )
model.to(A )
model.eval()
__magic_name__ = model(A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , A , A , A , A , *A ) -> List[Any]:
'''simple docstring'''
__magic_name__ = OpenAIGPTDoubleHeadsModel(A )
model.to(A )
model.eval()
__magic_name__ = model(A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , A , A , A , A , *A ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = self.num_labels
__magic_name__ = OpenAIGPTForSequenceClassification(A )
model.to(A )
model.eval()
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = model(A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self ) -> Dict:
'''simple docstring'''
__magic_name__ = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) = config_and_inputs
__magic_name__ = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
_a = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
_a = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
_a = (
{
"""feature-extraction""": OpenAIGPTModel,
"""text-classification""": OpenAIGPTForSequenceClassification,
"""text-generation""": OpenAIGPTLMHeadModel,
"""zero-shot""": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def __A ( self , A , A , A , A , A ) -> List[str]:
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def __A ( self , A , A , A=False ) -> List[str]:
'''simple docstring'''
__magic_name__ = super()._prepare_for_class(A , A , return_labels=A )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
__magic_name__ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=A , )
__magic_name__ = inputs_dict['''labels''']
__magic_name__ = inputs_dict['''labels''']
__magic_name__ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=A , )
__magic_name__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A )
return inputs_dict
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = OpenAIGPTModelTester(self )
__magic_name__ = ConfigTester(self , config_class=A , n_embd=37 )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*A )
def __A ( self ) -> Dict:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*A )
def __A ( self ) -> List[str]:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*A )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A )
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ = OpenAIGPTModel.from_pretrained(A )
self.assertIsNotNone(A )
@require_torch
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__magic_name__ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' )
model.to(A )
__magic_name__ = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=A ) # the president is
__magic_name__ = [
4_81,
47_35,
5_44,
2_46,
9_63,
8_70,
7_62,
2_39,
2_44,
4_04_77,
2_44,
2_49,
7_19,
8_81,
4_87,
5_44,
2_40,
2_44,
6_03,
4_81,
] # the president is a very good man. " \n " i\'m sure he is, " said the
__magic_name__ = model.generate(A , do_sample=A )
self.assertListEqual(output_ids[0].tolist() , A ) | 678 | 0 |
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : List[Any] ):
# Initialise PyTorch model
__magic_name__ = BigBirdConfig.from_json_file(snake_case_ )
print(f'Building PyTorch model from configuration: {config}' )
if is_trivia_qa:
__magic_name__ = BigBirdForQuestionAnswering(snake_case_ )
else:
__magic_name__ = BigBirdForPreTraining(snake_case_ )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(snake_case_ , snake_case_ , is_trivia_qa=snake_case_ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(snake_case_ )
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--big_bird_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.'
)
a_ : Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
) | 711 |
def _SCREAMING_SNAKE_CASE ( ):
__magic_name__ = []
__magic_name__ = 1
while len(snake_case_ ) < 1E6:
constant.append(str(snake_case_ ) )
i += 1
__magic_name__ = ''''''.join(snake_case_ )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9999] )
* int(constant[9_9999] )
* int(constant[99_9999] )
)
if __name__ == "__main__":
print(solution()) | 678 | 0 |
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
a_ : List[Any] = False
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
pass
@nightly
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
__magic_name__ = '''A painting of a squirrel eating a burger '''
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = pipe(
prompt=A , generator=A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(A )
__magic_name__ = VersatileDiffusionTextToImagePipeline.from_pretrained(A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
__magic_name__ = generator.manual_seed(0 )
__magic_name__ = pipe(
prompt=A , generator=A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def __A ( self ) -> Dict:
'''simple docstring'''
__magic_name__ = VersatileDiffusionTextToImagePipeline.from_pretrained(
'''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
__magic_name__ = '''A painting of a squirrel eating a burger '''
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = pipe(
prompt=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
__magic_name__ = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__magic_name__ = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 712 |
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
a_ : str = True
except ImportError:
a_ : Optional[int] = False
try:
from torch.hub import _get_torch_home
a_ : Optional[Any] = _get_torch_home()
except ImportError:
a_ : List[Any] = os.path.expanduser(
os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch'))
)
a_ : Any = os.path.join(torch_cache_home, 'transformers')
a_ : Any = 'https://cdn.huggingface.co'
a_ : Any = 'https://s3.amazonaws.com/models.huggingface.co/bert'
a_ : int = '/'.join(str(Path(__file__).resolve()).split('/')[:-1])
a_ : Any = os.path.join(PATH, 'config.yaml')
a_ : Any = os.path.join(PATH, 'attributes.txt')
a_ : Any = os.path.join(PATH, 'objects.txt')
a_ : List[Any] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path)
a_ : Any = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE)
a_ : Optional[int] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE)
a_ : int = 'pytorch_model.bin'
a_ : Union[str, Any] = 'config.yaml'
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any]=OBJECTS , snake_case_ : str=ATTRIBUTES ):
__magic_name__ = []
with open(snake_case_ ) as f:
for object in f.readlines():
vg_classes.append(object.split(''',''' )[0].lower().strip() )
__magic_name__ = []
with open(snake_case_ ) as f:
for object in f.readlines():
vg_attrs.append(object.split(''',''' )[0].lower().strip() )
return vg_classes, vg_attrs
def _SCREAMING_SNAKE_CASE ( snake_case_ : int ):
__magic_name__ = OrderedDict()
with open(snake_case_ , '''rb''' ) as f:
__magic_name__ = pkl.load(snake_case_ )['''model''']
for k in copy.deepcopy(list(ckp.keys() ) ):
__magic_name__ = ckp.pop(snake_case_ )
if isinstance(snake_case_ , np.ndarray ):
__magic_name__ = torch.tensor(snake_case_ )
else:
assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ )
__magic_name__ = v
return r
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
_a = {}
def __init__( self , A , A = "root" , A=0 ) -> List[str]:
'''simple docstring'''
__magic_name__ = name
__magic_name__ = level
__magic_name__ = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
__magic_name__ = copy.deepcopy(A )
__magic_name__ = copy.deepcopy(A )
if isinstance(A , A ):
__magic_name__ = Config(A , name=A , level=level + 1 )
__magic_name__ = v
setattr(self , A , A )
__magic_name__ = d
def __repr__( self ) -> Union[str, Any]:
'''simple docstring'''
return str(list((self._pointer.keys()) ) )
def __setattr__( self , A , A ) -> Tuple:
'''simple docstring'''
__magic_name__ = val
__magic_name__ = val
__magic_name__ = key.split('''.''' )
__magic_name__ = len(A ) - 1
__magic_name__ = self._pointer
if len(A ) > 1:
for i, l in enumerate(A ):
if hasattr(self , A ) and isinstance(getattr(self , A ) , A ):
setattr(getattr(self , A ) , '''.'''.join(levels[i:] ) , A )
if l == last_level:
__magic_name__ = val
else:
__magic_name__ = pointer[l]
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self._pointer
def __A ( self , A , A ) -> Any:
'''simple docstring'''
with open(F'{file_name}' , '''w''' ) as stream:
dump(A , A )
def __A ( self , A , A ) -> List[Any]:
'''simple docstring'''
with open(F'{file_name}' , '''w''' ) as stream:
json.dump(A , A )
@staticmethod
def __A ( A ) -> Optional[Any]:
'''simple docstring'''
with open(A ) as stream:
__magic_name__ = load(A , Loader=A )
return data
def __str__( self ) -> List[Any]:
'''simple docstring'''
__magic_name__ = ''' '''
if self._name != "root":
__magic_name__ = F'{t * (self._level-1)}{self._name}:\n'
else:
__magic_name__ = ''''''
__magic_name__ = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(A , A ):
r += F'{t * (self._level)}{v}\n'
self._level += 1
else:
r += F'{t * (self._level)}{k}: {v} ({type(A ).__name__})\n'
__magic_name__ = level
return r[:-1]
@classmethod
def __A ( cls , A , **A ) -> int:
'''simple docstring'''
__magic_name__ , __magic_name__ = cls.get_config_dict(A , **A )
return cls(A )
@classmethod
def __A ( cls , A , **A ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = kwargs.pop('''cache_dir''' , A )
__magic_name__ = kwargs.pop('''force_download''' , A )
__magic_name__ = kwargs.pop('''resume_download''' , A )
__magic_name__ = kwargs.pop('''proxies''' , A )
__magic_name__ = kwargs.pop('''local_files_only''' , A )
if os.path.isdir(A ):
__magic_name__ = os.path.join(A , A )
elif os.path.isfile(A ) or is_remote_url(A ):
__magic_name__ = pretrained_model_name_or_path
else:
__magic_name__ = hf_bucket_url(A , filename=A , use_cdn=A )
try:
# Load from URL or cache if already cached
__magic_name__ = cached_path(
A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
__magic_name__ = Config.load_yaml(A )
except EnvironmentError:
__magic_name__ = '''Can\'t load config for'''
raise EnvironmentError(A )
if resolved_config_file == config_file:
print('''loading configuration file from path''' )
else:
print('''loading configuration file cache''' )
return Config.load_yaml(A ), kwargs
def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ):
__magic_name__ = torch.load('''dump.pt''' , map_location=in_tensor.device )
__magic_name__ = in_tensor.numpy()
__magic_name__ = out_tensor.numpy()[0]
print(na.shape , na[0, 0, :5] )
print(na.shape , na[0, 0, :5] )
assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), (
f'{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %'
" element-wise mismatch"
)
raise Exception('''tensors are all good''' )
# Hugging face functions below
def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ):
__magic_name__ = urlparse(snake_case_ )
return parsed.scheme in ("http", "https")
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[Any]=True ):
__magic_name__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
__magic_name__ = '''/''' not in model_id
if legacy_format:
return f'{endpoint}/{model_id}-{filename}'
else:
return f'{endpoint}/{model_id}/{filename}'
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[str]=None , snake_case_ : Dict=0 , snake_case_ : Tuple=None , ):
__magic_name__ = '''python/{}'''.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(snake_case_ , snake_case_ ):
ua += "; " + "; ".join('''{}/{}'''.format(snake_case_ , snake_case_ ) for k, v in user_agent.items() )
elif isinstance(snake_case_ , snake_case_ ):
ua += "; " + user_agent
__magic_name__ = {'''user-agent''': ua}
if resume_size > 0:
__magic_name__ = '''bytes=%d-''' % (resume_size,)
__magic_name__ = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ )
if response.status_code == 416: # Range not satisfiable
return
__magic_name__ = response.headers.get('''Content-Length''' )
__magic_name__ = resume_size + int(snake_case_ ) if content_length is not None else None
__magic_name__ = tqdm(
unit='''B''' , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc='''Downloading''' , )
for chunk in response.iter_content(chunk_size=1024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(snake_case_ ) )
temp_file.write(snake_case_ )
progress.close()
def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Dict=None , snake_case_ : int=False , snake_case_ : List[Any]=None , snake_case_ : Tuple=10 , snake_case_ : int=False , snake_case_ : Any=None , snake_case_ : Tuple=False , ):
if cache_dir is None:
__magic_name__ = TRANSFORMERS_CACHE
if isinstance(snake_case_ , snake_case_ ):
__magic_name__ = str(snake_case_ )
os.makedirs(snake_case_ , exist_ok=snake_case_ )
__magic_name__ = None
if not local_files_only:
try:
__magic_name__ = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ )
if response.status_code == 200:
__magic_name__ = response.headers.get('''ETag''' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
__magic_name__ = url_to_filename(snake_case_ , snake_case_ )
# get cache path to put the file
__magic_name__ = os.path.join(snake_case_ , snake_case_ )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(snake_case_ ):
return cache_path
else:
__magic_name__ = [
file
for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + '''.*''' )
if not file.endswith('''.json''' ) and not file.endswith('''.lock''' )
]
if len(snake_case_ ) > 0:
return os.path.join(snake_case_ , matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'''Cannot find the requested files in the cached path and outgoing traffic has been'''
''' disabled. To enable model look-ups and downloads online, set \'local_files_only\''''
''' to False.''' )
return None
# From now on, etag is not None.
if os.path.exists(snake_case_ ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
__magic_name__ = cache_path + '''.lock'''
with FileLock(snake_case_ ):
# If the download just completed while the lock was activated.
if os.path.exists(snake_case_ ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
__magic_name__ = cache_path + '''.incomplete'''
@contextmanager
def _resumable_file_manager():
with open(snake_case_ , '''a+b''' ) as f:
yield f
__magic_name__ = _resumable_file_manager
if os.path.exists(snake_case_ ):
__magic_name__ = os.stat(snake_case_ ).st_size
else:
__magic_name__ = 0
else:
__magic_name__ = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ )
__magic_name__ = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'''%s not found in cache or force_download set to True, downloading to %s''' , snake_case_ , temp_file.name , )
http_get(
snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , )
os.replace(temp_file.name , snake_case_ )
__magic_name__ = {'''url''': url, '''etag''': etag}
__magic_name__ = cache_path + '''.json'''
with open(snake_case_ , '''w''' ) as meta_file:
json.dump(snake_case_ , snake_case_ )
return cache_path
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[Any]=None ):
__magic_name__ = url.encode('''utf-8''' )
__magic_name__ = shaaaa(snake_case_ )
__magic_name__ = url_hash.hexdigest()
if etag:
__magic_name__ = etag.encode('''utf-8''' )
__magic_name__ = shaaaa(snake_case_ )
filename += "." + etag_hash.hexdigest()
if url.endswith('''.h5''' ):
filename += ".h5"
return filename
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str=None , snake_case_ : Tuple=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[Any]=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=False , snake_case_ : Optional[int]=False , snake_case_ : Optional[int]=False , ):
if cache_dir is None:
__magic_name__ = TRANSFORMERS_CACHE
if isinstance(snake_case_ , snake_case_ ):
__magic_name__ = str(snake_case_ )
if isinstance(snake_case_ , snake_case_ ):
__magic_name__ = str(snake_case_ )
if is_remote_url(snake_case_ ):
# URL, so get it from the cache (downloading if necessary)
__magic_name__ = get_from_cache(
snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , )
elif os.path.exists(snake_case_ ):
# File, and it exists.
__magic_name__ = url_or_filename
elif urlparse(snake_case_ ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('''file {} not found'''.format(snake_case_ ) )
else:
# Something unknown
raise ValueError('''unable to parse {} as a URL or as a local path'''.format(snake_case_ ) )
if extract_compressed_file:
if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
__magic_name__ , __magic_name__ = os.path.split(snake_case_ )
__magic_name__ = output_file.replace('''.''' , '''-''' ) + '''-extracted'''
__magic_name__ = os.path.join(snake_case_ , snake_case_ )
if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
__magic_name__ = output_path + '''.lock'''
with FileLock(snake_case_ ):
shutil.rmtree(snake_case_ , ignore_errors=snake_case_ )
os.makedirs(snake_case_ )
if is_zipfile(snake_case_ ):
with ZipFile(snake_case_ , '''r''' ) as zip_file:
zip_file.extractall(snake_case_ )
zip_file.close()
elif tarfile.is_tarfile(snake_case_ ):
__magic_name__ = tarfile.open(snake_case_ )
tar_file.extractall(snake_case_ )
tar_file.close()
else:
raise EnvironmentError('''Archive format of {} could not be identified'''.format(snake_case_ ) )
return output_path_extracted
return output_path
def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : int="," ):
assert isinstance(snake_case_ , snake_case_ )
if os.path.isfile(snake_case_ ):
with open(snake_case_ ) as f:
__magic_name__ = eval(f.read() )
else:
__magic_name__ = requests.get(snake_case_ )
try:
__magic_name__ = requests.json()
except Exception:
__magic_name__ = req.content.decode()
assert data is not None, "could not connect"
try:
__magic_name__ = eval(snake_case_ )
except Exception:
__magic_name__ = data.split('''\n''' )
req.close()
return data
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ):
__magic_name__ = requests.get(snake_case_ )
__magic_name__ = np.array(Image.open(BytesIO(response.content ) ) )
return img
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ):
__magic_name__ = url.split('''/''' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(snake_case_ )
with open(snake_case_ , '''rb''' ) as stream:
__magic_name__ = pkl.load(snake_case_ )
__magic_name__ = weights.pop('''model''' )
__magic_name__ = {}
for k, v in model.items():
__magic_name__ = torch.from_numpy(snake_case_ )
if "running_var" in k:
__magic_name__ = torch.tensor([0] )
__magic_name__ = k.replace('''running_var''' , '''num_batches_tracked''' )
__magic_name__ = zero
return new
def _SCREAMING_SNAKE_CASE ( ):
print(f'{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb' )
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple="RGB" ):
assert isinstance(snake_case_ , snake_case_ )
if os.path.isfile(snake_case_ ):
__magic_name__ = cva.imread(snake_case_ )
else:
__magic_name__ = get_image_from_url(snake_case_ )
assert img is not None, f'could not connect to: {im}'
__magic_name__ = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB )
if input_format == "RGB":
__magic_name__ = img[:, :, ::-1]
return img
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict=1 ):
return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ )) | 678 | 0 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
a_ : Tuple = ['gpt2']
a_ : int = 'gpt2'
if is_tf_available():
class SCREAMING_SNAKE_CASE_ ( tf.Module ):
"""simple docstring"""
def __init__( self , A ) -> Tuple:
'''simple docstring'''
super().__init__()
__magic_name__ = tokenizer
__magic_name__ = AutoConfig.from_pretrained(A )
__magic_name__ = TFGPTaLMHeadModel.from_config(A )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) )
def __A ( self , A ) -> Tuple:
'''simple docstring'''
__magic_name__ = self.tokenizer(A )
__magic_name__ = tokenized['''input_ids'''].to_tensor()
__magic_name__ = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
__magic_name__ = self.model(input_ids=A , attention_mask=A )['''logits''']
return outputs
@require_tf
@require_keras_nlp
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
def __A ( self ) -> Dict:
'''simple docstring'''
super().setUp()
__magic_name__ = [GPTaTokenizer.from_pretrained(A ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
__magic_name__ = [TFGPTaTokenizer.from_pretrained(A ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
__magic_name__ = [
'''This is a straightforward English test sentence.''',
'''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''',
'''Now we\'re going to add some Chinese: 一 二 三 一二三''',
'''And some much more rare Chinese: 齉 堃 齉堃''',
'''Je vais aussi écrire en français pour tester les accents''',
'''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''',
]
__magic_name__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
__magic_name__ = tokenizer([test_inputs] , return_tensors='''tf''' )
__magic_name__ = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
__magic_name__ = python_outputs[key].numpy()
__magic_name__ = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(A , tf.intaa ) == tf_outputs_values ) )
@slow
def __A ( self ) -> str:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__magic_name__ = tf.function(A )
for test_inputs in self.test_sentences:
__magic_name__ = tf.constant(A )
__magic_name__ = compiled_tokenizer(A )
__magic_name__ = tf_tokenizer(A )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__magic_name__ = ModelToSave(tokenizer=A )
__magic_name__ = tf.convert_to_tensor([self.test_sentences[0]] )
__magic_name__ = model.serving(A ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
__magic_name__ = Path(A ) / '''saved.model'''
tf.saved_model.save(A , A , signatures={'''serving_default''': model.serving} )
__magic_name__ = tf.saved_model.load(A )
__magic_name__ = loaded_model.signatures['''serving_default'''](A )['''output_0''']
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__magic_name__ = tf.convert_to_tensor([self.test_sentences[0]] )
__magic_name__ = tf_tokenizer(A ) # Build model with some sample inputs
__magic_name__ = tf_tokenizer.get_config()
__magic_name__ = TFGPTaTokenizer.from_config(A )
__magic_name__ = model_from_config(A )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
__magic_name__ = 12_31_23
for max_length in [3, 5, 10_24]:
__magic_name__ = tf.convert_to_tensor([self.test_sentences[0]] )
__magic_name__ = tf_tokenizer(A , max_length=A )
__magic_name__ = out['''input_ids'''].numpy().shape[1]
assert out_length == max_length | 713 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
a_ : Optional[int] = 16
a_ : int = 32
def _SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" ):
__magic_name__ = AutoTokenizer.from_pretrained(snake_case_ )
__magic_name__ = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(snake_case_ : Union[str, Any] ):
# max_length=None => use the model max length (it's actually the default)
__magic_name__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__magic_name__ = datasets.map(
snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__magic_name__ = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(snake_case_ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
__magic_name__ = DataLoader(
tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
__magic_name__ = DataLoader(
tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
return train_dataloader, eval_dataloader
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : str ):
model.eval()
__magic_name__ = 0
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__magic_name__ = model(**snake_case_ )
__magic_name__ = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__magic_name__ , __magic_name__ = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(snake_case_ ) - 1:
__magic_name__ = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__magic_name__ = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=snake_case_ , references=snake_case_ , )
__magic_name__ = metric.compute()
return eval_metric["accuracy"]
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Tuple ):
# Initialize accelerator
__magic_name__ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__magic_name__ = config['''lr''']
__magic_name__ = int(config['''num_epochs'''] )
__magic_name__ = int(config['''seed'''] )
__magic_name__ = int(config['''batch_size'''] )
__magic_name__ = args.model_name_or_path
set_seed(snake_case_ )
__magic_name__ , __magic_name__ = get_dataloaders(snake_case_ , snake_case_ , snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__magic_name__ = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ )
# Instantiate optimizer
__magic_name__ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__magic_name__ = optimizer_cls(params=model.parameters() , lr=snake_case_ )
if accelerator.state.deepspeed_plugin is not None:
__magic_name__ = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
__magic_name__ = 1
__magic_name__ = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__magic_name__ = get_linear_schedule_with_warmup(
optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , )
else:
__magic_name__ = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# We need to keep track of how many total steps we have iterated over
__magic_name__ = 0
# We also need to keep track of the stating epoch so files are named properly
__magic_name__ = 0
__magic_name__ = evaluate.load('''glue''' , '''mrpc''' )
__magic_name__ = num_epochs
if args.partial_train_epoch is not None:
__magic_name__ = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
__magic_name__ = args.resume_from_checkpoint.split('''epoch_''' )[1]
__magic_name__ = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
__magic_name__ = int(snake_case_ ) + 1
__magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
accelerator.print('''resumed checkpoint performance:''' , snake_case_ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , '''r''' ) as f:
__magic_name__ = json.load(snake_case_ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
__magic_name__ = {}
for epoch in range(snake_case_ , snake_case_ ):
model.train()
for step, batch in enumerate(snake_case_ ):
__magic_name__ = model(**snake_case_ )
__magic_name__ = outputs.loss
__magic_name__ = loss / gradient_accumulation_steps
accelerator.backward(snake_case_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
__magic_name__ = f'epoch_{epoch}'
__magic_name__ = os.path.join(args.output_dir , snake_case_ )
accelerator.save_state(snake_case_ )
__magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__magic_name__ = accuracy
__magic_name__ = lr_scheduler.get_lr()[0]
__magic_name__ = optimizer.param_groups[0]['''lr''']
__magic_name__ = epoch
__magic_name__ = overall_step
accelerator.print(f'epoch {epoch}:' , snake_case_ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , '''w''' ) as f:
json.dump(snake_case_ , snake_case_ )
def _SCREAMING_SNAKE_CASE ( ):
__magic_name__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=snake_case_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case_ , )
parser.add_argument(
'''--output_dir''' , type=snake_case_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--resume_from_checkpoint''' , type=snake_case_ , default=snake_case_ , help='''If the training should continue from a checkpoint folder.''' , )
parser.add_argument(
'''--partial_train_epoch''' , type=snake_case_ , default=snake_case_ , help='''If passed, the training will stop after this number of epochs.''' , )
parser.add_argument(
'''--num_epochs''' , type=snake_case_ , default=2 , help='''Number of train epochs.''' , )
__magic_name__ = parser.parse_args()
__magic_name__ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(snake_case_ , snake_case_ )
if __name__ == "__main__":
main() | 678 | 0 |
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
def __A ( self ) -> int:
'''simple docstring'''
__magic_name__ = tempfile.mkdtemp()
__magic_name__ = 5
# Realm tok
__magic_name__ = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''test''',
'''question''',
'''this''',
'''is''',
'''the''',
'''first''',
'''second''',
'''third''',
'''fourth''',
'''fifth''',
'''record''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__magic_name__ = os.path.join(self.tmpdirname , '''realm_tokenizer''' )
os.makedirs(A , exist_ok=A )
__magic_name__ = os.path.join(A , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
__magic_name__ = os.path.join(self.tmpdirname , '''realm_block_records''' )
os.makedirs(A , exist_ok=A )
def __A ( self ) -> RealmTokenizer:
'''simple docstring'''
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) )
def __A ( self ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__magic_name__ = RealmConfig(num_block_records=self.num_block_records )
return config
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__magic_name__ = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''question''': ['''foo''', '''bar'''],
'''answers''': [['''Foo''', '''Bar'''], ['''Bar''']],
} )
return dataset
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = np.array(
[
b'''This is the first record''',
b'''This is the second record''',
b'''This is the third record''',
b'''This is the fourth record''',
b'''This is the fifth record''',
b'''This is a longer longer longer record''',
] , dtype=A , )
return block_records
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = self.get_config()
__magic_name__ = self.get_dummy_retriever()
__magic_name__ = retriever.tokenizer
__magic_name__ = np.array([0, 3] , dtype='''long''' )
__magic_name__ = tokenizer(['''Test question'''] ).input_ids
__magic_name__ = tokenizer(
['''the fourth'''] , add_special_tokens=A , return_token_type_ids=A , return_attention_mask=A , ).input_ids
__magic_name__ = config.reader_seq_len
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = retriever(
A , A , answer_ids=A , max_length=A , return_tensors='''np''' )
self.assertEqual(len(A ) , 2 )
self.assertEqual(len(A ) , 2 )
self.assertEqual(len(A ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , )
def __A ( self ) -> List[str]:
'''simple docstring'''
__magic_name__ = self.get_config()
__magic_name__ = self.get_dummy_retriever()
__magic_name__ = retriever.tokenizer
__magic_name__ = np.array([0, 3, 5] , dtype='''long''' )
__magic_name__ = tokenizer(['''Test question'''] ).input_ids
__magic_name__ = tokenizer(
['''the fourth''', '''longer longer'''] , add_special_tokens=A , return_token_type_ids=A , return_attention_mask=A , ).input_ids
__magic_name__ = config.reader_seq_len
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = retriever(
A , A , answer_ids=A , max_length=A , return_tensors='''np''' )
self.assertEqual([False, True, True] , A )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A )
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) )
# Test local path
__magic_name__ = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) )
self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
# Test mocked remote path
with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download:
__magic_name__ = os.path.join(
os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME )
__magic_name__ = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' )
self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) | 714 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ):
return " ".join(
''''''.join(word[::-1] ) if len(snake_case_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('Hey wollef sroirraw')) | 678 | 0 |
import pytest
a_ : Dict = '__dummy_dataset1__'
a_ : Union[str, Any] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def _SCREAMING_SNAKE_CASE ( ):
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def _SCREAMING_SNAKE_CASE ( ):
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : int ):
__magic_name__ = dataset_loading_script_name
__magic_name__ = tmp_path / '''datasets''' / script_name
script_dir.mkdir(parents=snake_case_ )
__magic_name__ = script_dir / f'{script_name}.py'
with open(snake_case_ , '''w''' ) as f:
f.write(snake_case_ )
return str(snake_case_ )
| 715 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
a_ : Any = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
a_ : int = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
a_ : List[str] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE_ ( datasets.Metric ):
"""simple docstring"""
def __A ( self ) -> List[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] , )
def __A ( self , A , A , A=None , A=None , A=None , A=None , A="auto" , A=-1 , A=0.9 , A=5 , A=5_00 , A="gpt2-large" , A=-1 , A=10_24 , A=25 , A=5 , A=True , A=25 , ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = compute_mauve(
p_text=A , q_text=A , p_features=A , q_features=A , p_tokens=A , q_tokens=A , num_buckets=A , pca_max_data=A , kmeans_explained_var=A , kmeans_num_redo=A , kmeans_max_iter=A , featurize_model_name=A , device_id=A , max_text_length=A , divergence_curve_discretization_size=A , mauve_scaling_factor=A , verbose=A , seed=A , )
return out | 678 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str:
'''simple docstring'''
__magic_name__ = parent
__magic_name__ = batch_size
__magic_name__ = seq_length
__magic_name__ = is_training
__magic_name__ = use_token_type_ids
__magic_name__ = use_labels
__magic_name__ = vocab_size
__magic_name__ = hidden_size
__magic_name__ = num_hidden_layers
__magic_name__ = num_attention_heads
__magic_name__ = intermediate_size
__magic_name__ = hidden_act
__magic_name__ = hidden_dropout_prob
__magic_name__ = attention_probs_dropout_prob
__magic_name__ = max_position_embeddings
__magic_name__ = type_vocab_size
__magic_name__ = type_sequence_label_size
__magic_name__ = initializer_range
__magic_name__ = num_labels
__magic_name__ = num_choices
__magic_name__ = scope
__magic_name__ = self.vocab_size - 1
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ = None
if self.use_token_type_ids:
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
if self.use_labels:
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
__magic_name__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def __A ( self , A , A , A , A , *A ) -> Tuple:
'''simple docstring'''
__magic_name__ = OpenAIGPTModel(config=A )
model.to(A )
model.eval()
__magic_name__ = model(A , token_type_ids=A , head_mask=A )
__magic_name__ = model(A , token_type_ids=A )
__magic_name__ = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , A , A , A , A , *A ) -> Dict:
'''simple docstring'''
__magic_name__ = OpenAIGPTLMHeadModel(A )
model.to(A )
model.eval()
__magic_name__ = model(A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , A , A , A , A , *A ) -> List[Any]:
'''simple docstring'''
__magic_name__ = OpenAIGPTDoubleHeadsModel(A )
model.to(A )
model.eval()
__magic_name__ = model(A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , A , A , A , A , *A ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = self.num_labels
__magic_name__ = OpenAIGPTForSequenceClassification(A )
model.to(A )
model.eval()
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = model(A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self ) -> Dict:
'''simple docstring'''
__magic_name__ = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) = config_and_inputs
__magic_name__ = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
_a = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
_a = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
_a = (
{
"""feature-extraction""": OpenAIGPTModel,
"""text-classification""": OpenAIGPTForSequenceClassification,
"""text-generation""": OpenAIGPTLMHeadModel,
"""zero-shot""": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def __A ( self , A , A , A , A , A ) -> List[str]:
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def __A ( self , A , A , A=False ) -> List[str]:
'''simple docstring'''
__magic_name__ = super()._prepare_for_class(A , A , return_labels=A )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
__magic_name__ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=A , )
__magic_name__ = inputs_dict['''labels''']
__magic_name__ = inputs_dict['''labels''']
__magic_name__ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=A , )
__magic_name__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A )
return inputs_dict
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = OpenAIGPTModelTester(self )
__magic_name__ = ConfigTester(self , config_class=A , n_embd=37 )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*A )
def __A ( self ) -> Dict:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*A )
def __A ( self ) -> List[str]:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*A )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A )
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ = OpenAIGPTModel.from_pretrained(A )
self.assertIsNotNone(A )
@require_torch
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__magic_name__ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' )
model.to(A )
__magic_name__ = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=A ) # the president is
__magic_name__ = [
4_81,
47_35,
5_44,
2_46,
9_63,
8_70,
7_62,
2_39,
2_44,
4_04_77,
2_44,
2_49,
7_19,
8_81,
4_87,
5_44,
2_40,
2_44,
6_03,
4_81,
] # the president is a very good man. " \n " i\'m sure he is, " said the
__magic_name__ = model.generate(A , do_sample=A )
self.assertListEqual(output_ids[0].tolist() , A ) | 716 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
a_ : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
a_ : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007
def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ):
return np.sqrt(np.sum((np.asarray(snake_case_ ) - np.asarray(snake_case_ )) ** 2 ) )
def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ):
return sum((va - va) ** 2 for va, va in zip(snake_case_ , snake_case_ ) ) ** (1 / 2)
if __name__ == "__main__":
def _SCREAMING_SNAKE_CASE ( ):
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) )
benchmark() | 678 | 0 |
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
'''compression_format, is_archive''' , [
('''7z''', True),
('''bz2''', False),
('''gzip''', False),
('''lz4''', False),
('''tar''', True),
('''xz''', False),
('''zip''', True),
('''zstd''', False),
] , )
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : int , snake_case_ : Any , ):
__magic_name__ = {
'''7z''': (seven_zip_file, SevenZipExtractor),
'''bz2''': (bza_file, BzipaExtractor),
'''gzip''': (gz_file, GzipExtractor),
'''lz4''': (lza_file, LzaExtractor),
'''tar''': (tar_file, TarExtractor),
'''xz''': (xz_file, XzExtractor),
'''zip''': (zip_file, ZipExtractor),
'''zstd''': (zstd_file, ZstdExtractor),
}
__magic_name__ , __magic_name__ = input_paths_and_base_extractors[compression_format]
if input_path is None:
__magic_name__ = f'for \'{compression_format}\' compression_format, '
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(snake_case_ )
assert base_extractor.is_extractable(snake_case_ )
__magic_name__ = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''')
base_extractor.extract(snake_case_ , snake_case_ )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__magic_name__ = file_path.read_text(encoding='''utf-8''' )
else:
__magic_name__ = output_path.read_text(encoding='''utf-8''' )
__magic_name__ = text_file.read_text(encoding='''utf-8''' )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
'''compression_format, is_archive''' , [
('''7z''', True),
('''bz2''', False),
('''gzip''', False),
('''lz4''', False),
('''tar''', True),
('''xz''', False),
('''zip''', True),
('''zstd''', False),
] , )
def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : str , snake_case_ : str , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , ):
__magic_name__ = {
'''7z''': seven_zip_file,
'''bz2''': bza_file,
'''gzip''': gz_file,
'''lz4''': lza_file,
'''tar''': tar_file,
'''xz''': xz_file,
'''zip''': zip_file,
'''zstd''': zstd_file,
}
__magic_name__ = input_paths[compression_format]
if input_path is None:
__magic_name__ = f'for \'{compression_format}\' compression_format, '
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(snake_case_ )
__magic_name__ = Extractor.infer_extractor_format(snake_case_ )
assert extractor_format is not None
__magic_name__ = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''')
Extractor.extract(snake_case_ , snake_case_ , snake_case_ )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__magic_name__ = file_path.read_text(encoding='''utf-8''' )
else:
__magic_name__ = output_path.read_text(encoding='''utf-8''' )
__magic_name__ = text_file.read_text(encoding='''utf-8''' )
assert extracted_file_content == expected_file_content
@pytest.fixture
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] ):
import tarfile
__magic_name__ = tmp_path / '''data_dot_dot'''
directory.mkdir()
__magic_name__ = directory / '''tar_file_with_dot_dot.tar'''
with tarfile.TarFile(snake_case_ , '''w''' ) as f:
f.add(snake_case_ , arcname=os.path.join('''..''' , text_file.name ) )
return path
@pytest.fixture
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ):
import tarfile
__magic_name__ = tmp_path / '''data_sym_link'''
directory.mkdir()
__magic_name__ = directory / '''tar_file_with_sym_link.tar'''
os.symlink('''..''' , directory / '''subdir''' , target_is_directory=snake_case_ )
with tarfile.TarFile(snake_case_ , '''w''' ) as f:
f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
'''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , )
def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : int ):
__magic_name__ = {
'''tar_file_with_dot_dot''': tar_file_with_dot_dot,
'''tar_file_with_sym_link''': tar_file_with_sym_link,
}
__magic_name__ = insecure_tar_files[insecure_tar_file]
__magic_name__ = tmp_path / '''extracted'''
TarExtractor.extract(snake_case_ , snake_case_ )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ):
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__magic_name__ = tmpdir / '''not_a_zip_file'''
# From: https://github.com/python/cpython/pull/5053
__magic_name__ = (
B'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00'''
B'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I'''
B'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07'''
B'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82'''
)
with not_a_zip_file.open('''wb''' ) as f:
f.write(snake_case_ )
assert zipfile.is_zipfile(str(snake_case_ ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(snake_case_ ) # but we're right
| 717 |
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
a_ : str = logging.get_logger(__name__)
a_ : Union[str, Any] = 'https://openaipublic.azureedge.net/jukebox/models/'
a_ : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ):
if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10:
__magic_name__ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' )
elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10:
__magic_name__ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' )
elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10:
__magic_name__ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' )
elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10:
__magic_name__ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' )
if "conditioner_blocks.0." in key:
__magic_name__ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' )
if "prime_prior" in key:
__magic_name__ = key.replace('''prime_prior''' , '''encoder''' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
__magic_name__ = key.replace('''.emb.''' , '''.''' )
if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('''.k''' , '''.codebook''' )
if "y_emb." in key:
return key.replace('''y_emb.''' , '''metadata_embedding.''' )
if "x_emb.emb." in key:
__magic_name__ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' )
if "prime_state_ln" in key:
return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' )
if ".ln" in key:
return key.replace('''.ln''' , '''.layer_norm''' )
if "_ln" in key:
return key.replace('''_ln''' , '''_layer_norm''' )
if "prime_state_proj" in key:
return key.replace('''prime_state_proj''' , '''encoder.proj_in''' )
if "prime_x_out" in key:
return key.replace('''prime_x_out''' , '''encoder.lm_head''' )
if "prior.x_out" in key:
return key.replace('''x_out''' , '''fc_proj_out''' )
if "x_emb" in key:
return key.replace('''x_emb''' , '''embed_tokens''' )
return key
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ):
__magic_name__ = {}
import re
__magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
__magic_name__ = re.compile(
r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
__magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
__magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
__magic_name__ = re.compile(
r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
__magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
__magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' )
__magic_name__ = re.compile(
r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
__magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(snake_case_ ):
__magic_name__ = re_encoder_block_conv_in.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = int(groups[2] ) * 2 + int(groups[3] )
__magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'
__magic_name__ = re_encoder_block_conv_in.sub(snake_case_ , snake_case_ )
elif re_encoder_block_resnet.fullmatch(snake_case_ ):
__magic_name__ = re_encoder_block_resnet.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = int(groups[2] ) * 2 + int(groups[3] )
__magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]]
__magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'
__magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
__magic_name__ = prefix + resnet_block
__magic_name__ = re_encoder_block_resnet.sub(snake_case_ , snake_case_ )
elif re_encoder_block_proj_out.fullmatch(snake_case_ ):
__magic_name__ = re_encoder_block_proj_out.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'
__magic_name__ = re_encoder_block_proj_out.sub(snake_case_ , snake_case_ )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(snake_case_ ):
__magic_name__ = re_decoder_block_conv_out.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2
__magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'
__magic_name__ = re_decoder_block_conv_out.sub(snake_case_ , snake_case_ )
elif re_decoder_block_resnet.fullmatch(snake_case_ ):
__magic_name__ = re_decoder_block_resnet.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2
__magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]]
__magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'
__magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
__magic_name__ = prefix + resnet_block
__magic_name__ = re_decoder_block_resnet.sub(snake_case_ , snake_case_ )
elif re_decoder_block_proj_in.fullmatch(snake_case_ ):
__magic_name__ = re_decoder_block_proj_in.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'
__magic_name__ = re_decoder_block_proj_in.sub(snake_case_ , snake_case_ )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(snake_case_ ):
__magic_name__ = re_prior_cond_conv_out.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2
__magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'
__magic_name__ = re_prior_cond_conv_out.sub(snake_case_ , snake_case_ )
elif re_prior_cond_resnet.fullmatch(snake_case_ ):
__magic_name__ = re_prior_cond_resnet.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2
__magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]]
__magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.'
__magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
__magic_name__ = prefix + resnet_block
__magic_name__ = re_prior_cond_resnet.sub(snake_case_ , snake_case_ )
elif re_prior_cond_proj_in.fullmatch(snake_case_ ):
__magic_name__ = re_prior_cond_proj_in.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}'
__magic_name__ = re_prior_cond_proj_in.sub(snake_case_ , snake_case_ )
# keep original key
else:
__magic_name__ = original_key
__magic_name__ = replace_key(snake_case_ )
if f'{key_prefix}.{key}' not in model_state_dict or key is None:
print(f'failed converting {original_key} to {key}, does not match' )
# handle missmatched shape
elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape:
__magic_name__ = model_state_dict[f'{key_prefix}.{key}']
print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' )
__magic_name__ = original_key
__magic_name__ = original_key
__magic_name__ = value
return new_dict
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict=None , snake_case_ : Any=None ):
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ):
__magic_name__ = requests.get(f'{PREFIX}{file}' , allow_redirects=snake_case_ )
os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=snake_case_ )
open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , '''wb''' ).write(r.content )
__magic_name__ = MODEL_MAPPING[model_name.split('''/''' )[-1]]
__magic_name__ = JukeboxConfig.from_pretrained(snake_case_ )
__magic_name__ = JukeboxModel(snake_case_ )
__magic_name__ = []
__magic_name__ = {}
for i, dict_name in enumerate(snake_case_ ):
__magic_name__ = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['''model''']
__magic_name__ = {}
for k in old_dic.keys():
if k.endswith('''.b''' ):
__magic_name__ = old_dic[k]
elif k.endswith('''.w''' ):
__magic_name__ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
__magic_name__ = old_dic[k]
else:
__magic_name__ = old_dic[k]
__magic_name__ = '''vqvae''' if i == 0 else f'priors.{3 - i}'
__magic_name__ = fix_jukebox_keys(snake_case_ , model.state_dict() , snake_case_ , snake_case_ )
weight_dict.append(snake_case_ )
__magic_name__ = weight_dict.pop(0 )
model.vqvae.load_state_dict(snake_case_ )
for i in range(len(snake_case_ ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
with open(f'{pytorch_dump_folder_path}/mapping.json' , '''w''' ) as txtfile:
json.dump(snake_case_ , snake_case_ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case_ )
return weight_dict
if __name__ == "__main__":
a_ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
a_ : int = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path) | 678 | 0 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : int , snake_case_ : set ):
__magic_name__ , __magic_name__ = len(snake_case_ ), len(grid[0] )
if (
min(snake_case_ , snake_case_ ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
__magic_name__ = 0
count += depth_first_search(snake_case_ , row + 1 , snake_case_ , snake_case_ )
count += depth_first_search(snake_case_ , row - 1 , snake_case_ , snake_case_ )
count += depth_first_search(snake_case_ , snake_case_ , col + 1 , snake_case_ )
count += depth_first_search(snake_case_ , snake_case_ , col - 1 , snake_case_ )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod() | 718 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a_ : int = logging.get_logger(__name__)
a_ : Optional[int] = {
'microsoft/table-transformer-detection': (
'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json'
),
}
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_a = """table-transformer"""
_a = ["""past_key_values"""]
_a = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , A=True , A=None , A=3 , A=1_00 , A=6 , A=20_48 , A=8 , A=6 , A=20_48 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=2_56 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> Any:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
__magic_name__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(A , A ):
__magic_name__ = backbone_config.get('''model_type''' )
__magic_name__ = CONFIG_MAPPING[backbone_model_type]
__magic_name__ = config_class.from_dict(A )
# set timm attributes to None
__magic_name__ , __magic_name__ , __magic_name__ = None, None, None
__magic_name__ = use_timm_backbone
__magic_name__ = backbone_config
__magic_name__ = num_channels
__magic_name__ = num_queries
__magic_name__ = d_model
__magic_name__ = encoder_ffn_dim
__magic_name__ = encoder_layers
__magic_name__ = encoder_attention_heads
__magic_name__ = decoder_ffn_dim
__magic_name__ = decoder_layers
__magic_name__ = decoder_attention_heads
__magic_name__ = dropout
__magic_name__ = attention_dropout
__magic_name__ = activation_dropout
__magic_name__ = activation_function
__magic_name__ = init_std
__magic_name__ = init_xavier_std
__magic_name__ = encoder_layerdrop
__magic_name__ = decoder_layerdrop
__magic_name__ = encoder_layers
__magic_name__ = auxiliary_loss
__magic_name__ = position_embedding_type
__magic_name__ = backbone
__magic_name__ = use_pretrained_backbone
__magic_name__ = dilation
# Hungarian matcher
__magic_name__ = class_cost
__magic_name__ = bbox_cost
__magic_name__ = giou_cost
# Loss coefficients
__magic_name__ = mask_loss_coefficient
__magic_name__ = dice_loss_coefficient
__magic_name__ = bbox_loss_coefficient
__magic_name__ = giou_loss_coefficient
__magic_name__ = eos_coefficient
super().__init__(is_encoder_decoder=A , **A )
@property
def __A ( self ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def __A ( self ) -> int:
'''simple docstring'''
return self.d_model
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_a = version.parse("""1.11""" )
@property
def __A ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def __A ( self ) -> float:
'''simple docstring'''
return 1E-5
@property
def __A ( self ) -> int:
'''simple docstring'''
return 12 | 678 | 0 |
from __future__ import annotations
a_ : Optional[Any] = []
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : int ):
for i in range(len(snake_case_ ) ):
if board[row][i] == 1:
return False
for i in range(len(snake_case_ ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(snake_case_ , -1 , -1 ) , range(snake_case_ , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(snake_case_ , -1 , -1 ) , range(snake_case_ , len(snake_case_ ) ) ):
if board[i][j] == 1:
return False
return True
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] , snake_case_ : int ):
if row >= len(snake_case_ ):
solution.append(snake_case_ )
printboard(snake_case_ )
print()
return True
for i in range(len(snake_case_ ) ):
if is_safe(snake_case_ , snake_case_ , snake_case_ ):
__magic_name__ = 1
solve(snake_case_ , row + 1 )
__magic_name__ = 0
return False
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] ):
for i in range(len(snake_case_ ) ):
for j in range(len(snake_case_ ) ):
if board[i][j] == 1:
print('''Q''' , end=''' ''' )
else:
print('''.''' , end=''' ''' )
print()
# n=int(input("The no. of queens"))
a_ : Any = 8
a_ : Optional[int] = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print('The total no. of solutions are :', len(solution)) | 719 |
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ):
# Initialise PyTorch model
__magic_name__ = LxmertConfig.from_json_file(snake_case_ )
print(f'Building PyTorch model from configuration: {config}' )
__magic_name__ = LxmertForPreTraining(snake_case_ )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(snake_case_ , snake_case_ , snake_case_ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , snake_case_ )
if __name__ == "__main__":
a_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
a_ : Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) | 678 | 0 |
'''simple docstring'''
import os
import unittest
from tempfile import TemporaryDirectory
import torch
import torch.nn as nn
from accelerate.utils import (
OffloadedWeightsLoader,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
)
class SCREAMING_SNAKE_CASE_ ( nn.Module ):
"""simple docstring"""
def __init__( self ) -> Tuple:
'''simple docstring'''
super().__init__()
__magic_name__ = nn.Linear(3 , 4 )
__magic_name__ = nn.BatchNormad(4 )
__magic_name__ = nn.Linear(4 , 5 )
def __A ( self , A ) -> Tuple:
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(A ) ) )
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = ModelForTest()
with TemporaryDirectory() as tmp_dir:
offload_state_dict(A , model.state_dict() )
__magic_name__ = os.path.join(A , '''index.json''' )
self.assertTrue(os.path.isfile(A ) )
# TODO: add tests on what is inside the index
for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]:
__magic_name__ = os.path.join(A , F'{key}.dat' )
self.assertTrue(os.path.isfile(A ) )
# TODO: add tests on the fact weights are properly loaded
def __A ( self ) -> Any:
'''simple docstring'''
__magic_name__ = [torch.floataa, torch.floataa, torch.bfloataa]
for dtype in dtypes:
__magic_name__ = torch.randn(2 , 3 , dtype=A )
with TemporaryDirectory() as tmp_dir:
__magic_name__ = offload_weight(A , '''weight''' , A , {} )
__magic_name__ = os.path.join(A , '''weight.dat''' )
self.assertTrue(os.path.isfile(A ) )
self.assertDictEqual(A , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(A ).split('''.''' )[1]}} )
__magic_name__ = load_offloaded_weight(A , index['''weight'''] )
self.assertTrue(torch.equal(A , A ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = ModelForTest()
__magic_name__ = model.state_dict()
__magic_name__ = {k: v for k, v in state_dict.items() if '''linear2''' not in k}
__magic_name__ = {k: v for k, v in state_dict.items() if '''linear2''' in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(A , A )
__magic_name__ = OffloadedWeightsLoader(state_dict=A , save_folder=A )
# Every key is there with the right value
self.assertEqual(sorted(A ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(A , weight_map[key] ) )
__magic_name__ = {k: v for k, v in state_dict.items() if '''weight''' in k}
__magic_name__ = {k: v for k, v in state_dict.items() if '''weight''' not in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(A , A )
__magic_name__ = OffloadedWeightsLoader(state_dict=A , save_folder=A )
# Every key is there with the right value
self.assertEqual(sorted(A ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(A , weight_map[key] ) )
with TemporaryDirectory() as tmp_dir:
offload_state_dict(A , A )
# Duplicates are removed
__magic_name__ = OffloadedWeightsLoader(state_dict=A , save_folder=A )
# Every key is there with the right value
self.assertEqual(sorted(A ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(A , weight_map[key] ) )
def __A ( self ) -> Any:
'''simple docstring'''
__magic_name__ = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2}
__magic_name__ = extract_submodules_state_dict(A , ['''a.1''', '''a.2'''] )
self.assertDictEqual(A , {'''a.1''': 0, '''a.2''': 2} )
__magic_name__ = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2}
__magic_name__ = extract_submodules_state_dict(A , ['''a.1''', '''a.2'''] )
self.assertDictEqual(A , {'''a.1.a''': 0, '''a.2.a''': 2} ) | 720 |
# Usage:
# ./gen-card-allenai-wmt16.py
import os
from pathlib import Path
def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ):
__magic_name__ = {
'''en''': '''Machine learning is great, isn\'t it?''',
'''ru''': '''Машинное обучение - это здорово, не так ли?''',
'''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
__magic_name__ = {
'''wmt16-en-de-dist-12-1''': [28.3, 27.52],
'''wmt16-en-de-dist-6-1''': [27.4, 27.11],
'''wmt16-en-de-12-1''': [26.9, 25.75],
}
__magic_name__ = f'{src_lang}-{tgt_lang}'
__magic_name__ = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n'
model_card_dir.mkdir(parents=snake_case_ , exist_ok=snake_case_ )
__magic_name__ = os.path.join(snake_case_ , '''README.md''' )
print(f'Generating {path}' )
with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(snake_case_ )
# make sure we are under the root of the project
a_ : Tuple = Path(__file__).resolve().parent.parent.parent
a_ : Dict = repo_dir / 'model_cards'
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]:
a_ : List[str] = model_cards_dir / 'allenai' / model_name
write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name) | 678 | 0 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ):
def count_of_possible_combinations(snake_case_ : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(snake_case_ )
def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ):
def count_of_possible_combinations_with_dp_array(
snake_case_ : int , snake_case_ : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
__magic_name__ = sum(
count_of_possible_combinations_with_dp_array(target - item , snake_case_ )
for item in array )
__magic_name__ = answer
return answer
__magic_name__ = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ )
def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ):
__magic_name__ = [0] * (target + 1)
__magic_name__ = 1
for i in range(1 , target + 1 ):
for j in range(snake_case_ ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : Dict = 3
a_ : int = 5
a_ : Any = [1, 2, 5]
print(combination_sum_iv(n, array, target)) | 721 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : list[int] ):
__magic_name__ = len(snake_case_ )
print('''The following activities are selected:''' )
# The first activity is always selected
__magic_name__ = 0
print(snake_case_ , end=''',''' )
# Consider rest of the activities
for j in range(snake_case_ ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(snake_case_ , end=''',''' )
__magic_name__ = j
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : Dict = [1, 3, 0, 5, 8, 5]
a_ : Union[str, Any] = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish) | 678 | 0 |
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
a_ : Any = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_a = """vision-encoder-decoder"""
_a = True
def __init__( self , **A ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**A )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
F'A configuraton of type {self.model_type} cannot be instantiated because '
F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' )
__magic_name__ = kwargs.pop('''encoder''' )
__magic_name__ = encoder_config.pop('''model_type''' )
__magic_name__ = kwargs.pop('''decoder''' )
__magic_name__ = decoder_config.pop('''model_type''' )
__magic_name__ = AutoConfig.for_model(A , **A )
__magic_name__ = AutoConfig.for_model(A , **A )
__magic_name__ = True
@classmethod
def __A ( cls , A , A , **A ) -> PretrainedConfig:
'''simple docstring'''
logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' )
__magic_name__ = True
__magic_name__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **A )
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = copy.deepcopy(self.__dict__ )
__magic_name__ = self.encoder.to_dict()
__magic_name__ = self.decoder.to_dict()
__magic_name__ = self.__class__.model_type
return output
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_a = version.parse("""1.11""" )
@property
def __A ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def __A ( self ) -> float:
'''simple docstring'''
return 1E-4
@property
def __A ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} )
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
@property
def __A ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__magic_name__ = OrderedDict()
__magic_name__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
__magic_name__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
__magic_name__ = {0: '''batch''', 1: '''encoder_sequence'''}
return common_inputs
def __A ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]:
'''simple docstring'''
import torch
__magic_name__ = OrderedDict()
__magic_name__ = super().generate_dummy_inputs(
A , batch_size=A , seq_length=A , is_pair=A , framework=A )
__magic_name__ , __magic_name__ = dummy_input['''input_ids'''].shape
__magic_name__ = (batch, encoder_sequence, self._config.encoder_hidden_size)
__magic_name__ = dummy_input.pop('''input_ids''' )
__magic_name__ = dummy_input.pop('''attention_mask''' )
__magic_name__ = torch.zeros(A )
return common_inputs
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
@property
def __A ( self ) -> None:
'''simple docstring'''
pass
def __A ( self , A ) -> OnnxConfig:
'''simple docstring'''
return VisionEncoderDecoderEncoderOnnxConfig(A )
def __A ( self , A , A , A = "default" ) -> OnnxConfig:
'''simple docstring'''
__magic_name__ = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(A , A )
| 700 |
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
a_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
a_ : List[str] = 256
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_a = ["""melgan"""]
def __init__( self , A , A , A , A , A , ) -> None:
'''simple docstring'''
super().__init__()
# From MELGAN
__magic_name__ = math.log(1E-5 ) # Matches MelGAN training.
__magic_name__ = 4.0 # Largest value for most examples
__magic_name__ = 1_28
self.register_modules(
notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , )
def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> List[Any]:
'''simple docstring'''
__magic_name__ , __magic_name__ = output_range
if clip:
__magic_name__ = torch.clip(A , self.min_value , self.max_value )
# Scale to [0, 1].
__magic_name__ = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> Optional[int]:
'''simple docstring'''
__magic_name__ , __magic_name__ = input_range
__magic_name__ = torch.clip(A , A , A ) if clip else outputs
# Scale to [0, 1].
__magic_name__ = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def __A ( self , A , A , A ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = input_tokens > 0
__magic_name__ , __magic_name__ = self.notes_encoder(
encoder_input_tokens=A , encoder_inputs_mask=A )
__magic_name__ , __magic_name__ = self.continuous_encoder(
encoder_inputs=A , encoder_inputs_mask=A )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def __A ( self , A , A , A ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = noise_time
if not torch.is_tensor(A ):
__magic_name__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(A ) and len(timesteps.shape ) == 0:
__magic_name__ = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__magic_name__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
__magic_name__ = self.decoder(
encodings_and_masks=A , decoder_input_tokens=A , decoder_noise_time=A )
return logits
@torch.no_grad()
def __call__( self , A , A = None , A = 1_00 , A = True , A = "numpy" , A = None , A = 1 , ) -> Union[AudioPipelineOutput, Tuple]:
'''simple docstring'''
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0)
):
raise ValueError(
F'`callback_steps` has to be a positive integer but is {callback_steps} of type'
F' {type(A )}.' )
__magic_name__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
__magic_name__ = np.zeros([1, 0, self.n_dims] , np.floataa )
__magic_name__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device )
for i, encoder_input_tokens in enumerate(A ):
if i == 0:
__magic_name__ = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
__magic_name__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
__magic_name__ = ones
__magic_name__ = self.scale_features(
A , output_range=[-1.0, 1.0] , clip=A )
__magic_name__ = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A , continuous_mask=A , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
__magic_name__ = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=A , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(A )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__magic_name__ = self.decode(
encodings_and_masks=A , input_tokens=A , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
__magic_name__ = self.scheduler.step(A , A , A , generator=A ).prev_sample
__magic_name__ = self.scale_to_features(A , input_range=[-1.0, 1.0] )
__magic_name__ = mel[:1]
__magic_name__ = mel.cpu().float().numpy()
__magic_name__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A , A )
logger.info('''Generated segment''' , A )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
'''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
'''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' )
if output_type == "numpy":
__magic_name__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
__magic_name__ = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=A ) | 678 | 0 |
import colorsys
from PIL import Image # type: ignore
def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : int ):
__magic_name__ = x
__magic_name__ = y
for step in range(snake_case_ ): # noqa: B007
__magic_name__ = a * a - b * b + x
__magic_name__ = 2 * a * b + y
__magic_name__ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _SCREAMING_SNAKE_CASE ( snake_case_ : float ):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def _SCREAMING_SNAKE_CASE ( snake_case_ : float ):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case_ , 1 , 1 ) )
def _SCREAMING_SNAKE_CASE ( snake_case_ : int = 800 , snake_case_ : int = 600 , snake_case_ : float = -0.6 , snake_case_ : float = 0 , snake_case_ : float = 3.2 , snake_case_ : int = 50 , snake_case_ : bool = True , ):
__magic_name__ = Image.new('''RGB''' , (image_width, image_height) )
__magic_name__ = img.load()
# loop through the image-coordinates
for image_x in range(snake_case_ ):
for image_y in range(snake_case_ ):
# determine the figure-coordinates based on the image-coordinates
__magic_name__ = figure_width / image_width * image_height
__magic_name__ = figure_center_x + (image_x / image_width - 0.5) * figure_width
__magic_name__ = figure_center_y + (image_y / image_height - 0.5) * figure_height
__magic_name__ = get_distance(snake_case_ , snake_case_ , snake_case_ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
__magic_name__ = get_color_coded_rgb(snake_case_ )
else:
__magic_name__ = get_black_and_white_rgb(snake_case_ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
a_ : Any = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show() | 701 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel | 678 | 0 |
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
a_ : Optional[Any] = logging.getLogger(__name__)
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
def __init__( self , A , A , A , A=None ) -> List[Any]:
'''simple docstring'''
super().__init__(
A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , )
__magic_name__ = None
def __A ( self , A ) -> str:
'''simple docstring'''
logger.info('''initializing retrieval''' )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info('''dist initialized''' )
# needs to be set manually
__magic_name__ = self._infer_socket_ifname()
# avoid clash with the NCCL port
__magic_name__ = str(distributed_port + 1 )
__magic_name__ = dist.new_group(ranks=A , backend='''gloo''' )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info('''dist not initialized / main''' )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def __A ( self ) -> str:
'''simple docstring'''
return dist.get_rank(group=self.process_group ) == 0
def __A ( self , A , A , A=torch.floataa ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = torch.empty(A , dtype=A )
dist.scatter(A , src=0 , scatter_list=A , group=self.process_group )
return target_tensor
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__magic_name__ = next((addr for addr in addrs if addr.startswith('''e''' )) , A )
return ifname
def __A ( self , A , A ) -> Tuple[np.ndarray, List[dict]]:
'''simple docstring'''
if not dist.is_initialized():
__magic_name__ , __magic_name__ = self._main_retrieve(A , A )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A )
# distributed training
__magic_name__ = dist.get_world_size(group=self.process_group )
# gather logic
__magic_name__ = None
if self._is_main():
__magic_name__ = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )]
dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group )
# scatter logic
__magic_name__ = question_hidden_states.shape[0]
__magic_name__ = []
__magic_name__ = []
if self._is_main():
assert len(A ) == world_size
__magic_name__ , __magic_name__ = self._main_retrieve(torch.cat(A ).numpy() , A )
__magic_name__ , __magic_name__ = torch.tensor(A ), torch.tensor(A )
__magic_name__ = self._chunk_tensor(A , A )
__magic_name__ = self._chunk_tensor(A , A )
__magic_name__ = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa )
__magic_name__ = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A ) | 702 |
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ):
__magic_name__ = SwinConfig(image_size=192 )
if "base" in model_name:
__magic_name__ = 6
__magic_name__ = 128
__magic_name__ = (2, 2, 18, 2)
__magic_name__ = (4, 8, 16, 32)
elif "large" in model_name:
__magic_name__ = 12
__magic_name__ = 192
__magic_name__ = (2, 2, 18, 2)
__magic_name__ = (6, 12, 24, 48)
else:
raise ValueError('''Model not supported, only supports base and large variants''' )
__magic_name__ = window_size
__magic_name__ = embed_dim
__magic_name__ = depths
__magic_name__ = num_heads
return config
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ):
if "encoder.mask_token" in name:
__magic_name__ = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' )
if "encoder.patch_embed.proj" in name:
__magic_name__ = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "encoder.patch_embed.norm" in name:
__magic_name__ = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' )
if "attn.proj" in name:
__magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
__magic_name__ = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
__magic_name__ = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
__magic_name__ = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
__magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
__magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "encoder.norm.weight":
__magic_name__ = '''layernorm.weight'''
if name == "encoder.norm.bias":
__magic_name__ = '''layernorm.bias'''
if "decoder" in name:
pass
else:
__magic_name__ = '''swin.''' + name
return name
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Any ):
for key in orig_state_dict.copy().keys():
__magic_name__ = orig_state_dict.pop(snake_case_ )
if "attn_mask" in key:
pass
elif "qkv" in key:
__magic_name__ = key.split('''.''' )
__magic_name__ = int(key_split[2] )
__magic_name__ = int(key_split[4] )
__magic_name__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__magic_name__ = val[:dim, :]
__magic_name__ = val[
dim : dim * 2, :
]
__magic_name__ = val[-dim:, :]
else:
__magic_name__ = val[
:dim
]
__magic_name__ = val[
dim : dim * 2
]
__magic_name__ = val[
-dim:
]
else:
__magic_name__ = val
return orig_state_dict
def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Any , snake_case_ : str ):
__magic_name__ = torch.load(snake_case_ , map_location='''cpu''' )['''model''']
__magic_name__ = get_swin_config(snake_case_ )
__magic_name__ = SwinForMaskedImageModeling(snake_case_ )
model.eval()
__magic_name__ = convert_state_dict(snake_case_ , snake_case_ )
model.load_state_dict(snake_case_ )
__magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__magic_name__ = ViTImageProcessor(size={'''height''': 192, '''width''': 192} )
__magic_name__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw )
__magic_name__ = image_processor(images=snake_case_ , return_tensors='''pt''' )
with torch.no_grad():
__magic_name__ = model(**snake_case_ ).logits
print(outputs.keys() )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case_ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case_ )
if push_to_hub:
print(f'Pushing model and image processor for {model_name} to hub' )
model.push_to_hub(f'microsoft/{model_name}' )
image_processor.push_to_hub(f'microsoft/{model_name}' )
if __name__ == "__main__":
a_ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='swin-base-simmim-window6-192',
type=str,
choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'],
help='Name of the Swin SimMIM model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth',
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
a_ : Optional[Any] = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub) | 678 | 0 |
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def _SCREAMING_SNAKE_CASE ( snake_case_ : int ):
def wrapper(*snake_case_ : int , **snake_case_ : Optional[Any] ):
__magic_name__ = timeit.default_timer()
__magic_name__ = func(*snake_case_ , **snake_case_ )
__magic_name__ = timeit.default_timer() - starttime
return delta
__magic_name__ = func.__name__
return wrapper
def _SCREAMING_SNAKE_CASE ( snake_case_ : dict , snake_case_ : Any=100 , snake_case_ : int=None ):
__magic_name__ = []
__magic_name__ = seq_shapes or {}
for i in range(snake_case_ ):
__magic_name__ = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(snake_case_ , _ArrayXD ):
__magic_name__ = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(snake_case_ , datasets.Value ):
if v.dtype == "string":
__magic_name__ = '''The small grey turtle was surprisingly fast when challenged.'''
else:
__magic_name__ = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(snake_case_ , datasets.Sequence ):
while isinstance(snake_case_ , datasets.Sequence ):
__magic_name__ = v.feature
__magic_name__ = seq_shapes[k]
__magic_name__ = np.random.rand(*snake_case_ ).astype(v.dtype )
__magic_name__ = data
dummy_data.append((i, example) )
return dummy_data
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=100 , snake_case_ : Dict=None ):
__magic_name__ = generate_examples(snake_case_ , num_examples=snake_case_ , seq_shapes=snake_case_ )
with ArrowWriter(features=snake_case_ , path=snake_case_ ) as writer:
for key, record in dummy_data:
__magic_name__ = features.encode_example(snake_case_ )
writer.write(snake_case_ )
__magic_name__ , __magic_name__ = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' )
__magic_name__ = datasets.Dataset.from_file(filename=snake_case_ , info=datasets.DatasetInfo(features=snake_case_ ) )
return dataset | 703 |
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ):
return "".join(sorted(snake_case_ ) )
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ):
return word_by_signature[signature(snake_case_ )]
a_ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8')
a_ : Optional[Any] = sorted({word.strip().lower() for word in data.splitlines()})
a_ : List[Any] = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
a_ : Optional[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('anagrams.txt', 'w') as file:
file.write('all_anagrams = \n ')
file.write(pprint.pformat(all_anagrams)) | 678 | 0 |
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Any ):
__magic_name__ = UniSpeechSatForSequenceClassification.from_pretrained(snake_case_ , config=snake_case_ )
__magic_name__ = downstream_dict['''projector.weight''']
__magic_name__ = downstream_dict['''projector.bias''']
__magic_name__ = downstream_dict['''model.post_net.linear.weight''']
__magic_name__ = downstream_dict['''model.post_net.linear.bias''']
return model
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : Any ):
__magic_name__ = UniSpeechSatForAudioFrameClassification.from_pretrained(snake_case_ , config=snake_case_ )
__magic_name__ = downstream_dict['''model.linear.weight''']
__magic_name__ = downstream_dict['''model.linear.bias''']
return model
def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[Any] ):
__magic_name__ = UniSpeechSatForXVector.from_pretrained(snake_case_ , config=snake_case_ )
__magic_name__ = downstream_dict['''connector.weight''']
__magic_name__ = downstream_dict['''connector.bias''']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
__magic_name__ = downstream_dict[
f'model.framelevel_feature_extractor.module.{i}.kernel.weight'
]
__magic_name__ = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias']
__magic_name__ = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight''']
__magic_name__ = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias''']
__magic_name__ = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight''']
__magic_name__ = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias''']
__magic_name__ = downstream_dict['''objective.W''']
return model
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : Tuple ):
__magic_name__ = torch.load(snake_case_ , map_location='''cpu''' )
__magic_name__ = checkpoint['''Downstream''']
__magic_name__ = UniSpeechSatConfig.from_pretrained(snake_case_ )
__magic_name__ = WavaVecaFeatureExtractor.from_pretrained(
snake_case_ , return_attention_mask=snake_case_ , do_normalize=snake_case_ )
__magic_name__ = hf_config.architectures[0]
if arch.endswith('''ForSequenceClassification''' ):
__magic_name__ = convert_classification(snake_case_ , snake_case_ , snake_case_ )
elif arch.endswith('''ForAudioFrameClassification''' ):
__magic_name__ = convert_diarization(snake_case_ , snake_case_ , snake_case_ )
elif arch.endswith('''ForXVector''' ):
__magic_name__ = convert_xvector(snake_case_ , snake_case_ , snake_case_ )
else:
raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' )
if hf_config.use_weighted_layer_sum:
__magic_name__ = checkpoint['''Featurizer''']['''weights''']
hf_feature_extractor.save_pretrained(snake_case_ )
hf_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument(
'--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.'
)
parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.')
parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.')
a_ = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path) | 704 |
from __future__ import annotations
from scipy.special import comb # type: ignore
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
def __init__( self , A ) -> Tuple:
'''simple docstring'''
__magic_name__ = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
__magic_name__ = len(A ) - 1
def __A ( self , A ) -> list[float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
__magic_name__ = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , A ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(A ) , 5 ) == 1
return output_values
def __A ( self , A ) -> tuple[float, float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
__magic_name__ = self.basis_function(A )
__magic_name__ = 0.0
__magic_name__ = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def __A ( self , A = 0.01 ) -> Tuple:
'''simple docstring'''
from matplotlib import pyplot as plt # type: ignore
__magic_name__ = [] # x coordinates of points to plot
__magic_name__ = [] # y coordinates of points to plot
__magic_name__ = 0.0
while t <= 1:
__magic_name__ = self.bezier_curve_function(A )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
__magic_name__ = [i[0] for i in self.list_of_points]
__magic_name__ = [i[1] for i in self.list_of_points]
plt.plot(
A , A , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , )
plt.scatter(A , A , color='''red''' , label='''Control Points''' )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3 | 678 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ : str = {
'configuration_trajectory_transformer': [
'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TrajectoryTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Union[str, Any] = [
'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrajectoryTransformerModel',
'TrajectoryTransformerPreTrainedModel',
'load_tf_weights_in_trajectory_transformer',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 705 |
import re
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ):
__magic_name__ = re.compile(
r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' )
return bool(re.search(snake_case_ , snake_case_ ) )
if __name__ == "__main__":
a_ : Optional[int] = '0094702343221'
print(is_sri_lankan_phone_number(phone)) | 678 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ : Optional[int] = {
'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[Any] = ['AlbertTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = ['AlbertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Optional[Any] = [
'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'AlbertForMaskedLM',
'AlbertForMultipleChoice',
'AlbertForPreTraining',
'AlbertForQuestionAnswering',
'AlbertForSequenceClassification',
'AlbertForTokenClassification',
'AlbertModel',
'AlbertPreTrainedModel',
'load_tf_weights_in_albert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Tuple = [
'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFAlbertForMaskedLM',
'TFAlbertForMultipleChoice',
'TFAlbertForPreTraining',
'TFAlbertForQuestionAnswering',
'TFAlbertForSequenceClassification',
'TFAlbertForTokenClassification',
'TFAlbertMainLayer',
'TFAlbertModel',
'TFAlbertPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : int = [
'FlaxAlbertForMaskedLM',
'FlaxAlbertForMultipleChoice',
'FlaxAlbertForPreTraining',
'FlaxAlbertForQuestionAnswering',
'FlaxAlbertForSequenceClassification',
'FlaxAlbertForTokenClassification',
'FlaxAlbertModel',
'FlaxAlbertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert import AlbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert_fast import AlbertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_albert import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
AlbertPreTrainedModel,
load_tf_weights_in_albert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_albert import (
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAlbertForMaskedLM,
TFAlbertForMultipleChoice,
TFAlbertForPreTraining,
TFAlbertForQuestionAnswering,
TFAlbertForSequenceClassification,
TFAlbertForTokenClassification,
TFAlbertMainLayer,
TFAlbertModel,
TFAlbertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
FlaxAlbertPreTrainedModel,
)
else:
import sys
a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 706 |
import os
import sys
import unittest
a_ : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
a_ : Optional[Any] = os.path.join(git_repo_path, 'src', 'diffusers')
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = find_backend(''' if not is_torch_available():''' )
self.assertEqual(A , '''torch''' )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
__magic_name__ = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' )
self.assertEqual(A , '''torch_and_transformers''' )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
__magic_name__ = find_backend(
''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' )
self.assertEqual(A , '''torch_and_transformers_and_onnx''' )
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('''torch''' , A )
self.assertIn('''torch_and_transformers''' , A )
self.assertIn('''flax_and_transformers''' , A )
self.assertIn('''torch_and_transformers_and_onnx''' , A )
# Likewise, we can't assert on the exact content of a key
self.assertIn('''UNet2DModel''' , objects['''torch'''] )
self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] )
self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] )
self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] )
self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] )
self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = create_dummy_object('''CONSTANT''' , '''\'torch\'''' )
self.assertEqual(A , '''\nCONSTANT = None\n''' )
__magic_name__ = create_dummy_object('''function''' , '''\'torch\'''' )
self.assertEqual(
A , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' )
__magic_name__ = '''
class FakeClass(metaclass=DummyObject):
_backends = \'torch\'
def __init__(self, *args, **kwargs):
requires_backends(self, \'torch\')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
'''
__magic_name__ = create_dummy_object('''FakeClass''' , '''\'torch\'''' )
self.assertEqual(A , A )
def __A ( self ) -> int:
'''simple docstring'''
__magic_name__ = '''# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
'''
__magic_name__ = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} )
self.assertEqual(dummy_files['''torch'''] , A ) | 678 | 0 |
import datasets
a_ : List[str] = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n'
a_ : List[str] = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n'
a_ : Tuple = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n'
def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Dict ):
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE_ ( datasets.Metric ):
"""simple docstring"""
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ),
'''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ),
} ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , )
def __A ( self , A , A ) -> Optional[int]:
'''simple docstring'''
return {"accuracy": simple_accuracy(A , A )} | 707 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : int , snake_case_ : set ):
__magic_name__ , __magic_name__ = len(snake_case_ ), len(grid[0] )
if (
min(snake_case_ , snake_case_ ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
__magic_name__ = 0
count += depth_first_search(snake_case_ , row + 1 , snake_case_ , snake_case_ )
count += depth_first_search(snake_case_ , row - 1 , snake_case_ , snake_case_ )
count += depth_first_search(snake_case_ , snake_case_ , col + 1 , snake_case_ )
count += depth_first_search(snake_case_ , snake_case_ , col - 1 , snake_case_ )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod() | 678 | 0 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : int ):
if exponent == 1:
return base
if exponent % 2 == 0:
__magic_name__ = _modexpt(snake_case_ , exponent // 2 , snake_case_ ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(snake_case_ , exponent - 1 , snake_case_ )) % modulo_value
def _SCREAMING_SNAKE_CASE ( snake_case_ : int = 1777 , snake_case_ : int = 1855 , snake_case_ : int = 8 ):
__magic_name__ = base
for _ in range(1 , snake_case_ ):
__magic_name__ = _modexpt(snake_case_ , snake_case_ , 10**digits )
return result
if __name__ == "__main__":
print(F"""{solution() = }""") | 708 |
a_ : Dict = {
'meter': 'm',
'kilometer': 'km',
'megametre': 'Mm',
'gigametre': 'Gm',
'terametre': 'Tm',
'petametre': 'Pm',
'exametre': 'Em',
'zettametre': 'Zm',
'yottametre': 'Ym',
}
# Exponent of the factor(meter)
a_ : str = {
'm': 0,
'km': 3,
'Mm': 6,
'Gm': 9,
'Tm': 12,
'Pm': 15,
'Em': 18,
'Zm': 21,
'Ym': 24,
}
def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : str , snake_case_ : str ):
__magic_name__ = from_type.lower().strip('''s''' )
__magic_name__ = to_type.lower().strip('''s''' )
__magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ )
__magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ )
if from_sanitized not in METRIC_CONVERSION:
__magic_name__ = (
f'Invalid \'from_type\' value: {from_type!r}.\n'
f'Conversion abbreviations are: {", ".join(snake_case_ )}'
)
raise ValueError(snake_case_ )
if to_sanitized not in METRIC_CONVERSION:
__magic_name__ = (
f'Invalid \'to_type\' value: {to_type!r}.\n'
f'Conversion abbreviations are: {", ".join(snake_case_ )}'
)
raise ValueError(snake_case_ )
__magic_name__ = METRIC_CONVERSION[from_sanitized]
__magic_name__ = METRIC_CONVERSION[to_sanitized]
__magic_name__ = 1
if from_exponent > to_exponent:
__magic_name__ = from_exponent - to_exponent
else:
__magic_name__ = -(to_exponent - from_exponent)
return value * pow(10 , snake_case_ )
if __name__ == "__main__":
from doctest import testmod
testmod() | 678 | 0 |
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
a_ : Optional[Any] = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ):
__magic_name__ = r'''\w+[.]\d+'''
__magic_name__ = re.findall(snake_case_ , snake_case_ )
for pat in pats:
__magic_name__ = key.replace(snake_case_ , '''_'''.join(pat.split('''.''' ) ) )
return key
def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : str , snake_case_ : int ):
__magic_name__ = pt_tuple_key[:-1] + ('''scale''',)
if (
any('''norm''' in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
__magic_name__ = pt_tuple_key[:-1] + ('''scale''',)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
__magic_name__ = pt_tuple_key[:-1] + ('''scale''',)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
__magic_name__ = pt_tuple_key[:-1] + ('''embedding''',)
return renamed_pt_tuple_key, pt_tensor
# conv layer
__magic_name__ = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
__magic_name__ = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
__magic_name__ = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight":
__magic_name__ = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
__magic_name__ = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
__magic_name__ = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : List[Any]=42 ):
# Step 1: Convert pytorch tensor to numpy
__magic_name__ = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
__magic_name__ = flax_model.init_weights(PRNGKey(snake_case_ ) )
__magic_name__ = flatten_dict(snake_case_ )
__magic_name__ = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
__magic_name__ = rename_key(snake_case_ )
__magic_name__ = tuple(renamed_pt_key.split('''.''' ) )
# Correctly rename weight parameters
__magic_name__ , __magic_name__ = rename_key_and_reshape_tensor(snake_case_ , snake_case_ , snake_case_ )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# also add unexpected weight so that warning is thrown
__magic_name__ = jnp.asarray(snake_case_ )
return unflatten_dict(snake_case_ ) | 709 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
a_ : Union[str, Any] = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : int = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 678 | 0 |
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split()
__magic_name__ = dict(zip(A , range(len(A ) ) ) )
__magic_name__ = {
'''unk_token''': '''<unk>''',
'''bos_token''': '''<s>''',
'''eos_token''': '''</s>''',
}
__magic_name__ = {
'''feature_size''': 1,
'''padding_value''': 0.0,
'''sampling_rate''': 1_60_00,
'''return_attention_mask''': False,
'''do_normalize''': True,
}
__magic_name__ = tempfile.mkdtemp()
__magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__magic_name__ = os.path.join(self.tmpdirname , A )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(A ) + '''\n''' )
with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(A ) + '''\n''' )
# load decoder from hub
__magic_name__ = '''hf-internal-testing/ngram-beam-search-decoder'''
def __A ( self , **A ) -> str:
'''simple docstring'''
__magic_name__ = self.add_kwargs_tokens_map.copy()
kwargs.update(A )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A )
def __A ( self , **A ) -> Tuple:
'''simple docstring'''
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A )
def __A ( self , **A ) -> int:
'''simple docstring'''
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__magic_name__ = self.get_tokenizer()
__magic_name__ = self.get_feature_extractor()
__magic_name__ = self.get_decoder()
__magic_name__ = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A )
processor.save_pretrained(self.tmpdirname )
__magic_name__ = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , A )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , A )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , A )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__magic_name__ = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def __A ( self ) -> Tuple:
'''simple docstring'''
__magic_name__ = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(['''xx'''] )
with self.assertRaisesRegex(A , '''include''' ):
WavaVecaProcessorWithLM(
tokenizer=A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__magic_name__ = self.get_feature_extractor()
__magic_name__ = self.get_tokenizer()
__magic_name__ = self.get_decoder()
__magic_name__ = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A )
__magic_name__ = floats_list((3, 10_00) )
__magic_name__ = feature_extractor(A , return_tensors='''np''' )
__magic_name__ = processor(A , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Dict:
'''simple docstring'''
__magic_name__ = self.get_feature_extractor()
__magic_name__ = self.get_tokenizer()
__magic_name__ = self.get_decoder()
__magic_name__ = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A )
__magic_name__ = '''This is a test string'''
__magic_name__ = processor(text=A )
__magic_name__ = tokenizer(A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self , A=(2, 10, 16) , A=77 ) -> int:
'''simple docstring'''
np.random.seed(A )
return np.random.rand(*A )
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = self.get_feature_extractor()
__magic_name__ = self.get_tokenizer()
__magic_name__ = self.get_decoder()
__magic_name__ = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A )
__magic_name__ = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__magic_name__ = processor.decode(A )
__magic_name__ = decoder.decode_beams(A )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual('''</s> <s> </s>''' , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ['''fork'''], ['''spawn''']] )
def __A ( self , A ) -> List[str]:
'''simple docstring'''
__magic_name__ = self.get_feature_extractor()
__magic_name__ = self.get_tokenizer()
__magic_name__ = self.get_decoder()
__magic_name__ = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A )
__magic_name__ = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__magic_name__ = processor.batch_decode(A )
else:
with get_context(A ).Pool() as pool:
__magic_name__ = processor.batch_decode(A , A )
__magic_name__ = list(A )
with get_context('''fork''' ).Pool() as p:
__magic_name__ = decoder.decode_beams_batch(A , A )
__magic_name__ , __magic_name__ , __magic_name__ = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(A , decoded_processor.text )
self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text )
self.assertListEqual(A , decoded_processor.logit_score )
self.assertListEqual(A , decoded_processor.lm_score )
def __A ( self ) -> List[str]:
'''simple docstring'''
__magic_name__ = self.get_feature_extractor()
__magic_name__ = self.get_tokenizer()
__magic_name__ = self.get_decoder()
__magic_name__ = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A )
__magic_name__ = self._get_dummy_logits()
__magic_name__ = 15
__magic_name__ = -20.0
__magic_name__ = -4.0
__magic_name__ = processor.batch_decode(
A , beam_width=A , beam_prune_logp=A , token_min_logp=A , )
__magic_name__ = decoded_processor_out.text
__magic_name__ = list(A )
with get_context('''fork''' ).Pool() as pool:
__magic_name__ = decoder.decode_beams_batch(
A , A , beam_width=A , beam_prune_logp=A , token_min_logp=A , )
__magic_name__ = [d[0][0] for d in decoded_decoder_out]
__magic_name__ = [d[0][2] for d in decoded_decoder_out]
__magic_name__ = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(A , A )
self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A )
self.assertTrue(np.array_equal(A , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.0_54, -18.4_47] , A , atol=1E-3 ) )
self.assertTrue(np.array_equal(A , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.5_54, -13.94_74] , A , atol=1E-3 ) )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = self.get_feature_extractor()
__magic_name__ = self.get_tokenizer()
__magic_name__ = self.get_decoder()
__magic_name__ = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A )
__magic_name__ = self._get_dummy_logits()
__magic_name__ = 2.0
__magic_name__ = 5.0
__magic_name__ = -20.0
__magic_name__ = True
__magic_name__ = processor.batch_decode(
A , alpha=A , beta=A , unk_score_offset=A , lm_score_boundary=A , )
__magic_name__ = decoded_processor_out.text
__magic_name__ = list(A )
decoder.reset_params(
alpha=A , beta=A , unk_score_offset=A , lm_score_boundary=A , )
with get_context('''fork''' ).Pool() as pool:
__magic_name__ = decoder.decode_beams_batch(
A , A , )
__magic_name__ = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(A , A )
self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A )
__magic_name__ = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , A )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__magic_name__ = processor.decoder.model_container[processor.decoder._model_key]
__magic_name__ = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
__magic_name__ = os.listdir(A )
__magic_name__ = ['''alphabet.json''', '''language_model''']
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(A , A )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = snapshot_download('''hf-internal-testing/processor_with_lm''' )
__magic_name__ = WavaVecaProcessorWithLM.from_pretrained(A )
__magic_name__ = processor.decoder.model_container[processor.decoder._model_key]
__magic_name__ = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
__magic_name__ = os.listdir(A )
__magic_name__ = os.listdir(A )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(A , A )
def __A ( self ) -> Tuple:
'''simple docstring'''
__magic_name__ = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__magic_name__ = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__magic_name__ = floats_list((3, 10_00) )
__magic_name__ = processor_wavaveca(A , return_tensors='''np''' )
__magic_name__ = processor_auto(A , return_tensors='''np''' )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 )
__magic_name__ = self._get_dummy_logits()
__magic_name__ = processor_wavaveca.batch_decode(A )
__magic_name__ = processor_auto.batch_decode(A )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__magic_name__ = self.get_feature_extractor()
__magic_name__ = self.get_tokenizer()
__magic_name__ = self.get_decoder()
__magic_name__ = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
@staticmethod
def __A ( A , A ) -> List[str]:
'''simple docstring'''
__magic_name__ = [d[key] for d in offsets]
return retrieved_list
def __A ( self ) -> Tuple:
'''simple docstring'''
__magic_name__ = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__magic_name__ = self._get_dummy_logits()[0]
__magic_name__ = processor.decode(A , output_word_offsets=A )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(A , A ) )
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__magic_name__ = self._get_dummy_logits()
__magic_name__ = processor.batch_decode(A , output_word_offsets=A )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(A , A ) )
self.assertListEqual(
[''' '''.join(self.get_from_offsets(A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
import torch
__magic_name__ = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A )
__magic_name__ = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) )
__magic_name__ = iter(A )
__magic_name__ = next(A )
__magic_name__ = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
__magic_name__ = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__magic_name__ = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values
with torch.no_grad():
__magic_name__ = model(A ).logits.cpu().numpy()
__magic_name__ = processor.decode(logits[0] , output_word_offsets=A )
__magic_name__ = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__magic_name__ = [
{
'''start_time''': d['''start_offset'''] * time_offset,
'''end_time''': d['''end_offset'''] * time_offset,
'''word''': d['''word'''],
}
for d in output['''word_offsets''']
]
__magic_name__ = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL'''
# output words
self.assertEqual(''' '''.join(self.get_from_offsets(A , '''word''' ) ) , A )
self.assertEqual(''' '''.join(self.get_from_offsets(A , '''word''' ) ) , output.text )
# output times
__magic_name__ = torch.tensor(self.get_from_offsets(A , '''start_time''' ) )
__magic_name__ = torch.tensor(self.get_from_offsets(A , '''end_time''' ) )
# fmt: off
__magic_name__ = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] )
__magic_name__ = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(A , A , atol=0.01 ) )
self.assertTrue(torch.allclose(A , A , atol=0.01 ) ) | 710 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str:
'''simple docstring'''
__magic_name__ = parent
__magic_name__ = batch_size
__magic_name__ = seq_length
__magic_name__ = is_training
__magic_name__ = use_token_type_ids
__magic_name__ = use_labels
__magic_name__ = vocab_size
__magic_name__ = hidden_size
__magic_name__ = num_hidden_layers
__magic_name__ = num_attention_heads
__magic_name__ = intermediate_size
__magic_name__ = hidden_act
__magic_name__ = hidden_dropout_prob
__magic_name__ = attention_probs_dropout_prob
__magic_name__ = max_position_embeddings
__magic_name__ = type_vocab_size
__magic_name__ = type_sequence_label_size
__magic_name__ = initializer_range
__magic_name__ = num_labels
__magic_name__ = num_choices
__magic_name__ = scope
__magic_name__ = self.vocab_size - 1
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ = None
if self.use_token_type_ids:
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
if self.use_labels:
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
__magic_name__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def __A ( self , A , A , A , A , *A ) -> Tuple:
'''simple docstring'''
__magic_name__ = OpenAIGPTModel(config=A )
model.to(A )
model.eval()
__magic_name__ = model(A , token_type_ids=A , head_mask=A )
__magic_name__ = model(A , token_type_ids=A )
__magic_name__ = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , A , A , A , A , *A ) -> Dict:
'''simple docstring'''
__magic_name__ = OpenAIGPTLMHeadModel(A )
model.to(A )
model.eval()
__magic_name__ = model(A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , A , A , A , A , *A ) -> List[Any]:
'''simple docstring'''
__magic_name__ = OpenAIGPTDoubleHeadsModel(A )
model.to(A )
model.eval()
__magic_name__ = model(A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , A , A , A , A , *A ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = self.num_labels
__magic_name__ = OpenAIGPTForSequenceClassification(A )
model.to(A )
model.eval()
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = model(A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self ) -> Dict:
'''simple docstring'''
__magic_name__ = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) = config_and_inputs
__magic_name__ = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
_a = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
_a = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
_a = (
{
"""feature-extraction""": OpenAIGPTModel,
"""text-classification""": OpenAIGPTForSequenceClassification,
"""text-generation""": OpenAIGPTLMHeadModel,
"""zero-shot""": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def __A ( self , A , A , A , A , A ) -> List[str]:
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def __A ( self , A , A , A=False ) -> List[str]:
'''simple docstring'''
__magic_name__ = super()._prepare_for_class(A , A , return_labels=A )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
__magic_name__ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=A , )
__magic_name__ = inputs_dict['''labels''']
__magic_name__ = inputs_dict['''labels''']
__magic_name__ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=A , )
__magic_name__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A )
return inputs_dict
def __A ( self ) -> str:
'''simple docstring'''
__magic_name__ = OpenAIGPTModelTester(self )
__magic_name__ = ConfigTester(self , config_class=A , n_embd=37 )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*A )
def __A ( self ) -> Dict:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*A )
def __A ( self ) -> List[str]:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*A )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A )
@slow
def __A ( self ) -> List[str]:
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ = OpenAIGPTModel.from_pretrained(A )
self.assertIsNotNone(A )
@require_torch
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self ) -> Tuple:
'''simple docstring'''
__magic_name__ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' )
model.to(A )
__magic_name__ = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=A ) # the president is
__magic_name__ = [
4_81,
47_35,
5_44,
2_46,
9_63,
8_70,
7_62,
2_39,
2_44,
4_04_77,
2_44,
2_49,
7_19,
8_81,
4_87,
5_44,
2_40,
2_44,
6_03,
4_81,
] # the president is a very good man. " \n " i\'m sure he is, " said the
__magic_name__ = model.generate(A , do_sample=A )
self.assertListEqual(output_ids[0].tolist() , A ) | 678 | 0 |
from functools import reduce
a_ : Optional[int] = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _SCREAMING_SNAKE_CASE ( snake_case_ : str = N ):
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) )
for i in range(len(snake_case_ ) - 12 ) )
if __name__ == "__main__":
print(F"""{solution() = }""") | 711 |
def _SCREAMING_SNAKE_CASE ( ):
__magic_name__ = []
__magic_name__ = 1
while len(snake_case_ ) < 1E6:
constant.append(str(snake_case_ ) )
i += 1
__magic_name__ = ''''''.join(snake_case_ )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9999] )
* int(constant[9_9999] )
* int(constant[99_9999] )
)
if __name__ == "__main__":
print(solution()) | 678 | 0 |
import sys
import turtle
def _SCREAMING_SNAKE_CASE ( snake_case_ : tuple[float, float] , snake_case_ : tuple[float, float] ):
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def _SCREAMING_SNAKE_CASE ( snake_case_ : tuple[float, float] , snake_case_ : tuple[float, float] , snake_case_ : tuple[float, float] , snake_case_ : int , ):
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(snake_case_ , get_mid(snake_case_ , snake_case_ ) , get_mid(snake_case_ , snake_case_ ) , depth - 1 )
triangle(snake_case_ , get_mid(snake_case_ , snake_case_ ) , get_mid(snake_case_ , snake_case_ ) , depth - 1 )
triangle(snake_case_ , get_mid(snake_case_ , snake_case_ ) , get_mid(snake_case_ , snake_case_ ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'Correct format for using this script: '
'python fractals.py <int:depth_for_fractal>'
)
a_ : str = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('red')
a_ : int = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1])) | 712 |
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
a_ : str = True
except ImportError:
a_ : Optional[int] = False
try:
from torch.hub import _get_torch_home
a_ : Optional[Any] = _get_torch_home()
except ImportError:
a_ : List[Any] = os.path.expanduser(
os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch'))
)
a_ : Any = os.path.join(torch_cache_home, 'transformers')
a_ : Any = 'https://cdn.huggingface.co'
a_ : Any = 'https://s3.amazonaws.com/models.huggingface.co/bert'
a_ : int = '/'.join(str(Path(__file__).resolve()).split('/')[:-1])
a_ : Any = os.path.join(PATH, 'config.yaml')
a_ : Any = os.path.join(PATH, 'attributes.txt')
a_ : Any = os.path.join(PATH, 'objects.txt')
a_ : List[Any] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path)
a_ : Any = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE)
a_ : Optional[int] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE)
a_ : int = 'pytorch_model.bin'
a_ : Union[str, Any] = 'config.yaml'
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any]=OBJECTS , snake_case_ : str=ATTRIBUTES ):
__magic_name__ = []
with open(snake_case_ ) as f:
for object in f.readlines():
vg_classes.append(object.split(''',''' )[0].lower().strip() )
__magic_name__ = []
with open(snake_case_ ) as f:
for object in f.readlines():
vg_attrs.append(object.split(''',''' )[0].lower().strip() )
return vg_classes, vg_attrs
def _SCREAMING_SNAKE_CASE ( snake_case_ : int ):
__magic_name__ = OrderedDict()
with open(snake_case_ , '''rb''' ) as f:
__magic_name__ = pkl.load(snake_case_ )['''model''']
for k in copy.deepcopy(list(ckp.keys() ) ):
__magic_name__ = ckp.pop(snake_case_ )
if isinstance(snake_case_ , np.ndarray ):
__magic_name__ = torch.tensor(snake_case_ )
else:
assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ )
__magic_name__ = v
return r
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
_a = {}
def __init__( self , A , A = "root" , A=0 ) -> List[str]:
'''simple docstring'''
__magic_name__ = name
__magic_name__ = level
__magic_name__ = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
__magic_name__ = copy.deepcopy(A )
__magic_name__ = copy.deepcopy(A )
if isinstance(A , A ):
__magic_name__ = Config(A , name=A , level=level + 1 )
__magic_name__ = v
setattr(self , A , A )
__magic_name__ = d
def __repr__( self ) -> Union[str, Any]:
'''simple docstring'''
return str(list((self._pointer.keys()) ) )
def __setattr__( self , A , A ) -> Tuple:
'''simple docstring'''
__magic_name__ = val
__magic_name__ = val
__magic_name__ = key.split('''.''' )
__magic_name__ = len(A ) - 1
__magic_name__ = self._pointer
if len(A ) > 1:
for i, l in enumerate(A ):
if hasattr(self , A ) and isinstance(getattr(self , A ) , A ):
setattr(getattr(self , A ) , '''.'''.join(levels[i:] ) , A )
if l == last_level:
__magic_name__ = val
else:
__magic_name__ = pointer[l]
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self._pointer
def __A ( self , A , A ) -> Any:
'''simple docstring'''
with open(F'{file_name}' , '''w''' ) as stream:
dump(A , A )
def __A ( self , A , A ) -> List[Any]:
'''simple docstring'''
with open(F'{file_name}' , '''w''' ) as stream:
json.dump(A , A )
@staticmethod
def __A ( A ) -> Optional[Any]:
'''simple docstring'''
with open(A ) as stream:
__magic_name__ = load(A , Loader=A )
return data
def __str__( self ) -> List[Any]:
'''simple docstring'''
__magic_name__ = ''' '''
if self._name != "root":
__magic_name__ = F'{t * (self._level-1)}{self._name}:\n'
else:
__magic_name__ = ''''''
__magic_name__ = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(A , A ):
r += F'{t * (self._level)}{v}\n'
self._level += 1
else:
r += F'{t * (self._level)}{k}: {v} ({type(A ).__name__})\n'
__magic_name__ = level
return r[:-1]
@classmethod
def __A ( cls , A , **A ) -> int:
'''simple docstring'''
__magic_name__ , __magic_name__ = cls.get_config_dict(A , **A )
return cls(A )
@classmethod
def __A ( cls , A , **A ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = kwargs.pop('''cache_dir''' , A )
__magic_name__ = kwargs.pop('''force_download''' , A )
__magic_name__ = kwargs.pop('''resume_download''' , A )
__magic_name__ = kwargs.pop('''proxies''' , A )
__magic_name__ = kwargs.pop('''local_files_only''' , A )
if os.path.isdir(A ):
__magic_name__ = os.path.join(A , A )
elif os.path.isfile(A ) or is_remote_url(A ):
__magic_name__ = pretrained_model_name_or_path
else:
__magic_name__ = hf_bucket_url(A , filename=A , use_cdn=A )
try:
# Load from URL or cache if already cached
__magic_name__ = cached_path(
A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
__magic_name__ = Config.load_yaml(A )
except EnvironmentError:
__magic_name__ = '''Can\'t load config for'''
raise EnvironmentError(A )
if resolved_config_file == config_file:
print('''loading configuration file from path''' )
else:
print('''loading configuration file cache''' )
return Config.load_yaml(A ), kwargs
def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ):
__magic_name__ = torch.load('''dump.pt''' , map_location=in_tensor.device )
__magic_name__ = in_tensor.numpy()
__magic_name__ = out_tensor.numpy()[0]
print(na.shape , na[0, 0, :5] )
print(na.shape , na[0, 0, :5] )
assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), (
f'{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %'
" element-wise mismatch"
)
raise Exception('''tensors are all good''' )
# Hugging face functions below
def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ):
__magic_name__ = urlparse(snake_case_ )
return parsed.scheme in ("http", "https")
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[Any]=True ):
__magic_name__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
__magic_name__ = '''/''' not in model_id
if legacy_format:
return f'{endpoint}/{model_id}-{filename}'
else:
return f'{endpoint}/{model_id}/{filename}'
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[str]=None , snake_case_ : Dict=0 , snake_case_ : Tuple=None , ):
__magic_name__ = '''python/{}'''.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(snake_case_ , snake_case_ ):
ua += "; " + "; ".join('''{}/{}'''.format(snake_case_ , snake_case_ ) for k, v in user_agent.items() )
elif isinstance(snake_case_ , snake_case_ ):
ua += "; " + user_agent
__magic_name__ = {'''user-agent''': ua}
if resume_size > 0:
__magic_name__ = '''bytes=%d-''' % (resume_size,)
__magic_name__ = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ )
if response.status_code == 416: # Range not satisfiable
return
__magic_name__ = response.headers.get('''Content-Length''' )
__magic_name__ = resume_size + int(snake_case_ ) if content_length is not None else None
__magic_name__ = tqdm(
unit='''B''' , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc='''Downloading''' , )
for chunk in response.iter_content(chunk_size=1024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(snake_case_ ) )
temp_file.write(snake_case_ )
progress.close()
def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Dict=None , snake_case_ : int=False , snake_case_ : List[Any]=None , snake_case_ : Tuple=10 , snake_case_ : int=False , snake_case_ : Any=None , snake_case_ : Tuple=False , ):
if cache_dir is None:
__magic_name__ = TRANSFORMERS_CACHE
if isinstance(snake_case_ , snake_case_ ):
__magic_name__ = str(snake_case_ )
os.makedirs(snake_case_ , exist_ok=snake_case_ )
__magic_name__ = None
if not local_files_only:
try:
__magic_name__ = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ )
if response.status_code == 200:
__magic_name__ = response.headers.get('''ETag''' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
__magic_name__ = url_to_filename(snake_case_ , snake_case_ )
# get cache path to put the file
__magic_name__ = os.path.join(snake_case_ , snake_case_ )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(snake_case_ ):
return cache_path
else:
__magic_name__ = [
file
for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + '''.*''' )
if not file.endswith('''.json''' ) and not file.endswith('''.lock''' )
]
if len(snake_case_ ) > 0:
return os.path.join(snake_case_ , matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'''Cannot find the requested files in the cached path and outgoing traffic has been'''
''' disabled. To enable model look-ups and downloads online, set \'local_files_only\''''
''' to False.''' )
return None
# From now on, etag is not None.
if os.path.exists(snake_case_ ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
__magic_name__ = cache_path + '''.lock'''
with FileLock(snake_case_ ):
# If the download just completed while the lock was activated.
if os.path.exists(snake_case_ ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
__magic_name__ = cache_path + '''.incomplete'''
@contextmanager
def _resumable_file_manager():
with open(snake_case_ , '''a+b''' ) as f:
yield f
__magic_name__ = _resumable_file_manager
if os.path.exists(snake_case_ ):
__magic_name__ = os.stat(snake_case_ ).st_size
else:
__magic_name__ = 0
else:
__magic_name__ = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ )
__magic_name__ = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'''%s not found in cache or force_download set to True, downloading to %s''' , snake_case_ , temp_file.name , )
http_get(
snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , )
os.replace(temp_file.name , snake_case_ )
__magic_name__ = {'''url''': url, '''etag''': etag}
__magic_name__ = cache_path + '''.json'''
with open(snake_case_ , '''w''' ) as meta_file:
json.dump(snake_case_ , snake_case_ )
return cache_path
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[Any]=None ):
__magic_name__ = url.encode('''utf-8''' )
__magic_name__ = shaaaa(snake_case_ )
__magic_name__ = url_hash.hexdigest()
if etag:
__magic_name__ = etag.encode('''utf-8''' )
__magic_name__ = shaaaa(snake_case_ )
filename += "." + etag_hash.hexdigest()
if url.endswith('''.h5''' ):
filename += ".h5"
return filename
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str=None , snake_case_ : Tuple=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[Any]=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=False , snake_case_ : Optional[int]=False , snake_case_ : Optional[int]=False , ):
if cache_dir is None:
__magic_name__ = TRANSFORMERS_CACHE
if isinstance(snake_case_ , snake_case_ ):
__magic_name__ = str(snake_case_ )
if isinstance(snake_case_ , snake_case_ ):
__magic_name__ = str(snake_case_ )
if is_remote_url(snake_case_ ):
# URL, so get it from the cache (downloading if necessary)
__magic_name__ = get_from_cache(
snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , )
elif os.path.exists(snake_case_ ):
# File, and it exists.
__magic_name__ = url_or_filename
elif urlparse(snake_case_ ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('''file {} not found'''.format(snake_case_ ) )
else:
# Something unknown
raise ValueError('''unable to parse {} as a URL or as a local path'''.format(snake_case_ ) )
if extract_compressed_file:
if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
__magic_name__ , __magic_name__ = os.path.split(snake_case_ )
__magic_name__ = output_file.replace('''.''' , '''-''' ) + '''-extracted'''
__magic_name__ = os.path.join(snake_case_ , snake_case_ )
if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
__magic_name__ = output_path + '''.lock'''
with FileLock(snake_case_ ):
shutil.rmtree(snake_case_ , ignore_errors=snake_case_ )
os.makedirs(snake_case_ )
if is_zipfile(snake_case_ ):
with ZipFile(snake_case_ , '''r''' ) as zip_file:
zip_file.extractall(snake_case_ )
zip_file.close()
elif tarfile.is_tarfile(snake_case_ ):
__magic_name__ = tarfile.open(snake_case_ )
tar_file.extractall(snake_case_ )
tar_file.close()
else:
raise EnvironmentError('''Archive format of {} could not be identified'''.format(snake_case_ ) )
return output_path_extracted
return output_path
def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : int="," ):
assert isinstance(snake_case_ , snake_case_ )
if os.path.isfile(snake_case_ ):
with open(snake_case_ ) as f:
__magic_name__ = eval(f.read() )
else:
__magic_name__ = requests.get(snake_case_ )
try:
__magic_name__ = requests.json()
except Exception:
__magic_name__ = req.content.decode()
assert data is not None, "could not connect"
try:
__magic_name__ = eval(snake_case_ )
except Exception:
__magic_name__ = data.split('''\n''' )
req.close()
return data
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ):
__magic_name__ = requests.get(snake_case_ )
__magic_name__ = np.array(Image.open(BytesIO(response.content ) ) )
return img
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ):
__magic_name__ = url.split('''/''' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(snake_case_ )
with open(snake_case_ , '''rb''' ) as stream:
__magic_name__ = pkl.load(snake_case_ )
__magic_name__ = weights.pop('''model''' )
__magic_name__ = {}
for k, v in model.items():
__magic_name__ = torch.from_numpy(snake_case_ )
if "running_var" in k:
__magic_name__ = torch.tensor([0] )
__magic_name__ = k.replace('''running_var''' , '''num_batches_tracked''' )
__magic_name__ = zero
return new
def _SCREAMING_SNAKE_CASE ( ):
print(f'{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb' )
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple="RGB" ):
assert isinstance(snake_case_ , snake_case_ )
if os.path.isfile(snake_case_ ):
__magic_name__ = cva.imread(snake_case_ )
else:
__magic_name__ = get_image_from_url(snake_case_ )
assert img is not None, f'could not connect to: {im}'
__magic_name__ = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB )
if input_format == "RGB":
__magic_name__ = img[:, :, ::-1]
return img
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict=1 ):
return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ )) | 678 | 0 |
import numpy as np
def _SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : float = 1E-12 , snake_case_ : int = 100 , ):
assert np.shape(snake_case_ )[0] == np.shape(snake_case_ )[1]
# Ensure proper dimensionality.
assert np.shape(snake_case_ )[0] == np.shape(snake_case_ )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(snake_case_ ) == np.iscomplexobj(snake_case_ )
__magic_name__ = np.iscomplexobj(snake_case_ )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(snake_case_ , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__magic_name__ = False
__magic_name__ = 0
__magic_name__ = 0
__magic_name__ = 1E12
while not convergence:
# Multiple matrix by the vector.
__magic_name__ = np.dot(snake_case_ , snake_case_ )
# Normalize the resulting output vector.
__magic_name__ = w / np.linalg.norm(snake_case_ )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__magic_name__ = vector.conj().T if is_complex else vector.T
__magic_name__ = np.dot(snake_case_ , np.dot(snake_case_ , snake_case_ ) )
# Check convergence.
__magic_name__ = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__magic_name__ = True
__magic_name__ = lambda_
if is_complex:
__magic_name__ = np.real(lambda_ )
return lambda_, vector
def _SCREAMING_SNAKE_CASE ( ):
__magic_name__ = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
__magic_name__ = np.array([41, 4, 20] )
__magic_name__ = real_input_matrix.astype(np.complexaaa )
__magic_name__ = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__magic_name__ = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
__magic_name__ = real_input_matrix
__magic_name__ = real_vector
elif problem_type == "complex":
__magic_name__ = complex_input_matrix
__magic_name__ = complex_vector
# Our implementation.
__magic_name__ , __magic_name__ = power_iteration(snake_case_ , snake_case_ )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__magic_name__ , __magic_name__ = np.linalg.eigh(snake_case_ )
# Last eigenvalue is the maximum one.
__magic_name__ = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__magic_name__ = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(snake_case_ ) - np.abs(snake_case_ ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration() | 713 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
a_ : Optional[int] = 16
a_ : int = 32
def _SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" ):
__magic_name__ = AutoTokenizer.from_pretrained(snake_case_ )
__magic_name__ = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(snake_case_ : Union[str, Any] ):
# max_length=None => use the model max length (it's actually the default)
__magic_name__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__magic_name__ = datasets.map(
snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__magic_name__ = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(snake_case_ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
__magic_name__ = DataLoader(
tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
__magic_name__ = DataLoader(
tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
return train_dataloader, eval_dataloader
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : str ):
model.eval()
__magic_name__ = 0
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__magic_name__ = model(**snake_case_ )
__magic_name__ = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__magic_name__ , __magic_name__ = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(snake_case_ ) - 1:
__magic_name__ = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__magic_name__ = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=snake_case_ , references=snake_case_ , )
__magic_name__ = metric.compute()
return eval_metric["accuracy"]
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Tuple ):
# Initialize accelerator
__magic_name__ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__magic_name__ = config['''lr''']
__magic_name__ = int(config['''num_epochs'''] )
__magic_name__ = int(config['''seed'''] )
__magic_name__ = int(config['''batch_size'''] )
__magic_name__ = args.model_name_or_path
set_seed(snake_case_ )
__magic_name__ , __magic_name__ = get_dataloaders(snake_case_ , snake_case_ , snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__magic_name__ = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ )
# Instantiate optimizer
__magic_name__ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__magic_name__ = optimizer_cls(params=model.parameters() , lr=snake_case_ )
if accelerator.state.deepspeed_plugin is not None:
__magic_name__ = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
__magic_name__ = 1
__magic_name__ = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__magic_name__ = get_linear_schedule_with_warmup(
optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , )
else:
__magic_name__ = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# We need to keep track of how many total steps we have iterated over
__magic_name__ = 0
# We also need to keep track of the stating epoch so files are named properly
__magic_name__ = 0
__magic_name__ = evaluate.load('''glue''' , '''mrpc''' )
__magic_name__ = num_epochs
if args.partial_train_epoch is not None:
__magic_name__ = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
__magic_name__ = args.resume_from_checkpoint.split('''epoch_''' )[1]
__magic_name__ = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
__magic_name__ = int(snake_case_ ) + 1
__magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
accelerator.print('''resumed checkpoint performance:''' , snake_case_ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , '''r''' ) as f:
__magic_name__ = json.load(snake_case_ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
__magic_name__ = {}
for epoch in range(snake_case_ , snake_case_ ):
model.train()
for step, batch in enumerate(snake_case_ ):
__magic_name__ = model(**snake_case_ )
__magic_name__ = outputs.loss
__magic_name__ = loss / gradient_accumulation_steps
accelerator.backward(snake_case_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
__magic_name__ = f'epoch_{epoch}'
__magic_name__ = os.path.join(args.output_dir , snake_case_ )
accelerator.save_state(snake_case_ )
__magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__magic_name__ = accuracy
__magic_name__ = lr_scheduler.get_lr()[0]
__magic_name__ = optimizer.param_groups[0]['''lr''']
__magic_name__ = epoch
__magic_name__ = overall_step
accelerator.print(f'epoch {epoch}:' , snake_case_ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , '''w''' ) as f:
json.dump(snake_case_ , snake_case_ )
def _SCREAMING_SNAKE_CASE ( ):
__magic_name__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=snake_case_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case_ , )
parser.add_argument(
'''--output_dir''' , type=snake_case_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--resume_from_checkpoint''' , type=snake_case_ , default=snake_case_ , help='''If the training should continue from a checkpoint folder.''' , )
parser.add_argument(
'''--partial_train_epoch''' , type=snake_case_ , default=snake_case_ , help='''If passed, the training will stop after this number of epochs.''' , )
parser.add_argument(
'''--num_epochs''' , type=snake_case_ , default=2 , help='''Number of train epochs.''' , )
__magic_name__ = parser.parse_args()
__magic_name__ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(snake_case_ , snake_case_ )
if __name__ == "__main__":
main() | 678 | 0 |
import re
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ):
__magic_name__ = re.compile(
r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' )
return bool(re.search(snake_case_ , snake_case_ ) )
if __name__ == "__main__":
a_ : Optional[int] = '0094702343221'
print(is_sri_lankan_phone_number(phone)) | 714 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ):
return " ".join(
''''''.join(word[::-1] ) if len(snake_case_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('Hey wollef sroirraw')) | 678 | 0 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : int ):
if not isinstance(snake_case_ , snake_case_ ):
raise ValueError('''multiplicative_persistence() only accepts integral values''' )
if num < 0:
raise ValueError('''multiplicative_persistence() does not accept negative values''' )
__magic_name__ = 0
__magic_name__ = str(snake_case_ )
while len(snake_case_ ) != 1:
__magic_name__ = [int(snake_case_ ) for i in num_string]
__magic_name__ = 1
for i in range(0 , len(snake_case_ ) ):
total *= numbers[i]
__magic_name__ = str(snake_case_ )
steps += 1
return steps
def _SCREAMING_SNAKE_CASE ( snake_case_ : int ):
if not isinstance(snake_case_ , snake_case_ ):
raise ValueError('''additive_persistence() only accepts integral values''' )
if num < 0:
raise ValueError('''additive_persistence() does not accept negative values''' )
__magic_name__ = 0
__magic_name__ = str(snake_case_ )
while len(snake_case_ ) != 1:
__magic_name__ = [int(snake_case_ ) for i in num_string]
__magic_name__ = 0
for i in range(0 , len(snake_case_ ) ):
total += numbers[i]
__magic_name__ = str(snake_case_ )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 715 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
a_ : Any = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
a_ : int = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
a_ : List[str] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE_ ( datasets.Metric ):
"""simple docstring"""
def __A ( self ) -> List[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] , )
def __A ( self , A , A , A=None , A=None , A=None , A=None , A="auto" , A=-1 , A=0.9 , A=5 , A=5_00 , A="gpt2-large" , A=-1 , A=10_24 , A=25 , A=5 , A=True , A=25 , ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = compute_mauve(
p_text=A , q_text=A , p_features=A , q_features=A , p_tokens=A , q_tokens=A , num_buckets=A , pca_max_data=A , kmeans_explained_var=A , kmeans_num_redo=A , kmeans_max_iter=A , featurize_model_name=A , device_id=A , max_text_length=A , divergence_curve_discretization_size=A , mauve_scaling_factor=A , verbose=A , seed=A , )
return out | 678 | 0 |
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def _SCREAMING_SNAKE_CASE ( snake_case_ : Namespace ):
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
a_ : Union[str, Any] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n'
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
@staticmethod
def __A ( A ) -> List[Any]:
'''simple docstring'''
__magic_name__ = parser.add_parser(
'''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , )
train_parser.add_argument('''--model_type''' , type=A , required=A , help='''Model\'s type.''' )
train_parser.add_argument(
'''--tf_checkpoint''' , type=A , required=A , help='''TensorFlow checkpoint path or folder.''' )
train_parser.add_argument(
'''--pytorch_dump_output''' , type=A , required=A , help='''Path to the PyTorch saved model output.''' )
train_parser.add_argument('''--config''' , type=A , default='''''' , help='''Configuration file path or folder.''' )
train_parser.add_argument(
'''--finetuning_task_name''' , type=A , default=A , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , )
train_parser.set_defaults(func=A )
def __init__( self , A , A , A , A , A , *A , ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = logging.get_logger('''transformers-cli/converting''' )
self._logger.info(F'Loading model {model_type}' )
__magic_name__ = model_type
__magic_name__ = tf_checkpoint
__magic_name__ = pytorch_dump_output
__magic_name__ = config
__magic_name__ = finetuning_task_name
def __A ( self ) -> List[Any]:
'''simple docstring'''
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(A )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
if "ckpt" in self._tf_checkpoint.lower():
__magic_name__ = self._tf_checkpoint
__magic_name__ = ''''''
else:
__magic_name__ = self._tf_checkpoint
__magic_name__ = ''''''
convert_transfo_xl_checkpoint_to_pytorch(
A , self._config , self._pytorch_dump_output , A )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
'''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' ) | 716 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
a_ : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
a_ : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007
def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ):
return np.sqrt(np.sum((np.asarray(snake_case_ ) - np.asarray(snake_case_ )) ** 2 ) )
def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ):
return sum((va - va) ** 2 for va, va in zip(snake_case_ , snake_case_ ) ) ** (1 / 2)
if __name__ == "__main__":
def _SCREAMING_SNAKE_CASE ( ):
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) )
benchmark() | 678 | 0 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
a_ : Tuple = 16
a_ : List[Any] = 32
def _SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" ):
__magic_name__ = AutoTokenizer.from_pretrained(snake_case_ )
__magic_name__ = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(snake_case_ : List[Any] ):
# max_length=None => use the model max length (it's actually the default)
__magic_name__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__magic_name__ = datasets.map(
snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__magic_name__ = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(snake_case_ : int ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
__magic_name__ = DataLoader(
tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
__magic_name__ = DataLoader(
tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
return train_dataloader, eval_dataloader
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Optional[int] ):
# Initialize accelerator
__magic_name__ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__magic_name__ = config['''lr''']
__magic_name__ = int(config['''num_epochs'''] )
__magic_name__ = int(config['''seed'''] )
__magic_name__ = int(config['''batch_size'''] )
__magic_name__ = args.model_name_or_path
set_seed(snake_case_ )
__magic_name__ , __magic_name__ = get_dataloaders(snake_case_ , snake_case_ , snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__magic_name__ = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ )
# Instantiate optimizer
__magic_name__ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__magic_name__ = optimizer_cls(params=model.parameters() , lr=snake_case_ )
if accelerator.state.deepspeed_plugin is not None:
__magic_name__ = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
__magic_name__ = 1
__magic_name__ = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__magic_name__ = get_linear_schedule_with_warmup(
optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , )
else:
__magic_name__ = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# We need to keep track of how many total steps we have iterated over
__magic_name__ = 0
# We also need to keep track of the stating epoch so files are named properly
__magic_name__ = 0
# Now we train the model
__magic_name__ = evaluate.load('''glue''' , '''mrpc''' )
__magic_name__ = 0
__magic_name__ = {}
for epoch in range(snake_case_ , snake_case_ ):
model.train()
for step, batch in enumerate(snake_case_ ):
__magic_name__ = model(**snake_case_ )
__magic_name__ = outputs.loss
__magic_name__ = loss / gradient_accumulation_steps
accelerator.backward(snake_case_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__magic_name__ = 0
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__magic_name__ = model(**snake_case_ )
__magic_name__ = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__magic_name__ , __magic_name__ = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(snake_case_ ) - 1:
__magic_name__ = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__magic_name__ = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=snake_case_ , references=snake_case_ , )
__magic_name__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' , snake_case_ )
__magic_name__ = eval_metric['''accuracy''']
if best_performance < eval_metric["accuracy"]:
__magic_name__ = eval_metric['''accuracy''']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f:
json.dump(snake_case_ , snake_case_ )
def _SCREAMING_SNAKE_CASE ( ):
__magic_name__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=snake_case_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case_ , )
parser.add_argument(
'''--output_dir''' , type=snake_case_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--performance_lower_bound''' , type=snake_case_ , default=snake_case_ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , )
parser.add_argument(
'''--num_epochs''' , type=snake_case_ , default=3 , help='''Number of train epochs.''' , )
__magic_name__ = parser.parse_args()
__magic_name__ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(snake_case_ , snake_case_ )
if __name__ == "__main__":
main()
| 717 |
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
a_ : str = logging.get_logger(__name__)
a_ : Union[str, Any] = 'https://openaipublic.azureedge.net/jukebox/models/'
a_ : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ):
if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10:
__magic_name__ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' )
elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10:
__magic_name__ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' )
elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10:
__magic_name__ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' )
elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10:
__magic_name__ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' )
if "conditioner_blocks.0." in key:
__magic_name__ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' )
if "prime_prior" in key:
__magic_name__ = key.replace('''prime_prior''' , '''encoder''' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
__magic_name__ = key.replace('''.emb.''' , '''.''' )
if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('''.k''' , '''.codebook''' )
if "y_emb." in key:
return key.replace('''y_emb.''' , '''metadata_embedding.''' )
if "x_emb.emb." in key:
__magic_name__ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' )
if "prime_state_ln" in key:
return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' )
if ".ln" in key:
return key.replace('''.ln''' , '''.layer_norm''' )
if "_ln" in key:
return key.replace('''_ln''' , '''_layer_norm''' )
if "prime_state_proj" in key:
return key.replace('''prime_state_proj''' , '''encoder.proj_in''' )
if "prime_x_out" in key:
return key.replace('''prime_x_out''' , '''encoder.lm_head''' )
if "prior.x_out" in key:
return key.replace('''x_out''' , '''fc_proj_out''' )
if "x_emb" in key:
return key.replace('''x_emb''' , '''embed_tokens''' )
return key
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ):
__magic_name__ = {}
import re
__magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
__magic_name__ = re.compile(
r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
__magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
__magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
__magic_name__ = re.compile(
r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
__magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
__magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' )
__magic_name__ = re.compile(
r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
__magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(snake_case_ ):
__magic_name__ = re_encoder_block_conv_in.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = int(groups[2] ) * 2 + int(groups[3] )
__magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'
__magic_name__ = re_encoder_block_conv_in.sub(snake_case_ , snake_case_ )
elif re_encoder_block_resnet.fullmatch(snake_case_ ):
__magic_name__ = re_encoder_block_resnet.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = int(groups[2] ) * 2 + int(groups[3] )
__magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]]
__magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'
__magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
__magic_name__ = prefix + resnet_block
__magic_name__ = re_encoder_block_resnet.sub(snake_case_ , snake_case_ )
elif re_encoder_block_proj_out.fullmatch(snake_case_ ):
__magic_name__ = re_encoder_block_proj_out.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'
__magic_name__ = re_encoder_block_proj_out.sub(snake_case_ , snake_case_ )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(snake_case_ ):
__magic_name__ = re_decoder_block_conv_out.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2
__magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'
__magic_name__ = re_decoder_block_conv_out.sub(snake_case_ , snake_case_ )
elif re_decoder_block_resnet.fullmatch(snake_case_ ):
__magic_name__ = re_decoder_block_resnet.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2
__magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]]
__magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'
__magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
__magic_name__ = prefix + resnet_block
__magic_name__ = re_decoder_block_resnet.sub(snake_case_ , snake_case_ )
elif re_decoder_block_proj_in.fullmatch(snake_case_ ):
__magic_name__ = re_decoder_block_proj_in.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'
__magic_name__ = re_decoder_block_proj_in.sub(snake_case_ , snake_case_ )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(snake_case_ ):
__magic_name__ = re_prior_cond_conv_out.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2
__magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'
__magic_name__ = re_prior_cond_conv_out.sub(snake_case_ , snake_case_ )
elif re_prior_cond_resnet.fullmatch(snake_case_ ):
__magic_name__ = re_prior_cond_resnet.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2
__magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]]
__magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.'
__magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
__magic_name__ = prefix + resnet_block
__magic_name__ = re_prior_cond_resnet.sub(snake_case_ , snake_case_ )
elif re_prior_cond_proj_in.fullmatch(snake_case_ ):
__magic_name__ = re_prior_cond_proj_in.match(snake_case_ )
__magic_name__ = regex_match.groups()
__magic_name__ = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}'
__magic_name__ = re_prior_cond_proj_in.sub(snake_case_ , snake_case_ )
# keep original key
else:
__magic_name__ = original_key
__magic_name__ = replace_key(snake_case_ )
if f'{key_prefix}.{key}' not in model_state_dict or key is None:
print(f'failed converting {original_key} to {key}, does not match' )
# handle missmatched shape
elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape:
__magic_name__ = model_state_dict[f'{key_prefix}.{key}']
print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' )
__magic_name__ = original_key
__magic_name__ = original_key
__magic_name__ = value
return new_dict
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict=None , snake_case_ : Any=None ):
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ):
__magic_name__ = requests.get(f'{PREFIX}{file}' , allow_redirects=snake_case_ )
os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=snake_case_ )
open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , '''wb''' ).write(r.content )
__magic_name__ = MODEL_MAPPING[model_name.split('''/''' )[-1]]
__magic_name__ = JukeboxConfig.from_pretrained(snake_case_ )
__magic_name__ = JukeboxModel(snake_case_ )
__magic_name__ = []
__magic_name__ = {}
for i, dict_name in enumerate(snake_case_ ):
__magic_name__ = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['''model''']
__magic_name__ = {}
for k in old_dic.keys():
if k.endswith('''.b''' ):
__magic_name__ = old_dic[k]
elif k.endswith('''.w''' ):
__magic_name__ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
__magic_name__ = old_dic[k]
else:
__magic_name__ = old_dic[k]
__magic_name__ = '''vqvae''' if i == 0 else f'priors.{3 - i}'
__magic_name__ = fix_jukebox_keys(snake_case_ , model.state_dict() , snake_case_ , snake_case_ )
weight_dict.append(snake_case_ )
__magic_name__ = weight_dict.pop(0 )
model.vqvae.load_state_dict(snake_case_ )
for i in range(len(snake_case_ ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
with open(f'{pytorch_dump_folder_path}/mapping.json' , '''w''' ) as txtfile:
json.dump(snake_case_ , snake_case_ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case_ )
return weight_dict
if __name__ == "__main__":
a_ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
a_ : int = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path) | 678 | 0 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : list[int] ):
__magic_name__ = len(snake_case_ )
print('''The following activities are selected:''' )
# The first activity is always selected
__magic_name__ = 0
print(snake_case_ , end=''',''' )
# Consider rest of the activities
for j in range(snake_case_ ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(snake_case_ , end=''',''' )
__magic_name__ = j
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : Dict = [1, 3, 0, 5, 8, 5]
a_ : Union[str, Any] = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish) | 718 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a_ : int = logging.get_logger(__name__)
a_ : Optional[int] = {
'microsoft/table-transformer-detection': (
'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json'
),
}
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_a = """table-transformer"""
_a = ["""past_key_values"""]
_a = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , A=True , A=None , A=3 , A=1_00 , A=6 , A=20_48 , A=8 , A=6 , A=20_48 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=2_56 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> Any:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
__magic_name__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(A , A ):
__magic_name__ = backbone_config.get('''model_type''' )
__magic_name__ = CONFIG_MAPPING[backbone_model_type]
__magic_name__ = config_class.from_dict(A )
# set timm attributes to None
__magic_name__ , __magic_name__ , __magic_name__ = None, None, None
__magic_name__ = use_timm_backbone
__magic_name__ = backbone_config
__magic_name__ = num_channels
__magic_name__ = num_queries
__magic_name__ = d_model
__magic_name__ = encoder_ffn_dim
__magic_name__ = encoder_layers
__magic_name__ = encoder_attention_heads
__magic_name__ = decoder_ffn_dim
__magic_name__ = decoder_layers
__magic_name__ = decoder_attention_heads
__magic_name__ = dropout
__magic_name__ = attention_dropout
__magic_name__ = activation_dropout
__magic_name__ = activation_function
__magic_name__ = init_std
__magic_name__ = init_xavier_std
__magic_name__ = encoder_layerdrop
__magic_name__ = decoder_layerdrop
__magic_name__ = encoder_layers
__magic_name__ = auxiliary_loss
__magic_name__ = position_embedding_type
__magic_name__ = backbone
__magic_name__ = use_pretrained_backbone
__magic_name__ = dilation
# Hungarian matcher
__magic_name__ = class_cost
__magic_name__ = bbox_cost
__magic_name__ = giou_cost
# Loss coefficients
__magic_name__ = mask_loss_coefficient
__magic_name__ = dice_loss_coefficient
__magic_name__ = bbox_loss_coefficient
__magic_name__ = giou_loss_coefficient
__magic_name__ = eos_coefficient
super().__init__(is_encoder_decoder=A , **A )
@property
def __A ( self ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def __A ( self ) -> int:
'''simple docstring'''
return self.d_model
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_a = version.parse("""1.11""" )
@property
def __A ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def __A ( self ) -> float:
'''simple docstring'''
return 1E-5
@property
def __A ( self ) -> int:
'''simple docstring'''
return 12 | 678 | 0 |
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
def __init__( self , *A , A=None , A=None , **A ) -> int:
'''simple docstring'''
super().__init__(*A , **A )
__magic_name__ = eval_examples
__magic_name__ = post_process_function
def __A ( self , A=None , A=None , A=None , A = "eval" ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = self.eval_dataset if eval_dataset is None else eval_dataset
__magic_name__ = self.get_eval_dataloader(A )
__magic_name__ = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__magic_name__ = self.compute_metrics
__magic_name__ = None
__magic_name__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
__magic_name__ = time.time()
try:
__magic_name__ = eval_loop(
A , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , )
finally:
__magic_name__ = compute_metrics
__magic_name__ = self.args.eval_batch_size * self.args.world_size
if F'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
__magic_name__ = self.post_process_function(A , A , output.predictions )
__magic_name__ = self.compute_metrics(A )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'{metric_key_prefix}_' ):
__magic_name__ = metrics.pop(A )
metrics.update(output.metrics )
else:
__magic_name__ = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(A )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
__magic_name__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , A )
return metrics
def __A ( self , A , A , A=None , A = "test" ) -> Optional[int]:
'''simple docstring'''
__magic_name__ = self.get_test_dataloader(A )
# Temporarily disable metric computation, we will do it in the loop here.
__magic_name__ = self.compute_metrics
__magic_name__ = None
__magic_name__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
__magic_name__ = time.time()
try:
__magic_name__ = eval_loop(
A , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , )
finally:
__magic_name__ = compute_metrics
__magic_name__ = self.args.eval_batch_size * self.args.world_size
if F'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
__magic_name__ = self.post_process_function(A , A , output.predictions , '''predict''' )
__magic_name__ = self.compute_metrics(A )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'{metric_key_prefix}_' ):
__magic_name__ = metrics.pop(A )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A ) | 719 |
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ):
# Initialise PyTorch model
__magic_name__ = LxmertConfig.from_json_file(snake_case_ )
print(f'Building PyTorch model from configuration: {config}' )
__magic_name__ = LxmertForPreTraining(snake_case_ )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(snake_case_ , snake_case_ , snake_case_ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , snake_case_ )
if __name__ == "__main__":
a_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
a_ : Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) | 678 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
def __A ( self , A , A ) -> List[Any]:
'''simple docstring'''
__magic_name__ = jnp.ones((batch_size, length) ) / length
return scores
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = None
__magic_name__ = 20
__magic_name__ = self._get_uniform_logits(batch_size=2 , length=A )
# tweak scores to not be uniform anymore
__magic_name__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
__magic_name__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
__magic_name__ = jax.nn.softmax(A , axis=-1 )
__magic_name__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
__magic_name__ = FlaxTemperatureLogitsWarper(temperature=1.3 )
__magic_name__ = jax.nn.softmax(temp_dist_warper_sharper(A , scores.copy() , cur_len=A ) , axis=-1 )
__magic_name__ = jax.nn.softmax(temp_dist_warper_smoother(A , scores.copy() , cur_len=A ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def __A ( self ) -> int:
'''simple docstring'''
__magic_name__ = None
__magic_name__ = 10
__magic_name__ = 2
# create ramp distribution
__magic_name__ = np.broadcast_to(np.arange(A )[None, :] , (batch_size, vocab_size) ).copy()
__magic_name__ = ramp_logits[1:, : vocab_size // 2] + vocab_size
__magic_name__ = FlaxTopKLogitsWarper(3 )
__magic_name__ = top_k_warp(A , A , cur_len=A )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
__magic_name__ = 5
__magic_name__ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
__magic_name__ = np.broadcast_to(np.arange(A )[None, :] , (batch_size, length) ).copy()
__magic_name__ = top_k_warp_safety_check(A , A , cur_len=A )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def __A ( self ) -> Dict:
'''simple docstring'''
__magic_name__ = None
__magic_name__ = 10
__magic_name__ = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
__magic_name__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
__magic_name__ = FlaxTopPLogitsWarper(0.8 )
__magic_name__ = np.exp(top_p_warp(A , A , cur_len=A ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
__magic_name__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(A , A , atol=1E-3 ) )
# check edge cases with negative and extreme logits
__magic_name__ = np.broadcast_to(np.arange(A )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
__magic_name__ = ramp_logits[1] * 1_00.0
# make sure at least 2 tokens are kept
__magic_name__ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
__magic_name__ = top_p_warp(A , A , cur_len=A )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def __A ( self ) -> int:
'''simple docstring'''
__magic_name__ = 20
__magic_name__ = 4
__magic_name__ = 0
__magic_name__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=A )
# check that min length is applied at length 5
__magic_name__ = ids_tensor((batch_size, 20) , vocab_size=20 )
__magic_name__ = 5
__magic_name__ = self._get_uniform_logits(A , A )
__magic_name__ = min_dist_processor(A , A , cur_len=A )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] )
# check that min length is not applied anymore at length 15
__magic_name__ = self._get_uniform_logits(A , A )
__magic_name__ = 15
__magic_name__ = min_dist_processor(A , A , cur_len=A )
self.assertFalse(jnp.isinf(A ).any() )
def __A ( self ) -> Any:
'''simple docstring'''
__magic_name__ = 20
__magic_name__ = 4
__magic_name__ = 0
__magic_name__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=A )
# check that all scores are -inf except the bos_token_id score
__magic_name__ = ids_tensor((batch_size, 1) , vocab_size=20 )
__magic_name__ = 1
__magic_name__ = self._get_uniform_logits(A , A )
__magic_name__ = logits_processor(A , A , cur_len=A )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
__magic_name__ = 3
__magic_name__ = self._get_uniform_logits(A , A )
__magic_name__ = logits_processor(A , A , cur_len=A )
self.assertFalse(jnp.isinf(A ).any() )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__magic_name__ = 20
__magic_name__ = 4
__magic_name__ = 0
__magic_name__ = 5
__magic_name__ = FlaxForcedEOSTokenLogitsProcessor(max_length=A , eos_token_id=A )
# check that all scores are -inf except the eos_token_id when max_length is reached
__magic_name__ = ids_tensor((batch_size, 4) , vocab_size=20 )
__magic_name__ = 4
__magic_name__ = self._get_uniform_logits(A , A )
__magic_name__ = logits_processor(A , A , cur_len=A )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
__magic_name__ = 3
__magic_name__ = self._get_uniform_logits(A , A )
__magic_name__ = logits_processor(A , A , cur_len=A )
self.assertFalse(jnp.isinf(A ).any() )
def __A ( self ) -> Dict:
'''simple docstring'''
__magic_name__ = 4
__magic_name__ = 10
__magic_name__ = 15
__magic_name__ = 2
__magic_name__ = 1
__magic_name__ = 15
# dummy input_ids and scores
__magic_name__ = ids_tensor((batch_size, sequence_length) , A )
__magic_name__ = input_ids.copy()
__magic_name__ = self._get_uniform_logits(A , A )
__magic_name__ = scores.copy()
# instantiate all dist processors
__magic_name__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
__magic_name__ = FlaxTopKLogitsWarper(3 )
__magic_name__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
__magic_name__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=A )
__magic_name__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=A )
__magic_name__ = FlaxForcedEOSTokenLogitsProcessor(max_length=A , eos_token_id=A )
__magic_name__ = 10
# no processor list
__magic_name__ = temp_dist_warp(A , A , cur_len=A )
__magic_name__ = top_k_warp(A , A , cur_len=A )
__magic_name__ = top_p_warp(A , A , cur_len=A )
__magic_name__ = min_dist_proc(A , A , cur_len=A )
__magic_name__ = bos_dist_proc(A , A , cur_len=A )
__magic_name__ = eos_dist_proc(A , A , cur_len=A )
# with processor list
__magic_name__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
__magic_name__ = processor(A , A , cur_len=A )
# scores should be equal
self.assertTrue(jnp.allclose(A , A , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def __A ( self ) -> List[str]:
'''simple docstring'''
__magic_name__ = 4
__magic_name__ = 10
__magic_name__ = 15
__magic_name__ = 2
__magic_name__ = 1
__magic_name__ = 15
# dummy input_ids and scores
__magic_name__ = ids_tensor((batch_size, sequence_length) , A )
__magic_name__ = input_ids.copy()
__magic_name__ = self._get_uniform_logits(A , A )
__magic_name__ = scores.copy()
# instantiate all dist processors
__magic_name__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
__magic_name__ = FlaxTopKLogitsWarper(3 )
__magic_name__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
__magic_name__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=A )
__magic_name__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=A )
__magic_name__ = FlaxForcedEOSTokenLogitsProcessor(max_length=A , eos_token_id=A )
__magic_name__ = 10
# no processor list
def run_no_processor_list(A , A , A ):
__magic_name__ = temp_dist_warp(A , A , cur_len=A )
__magic_name__ = top_k_warp(A , A , cur_len=A )
__magic_name__ = top_p_warp(A , A , cur_len=A )
__magic_name__ = min_dist_proc(A , A , cur_len=A )
__magic_name__ = bos_dist_proc(A , A , cur_len=A )
__magic_name__ = eos_dist_proc(A , A , cur_len=A )
return scores
# with processor list
def run_processor_list(A , A , A ):
__magic_name__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
__magic_name__ = processor(A , A , cur_len=A )
return scores
__magic_name__ = jax.jit(A )
__magic_name__ = jax.jit(A )
__magic_name__ = jitted_run_no_processor_list(A , A , A )
__magic_name__ = jitted_run_processor_list(A , A , A )
# scores should be equal
self.assertTrue(jnp.allclose(A , A , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) | 720 |
# Usage:
# ./gen-card-allenai-wmt16.py
import os
from pathlib import Path
def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ):
__magic_name__ = {
'''en''': '''Machine learning is great, isn\'t it?''',
'''ru''': '''Машинное обучение - это здорово, не так ли?''',
'''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
__magic_name__ = {
'''wmt16-en-de-dist-12-1''': [28.3, 27.52],
'''wmt16-en-de-dist-6-1''': [27.4, 27.11],
'''wmt16-en-de-12-1''': [26.9, 25.75],
}
__magic_name__ = f'{src_lang}-{tgt_lang}'
__magic_name__ = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n'
model_card_dir.mkdir(parents=snake_case_ , exist_ok=snake_case_ )
__magic_name__ = os.path.join(snake_case_ , '''README.md''' )
print(f'Generating {path}' )
with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(snake_case_ )
# make sure we are under the root of the project
a_ : Tuple = Path(__file__).resolve().parent.parent.parent
a_ : Dict = repo_dir / 'model_cards'
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]:
a_ : List[str] = model_cards_dir / 'allenai' / model_name
write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name) | 678 | 0 |
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
a_ : str = True
except ImportError:
a_ : Optional[int] = False
try:
from torch.hub import _get_torch_home
a_ : Optional[Any] = _get_torch_home()
except ImportError:
a_ : List[Any] = os.path.expanduser(
os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch'))
)
a_ : Any = os.path.join(torch_cache_home, 'transformers')
a_ : Any = 'https://cdn.huggingface.co'
a_ : Any = 'https://s3.amazonaws.com/models.huggingface.co/bert'
a_ : int = '/'.join(str(Path(__file__).resolve()).split('/')[:-1])
a_ : Any = os.path.join(PATH, 'config.yaml')
a_ : Any = os.path.join(PATH, 'attributes.txt')
a_ : Any = os.path.join(PATH, 'objects.txt')
a_ : List[Any] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path)
a_ : Any = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE)
a_ : Optional[int] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE)
a_ : int = 'pytorch_model.bin'
a_ : Union[str, Any] = 'config.yaml'
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any]=OBJECTS , snake_case_ : str=ATTRIBUTES ):
__magic_name__ = []
with open(snake_case_ ) as f:
for object in f.readlines():
vg_classes.append(object.split(''',''' )[0].lower().strip() )
__magic_name__ = []
with open(snake_case_ ) as f:
for object in f.readlines():
vg_attrs.append(object.split(''',''' )[0].lower().strip() )
return vg_classes, vg_attrs
def _SCREAMING_SNAKE_CASE ( snake_case_ : int ):
__magic_name__ = OrderedDict()
with open(snake_case_ , '''rb''' ) as f:
__magic_name__ = pkl.load(snake_case_ )['''model''']
for k in copy.deepcopy(list(ckp.keys() ) ):
__magic_name__ = ckp.pop(snake_case_ )
if isinstance(snake_case_ , np.ndarray ):
__magic_name__ = torch.tensor(snake_case_ )
else:
assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ )
__magic_name__ = v
return r
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
_a = {}
def __init__( self , A , A = "root" , A=0 ) -> List[str]:
'''simple docstring'''
__magic_name__ = name
__magic_name__ = level
__magic_name__ = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
__magic_name__ = copy.deepcopy(A )
__magic_name__ = copy.deepcopy(A )
if isinstance(A , A ):
__magic_name__ = Config(A , name=A , level=level + 1 )
__magic_name__ = v
setattr(self , A , A )
__magic_name__ = d
def __repr__( self ) -> Union[str, Any]:
'''simple docstring'''
return str(list((self._pointer.keys()) ) )
def __setattr__( self , A , A ) -> Tuple:
'''simple docstring'''
__magic_name__ = val
__magic_name__ = val
__magic_name__ = key.split('''.''' )
__magic_name__ = len(A ) - 1
__magic_name__ = self._pointer
if len(A ) > 1:
for i, l in enumerate(A ):
if hasattr(self , A ) and isinstance(getattr(self , A ) , A ):
setattr(getattr(self , A ) , '''.'''.join(levels[i:] ) , A )
if l == last_level:
__magic_name__ = val
else:
__magic_name__ = pointer[l]
def __A ( self ) -> List[Any]:
'''simple docstring'''
return self._pointer
def __A ( self , A , A ) -> Any:
'''simple docstring'''
with open(F'{file_name}' , '''w''' ) as stream:
dump(A , A )
def __A ( self , A , A ) -> List[Any]:
'''simple docstring'''
with open(F'{file_name}' , '''w''' ) as stream:
json.dump(A , A )
@staticmethod
def __A ( A ) -> Optional[Any]:
'''simple docstring'''
with open(A ) as stream:
__magic_name__ = load(A , Loader=A )
return data
def __str__( self ) -> List[Any]:
'''simple docstring'''
__magic_name__ = ''' '''
if self._name != "root":
__magic_name__ = F'{t * (self._level-1)}{self._name}:\n'
else:
__magic_name__ = ''''''
__magic_name__ = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(A , A ):
r += F'{t * (self._level)}{v}\n'
self._level += 1
else:
r += F'{t * (self._level)}{k}: {v} ({type(A ).__name__})\n'
__magic_name__ = level
return r[:-1]
@classmethod
def __A ( cls , A , **A ) -> int:
'''simple docstring'''
__magic_name__ , __magic_name__ = cls.get_config_dict(A , **A )
return cls(A )
@classmethod
def __A ( cls , A , **A ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ = kwargs.pop('''cache_dir''' , A )
__magic_name__ = kwargs.pop('''force_download''' , A )
__magic_name__ = kwargs.pop('''resume_download''' , A )
__magic_name__ = kwargs.pop('''proxies''' , A )
__magic_name__ = kwargs.pop('''local_files_only''' , A )
if os.path.isdir(A ):
__magic_name__ = os.path.join(A , A )
elif os.path.isfile(A ) or is_remote_url(A ):
__magic_name__ = pretrained_model_name_or_path
else:
__magic_name__ = hf_bucket_url(A , filename=A , use_cdn=A )
try:
# Load from URL or cache if already cached
__magic_name__ = cached_path(
A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
__magic_name__ = Config.load_yaml(A )
except EnvironmentError:
__magic_name__ = '''Can\'t load config for'''
raise EnvironmentError(A )
if resolved_config_file == config_file:
print('''loading configuration file from path''' )
else:
print('''loading configuration file cache''' )
return Config.load_yaml(A ), kwargs
def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ):
__magic_name__ = torch.load('''dump.pt''' , map_location=in_tensor.device )
__magic_name__ = in_tensor.numpy()
__magic_name__ = out_tensor.numpy()[0]
print(na.shape , na[0, 0, :5] )
print(na.shape , na[0, 0, :5] )
assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), (
f'{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %'
" element-wise mismatch"
)
raise Exception('''tensors are all good''' )
# Hugging face functions below
def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ):
__magic_name__ = urlparse(snake_case_ )
return parsed.scheme in ("http", "https")
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[Any]=True ):
__magic_name__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
__magic_name__ = '''/''' not in model_id
if legacy_format:
return f'{endpoint}/{model_id}-{filename}'
else:
return f'{endpoint}/{model_id}/{filename}'
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[str]=None , snake_case_ : Dict=0 , snake_case_ : Tuple=None , ):
__magic_name__ = '''python/{}'''.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(snake_case_ , snake_case_ ):
ua += "; " + "; ".join('''{}/{}'''.format(snake_case_ , snake_case_ ) for k, v in user_agent.items() )
elif isinstance(snake_case_ , snake_case_ ):
ua += "; " + user_agent
__magic_name__ = {'''user-agent''': ua}
if resume_size > 0:
__magic_name__ = '''bytes=%d-''' % (resume_size,)
__magic_name__ = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ )
if response.status_code == 416: # Range not satisfiable
return
__magic_name__ = response.headers.get('''Content-Length''' )
__magic_name__ = resume_size + int(snake_case_ ) if content_length is not None else None
__magic_name__ = tqdm(
unit='''B''' , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc='''Downloading''' , )
for chunk in response.iter_content(chunk_size=1024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(snake_case_ ) )
temp_file.write(snake_case_ )
progress.close()
def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Dict=None , snake_case_ : int=False , snake_case_ : List[Any]=None , snake_case_ : Tuple=10 , snake_case_ : int=False , snake_case_ : Any=None , snake_case_ : Tuple=False , ):
if cache_dir is None:
__magic_name__ = TRANSFORMERS_CACHE
if isinstance(snake_case_ , snake_case_ ):
__magic_name__ = str(snake_case_ )
os.makedirs(snake_case_ , exist_ok=snake_case_ )
__magic_name__ = None
if not local_files_only:
try:
__magic_name__ = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ )
if response.status_code == 200:
__magic_name__ = response.headers.get('''ETag''' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
__magic_name__ = url_to_filename(snake_case_ , snake_case_ )
# get cache path to put the file
__magic_name__ = os.path.join(snake_case_ , snake_case_ )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(snake_case_ ):
return cache_path
else:
__magic_name__ = [
file
for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + '''.*''' )
if not file.endswith('''.json''' ) and not file.endswith('''.lock''' )
]
if len(snake_case_ ) > 0:
return os.path.join(snake_case_ , matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'''Cannot find the requested files in the cached path and outgoing traffic has been'''
''' disabled. To enable model look-ups and downloads online, set \'local_files_only\''''
''' to False.''' )
return None
# From now on, etag is not None.
if os.path.exists(snake_case_ ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
__magic_name__ = cache_path + '''.lock'''
with FileLock(snake_case_ ):
# If the download just completed while the lock was activated.
if os.path.exists(snake_case_ ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
__magic_name__ = cache_path + '''.incomplete'''
@contextmanager
def _resumable_file_manager():
with open(snake_case_ , '''a+b''' ) as f:
yield f
__magic_name__ = _resumable_file_manager
if os.path.exists(snake_case_ ):
__magic_name__ = os.stat(snake_case_ ).st_size
else:
__magic_name__ = 0
else:
__magic_name__ = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ )
__magic_name__ = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'''%s not found in cache or force_download set to True, downloading to %s''' , snake_case_ , temp_file.name , )
http_get(
snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , )
os.replace(temp_file.name , snake_case_ )
__magic_name__ = {'''url''': url, '''etag''': etag}
__magic_name__ = cache_path + '''.json'''
with open(snake_case_ , '''w''' ) as meta_file:
json.dump(snake_case_ , snake_case_ )
return cache_path
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[Any]=None ):
__magic_name__ = url.encode('''utf-8''' )
__magic_name__ = shaaaa(snake_case_ )
__magic_name__ = url_hash.hexdigest()
if etag:
__magic_name__ = etag.encode('''utf-8''' )
__magic_name__ = shaaaa(snake_case_ )
filename += "." + etag_hash.hexdigest()
if url.endswith('''.h5''' ):
filename += ".h5"
return filename
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str=None , snake_case_ : Tuple=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[Any]=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=False , snake_case_ : Optional[int]=False , snake_case_ : Optional[int]=False , ):
if cache_dir is None:
__magic_name__ = TRANSFORMERS_CACHE
if isinstance(snake_case_ , snake_case_ ):
__magic_name__ = str(snake_case_ )
if isinstance(snake_case_ , snake_case_ ):
__magic_name__ = str(snake_case_ )
if is_remote_url(snake_case_ ):
# URL, so get it from the cache (downloading if necessary)
__magic_name__ = get_from_cache(
snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , )
elif os.path.exists(snake_case_ ):
# File, and it exists.
__magic_name__ = url_or_filename
elif urlparse(snake_case_ ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('''file {} not found'''.format(snake_case_ ) )
else:
# Something unknown
raise ValueError('''unable to parse {} as a URL or as a local path'''.format(snake_case_ ) )
if extract_compressed_file:
if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
__magic_name__ , __magic_name__ = os.path.split(snake_case_ )
__magic_name__ = output_file.replace('''.''' , '''-''' ) + '''-extracted'''
__magic_name__ = os.path.join(snake_case_ , snake_case_ )
if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
__magic_name__ = output_path + '''.lock'''
with FileLock(snake_case_ ):
shutil.rmtree(snake_case_ , ignore_errors=snake_case_ )
os.makedirs(snake_case_ )
if is_zipfile(snake_case_ ):
with ZipFile(snake_case_ , '''r''' ) as zip_file:
zip_file.extractall(snake_case_ )
zip_file.close()
elif tarfile.is_tarfile(snake_case_ ):
__magic_name__ = tarfile.open(snake_case_ )
tar_file.extractall(snake_case_ )
tar_file.close()
else:
raise EnvironmentError('''Archive format of {} could not be identified'''.format(snake_case_ ) )
return output_path_extracted
return output_path
def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : int="," ):
assert isinstance(snake_case_ , snake_case_ )
if os.path.isfile(snake_case_ ):
with open(snake_case_ ) as f:
__magic_name__ = eval(f.read() )
else:
__magic_name__ = requests.get(snake_case_ )
try:
__magic_name__ = requests.json()
except Exception:
__magic_name__ = req.content.decode()
assert data is not None, "could not connect"
try:
__magic_name__ = eval(snake_case_ )
except Exception:
__magic_name__ = data.split('''\n''' )
req.close()
return data
def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ):
__magic_name__ = requests.get(snake_case_ )
__magic_name__ = np.array(Image.open(BytesIO(response.content ) ) )
return img
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ):
__magic_name__ = url.split('''/''' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(snake_case_ )
with open(snake_case_ , '''rb''' ) as stream:
__magic_name__ = pkl.load(snake_case_ )
__magic_name__ = weights.pop('''model''' )
__magic_name__ = {}
for k, v in model.items():
__magic_name__ = torch.from_numpy(snake_case_ )
if "running_var" in k:
__magic_name__ = torch.tensor([0] )
__magic_name__ = k.replace('''running_var''' , '''num_batches_tracked''' )
__magic_name__ = zero
return new
def _SCREAMING_SNAKE_CASE ( ):
print(f'{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb' )
def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple="RGB" ):
assert isinstance(snake_case_ , snake_case_ )
if os.path.isfile(snake_case_ ):
__magic_name__ = cva.imread(snake_case_ )
else:
__magic_name__ = get_image_from_url(snake_case_ )
assert img is not None, f'could not connect to: {im}'
__magic_name__ = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB )
if input_format == "RGB":
__magic_name__ = img[:, :, ::-1]
return img
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict=1 ):
return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ )) | 721 |
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : list[int] ):
__magic_name__ = len(snake_case_ )
print('''The following activities are selected:''' )
# The first activity is always selected
__magic_name__ = 0
print(snake_case_ , end=''',''' )
# Consider rest of the activities
for j in range(snake_case_ ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(snake_case_ , end=''',''' )
__magic_name__ = j
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : Dict = [1, 3, 0, 5, 8, 5]
a_ : Union[str, Any] = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish) | 678 | 0 |
from timeit import timeit
def UpperCAmelCase__( __UpperCAmelCase : int ):
if number < 0:
raise ValueError('the value of input must not be negative' )
__snake_case : Dict = 0
while number:
number &= number - 1
result += 1
return result
def UpperCAmelCase__( __UpperCAmelCase : int ):
if number < 0:
raise ValueError('the value of input must not be negative' )
__snake_case : Tuple = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def UpperCAmelCase__( ):
def do_benchmark(__UpperCAmelCase : int ) -> None:
__snake_case : Optional[Any] = 'import __main__ as z'
print(F"""Benchmark when {number = }:""" )
print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" )
__snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase )
print(F"""timeit() runs in {timing} seconds""" )
print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" )
__snake_case : Dict = timeit(
'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , )
print(F"""timeit() runs in {timing} seconds""" )
for number in (25, 37, 58, 0):
do_benchmark(__UpperCAmelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 679 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__magic_name__ = {
'''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''],
'''tokenization_biogpt''': ['''BioGptTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BioGptForCausalLM''',
'''BioGptForTokenClassification''',
'''BioGptForSequenceClassification''',
'''BioGptModel''',
'''BioGptPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 679 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
__magic_name__ = None
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
__magic_name__ = {
'''vocab_file''': {
'''facebook/nllb-200-distilled-600M''': (
'''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/nllb-200-distilled-600M''': (
'''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json'''
),
},
}
__magic_name__ = {
'''facebook/nllb-large-en-ro''': 1_024,
'''facebook/nllb-200-distilled-600M''': 1_024,
}
# fmt: off
__magic_name__ = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn''']
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = ["input_ids", "attention_mask"]
__UpperCAmelCase = NllbTokenizer
__UpperCAmelCase = []
__UpperCAmelCase = []
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , **_UpperCAmelCase , ):
# Mask token behave like a normal word, i.e. include the space before it
__snake_case : Dict = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
__snake_case : Optional[int] = legacy_behaviour
super().__init__(
vocab_file=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , legacy_behaviour=_UpperCAmelCase , **_UpperCAmelCase , )
__snake_case : Optional[Any] = vocab_file
__snake_case : int = False if not self.vocab_file else True
__snake_case : int = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
__snake_case : Union[str, Any] = {
lang_code: self.convert_tokens_to_ids(_UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__snake_case : List[Any] = src_lang if src_lang is not None else 'eng_Latn'
__snake_case : Any = self.convert_tokens_to_ids(self._src_lang )
__snake_case : int = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def lowercase_ ( self ):
return self._src_lang
@src_lang.setter
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : List[Any] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
__snake_case : str = [self.sep_token_id]
__snake_case : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ):
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
__snake_case : List[Any] = src_lang
__snake_case : str = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
__snake_case : List[Any] = self.convert_tokens_to_ids(_UpperCAmelCase )
__snake_case : int = tgt_lang_id
return inputs
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = "eng_Latn" , _UpperCAmelCase = None , _UpperCAmelCase = "fra_Latn" , **_UpperCAmelCase , ):
__snake_case : Optional[Any] = src_lang
__snake_case : Tuple = tgt_lang
return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase )
def lowercase_ ( self ):
return self.set_src_lang_special_tokens(self.src_lang )
def lowercase_ ( self ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Optional[int] = self.convert_tokens_to_ids(_UpperCAmelCase )
if self.legacy_behaviour:
__snake_case : List[Any] = []
__snake_case : Any = [self.eos_token_id, self.cur_lang_code]
else:
__snake_case : Union[str, Any] = [self.cur_lang_code]
__snake_case : Optional[int] = [self.eos_token_id]
__snake_case : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : int = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : List[Any] = self.convert_tokens_to_ids(_UpperCAmelCase )
if self.legacy_behaviour:
__snake_case : Optional[int] = []
__snake_case : List[Any] = [self.eos_token_id, self.cur_lang_code]
else:
__snake_case : str = [self.cur_lang_code]
__snake_case : List[str] = [self.eos_token_id]
__snake_case : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : List[str] = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" )
return
__snake_case : List[str] = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 679 | import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def lowercase_ ( self ):
__snake_case : List[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) )
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ):
__snake_case : List[str] = parent
__snake_case : Tuple = batch_size
__snake_case : str = image_size
__snake_case : Union[str, Any] = patch_size
__snake_case : Optional[int] = num_channels
__snake_case : List[str] = last_hidden_size
__snake_case : Optional[Any] = num_attention_heads
__snake_case : Dict = hidden_act
__snake_case : List[Any] = conv_kernel_size
__snake_case : int = output_stride
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Dict = attention_probs_dropout_prob
__snake_case : Any = classifier_dropout_prob
__snake_case : str = use_labels
__snake_case : Optional[Any] = is_training
__snake_case : Dict = num_labels
__snake_case : str = initializer_range
__snake_case : Union[str, Any] = scope
def lowercase_ ( self ):
__snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : str = None
__snake_case : Dict = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__snake_case : Tuple = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase_ ( self ):
return MobileViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : List[Any] = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : Tuple = self.num_labels
__snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : Optional[Any] = self.num_labels
__snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : Tuple = model(_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase_ ( self ):
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs
__snake_case : Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
"feature-extraction": MobileViTModel,
"image-classification": MobileViTForImageClassification,
"image-segmentation": MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def lowercase_ ( self ):
__snake_case : Dict = MobileViTModelTester(self )
__snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def lowercase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def lowercase_ ( self ):
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def lowercase_ ( self ):
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
__snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Tuple = model_class(_UpperCAmelCase )
__snake_case : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : List[str] = [*signature.parameters.keys()]
__snake_case : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase_ ( self ):
def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : str = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
__snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__snake_case : Optional[Any] = outputs.hidden_states
__snake_case : str = 5
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__snake_case : Optional[Any] = 2
for i in range(len(_UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Tuple = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase )
@slow
def lowercase_ ( self ):
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def UpperCAmelCase__( ):
__snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
@cached_property
def lowercase_ ( self ):
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def lowercase_ ( self ):
__snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : str = prepare_img()
__snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : Tuple = model(**_UpperCAmelCase )
# verify the logits
__snake_case : Tuple = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
__snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
@slow
def lowercase_ ( self ):
__snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case : str = model.to(_UpperCAmelCase )
__snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case : Optional[int] = prepare_img()
__snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : int = model(**_UpperCAmelCase )
__snake_case : int = outputs.logits
# verify the logits
__snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _UpperCAmelCase )
__snake_case : Optional[int] = torch.tensor(
[
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
] , device=_UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
@slow
def lowercase_ ( self ):
__snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case : str = model.to(_UpperCAmelCase )
__snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case : Any = prepare_img()
__snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : Optional[Any] = model(**_UpperCAmelCase )
__snake_case : str = outputs.logits.detach().cpu()
__snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] )
__snake_case : List[Any] = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
__snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase )
__snake_case : List[str] = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
| 679 | 1 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__magic_name__ = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
__UpperCAmelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
__UpperCAmelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
__UpperCAmelCase = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def lowercase_ ( self ):
__snake_case : Union[str, Any] = pipeline(
task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' )
__snake_case : List[str] = text_classifier('This is great !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'LABEL_0', 'score': 0.504}] )
__snake_case : Dict = text_classifier('This is great !' , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}] )
__snake_case : Tuple = text_classifier(['This is great !', 'This is bad'] , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}],
[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}],
] , )
__snake_case : List[str] = text_classifier('This is great !' , top_k=1 )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'LABEL_0', 'score': 0.504}] )
# Legacy behavior
__snake_case : Any = text_classifier('This is great !' , return_all_scores=_UpperCAmelCase )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'LABEL_0', 'score': 0.504}] )
__snake_case : str = text_classifier('This is great !' , return_all_scores=_UpperCAmelCase )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}]] )
__snake_case : List[Any] = text_classifier(['This is great !', 'Something else'] , return_all_scores=_UpperCAmelCase )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}],
[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}],
] , )
__snake_case : List[Any] = text_classifier(['This is great !', 'Something else'] , return_all_scores=_UpperCAmelCase )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [
{'label': 'LABEL_0', 'score': 0.504},
{'label': 'LABEL_0', 'score': 0.504},
] , )
@require_torch
def lowercase_ ( self ):
import torch
__snake_case : List[str] = pipeline(
task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu' ) , )
__snake_case : Optional[int] = text_classifier('This is great !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'LABEL_0', 'score': 0.504}] )
@require_tf
def lowercase_ ( self ):
__snake_case : str = pipeline(
task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf' )
__snake_case : List[Any] = text_classifier('This is great !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'LABEL_0', 'score': 0.504}] )
@slow
@require_torch
def lowercase_ ( self ):
__snake_case : Optional[Any] = pipeline('text-classification' )
__snake_case : List[Any] = text_classifier('This is great !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'POSITIVE', 'score': 1.0}] )
__snake_case : Optional[Any] = text_classifier('This is bad !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'NEGATIVE', 'score': 1.0}] )
__snake_case : List[Any] = text_classifier('Birds are a type of animal' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'POSITIVE', 'score': 0.988}] )
@slow
@require_tf
def lowercase_ ( self ):
__snake_case : int = pipeline('text-classification' , framework='tf' )
__snake_case : str = text_classifier('This is great !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'POSITIVE', 'score': 1.0}] )
__snake_case : Union[str, Any] = text_classifier('This is bad !' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'NEGATIVE', 'score': 1.0}] )
__snake_case : Union[str, Any] = text_classifier('Birds are a type of animal' )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': 'POSITIVE', 'score': 0.988}] )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : Tuple = TextClassificationPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : int = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__snake_case : Union[str, Any] = 'HuggingFace is in'
__snake_case : Dict = text_classifier(_UpperCAmelCase )
self.assertEqual(nested_simplify(_UpperCAmelCase ) , [{'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )}] )
self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
__snake_case : Tuple = ['HuggingFace is in ', 'Paris is in France']
__snake_case : Tuple = text_classifier(_UpperCAmelCase )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [{'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )}, {'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )}] , )
self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__snake_case : Union[str, Any] = text_classifier(_UpperCAmelCase , top_k=_UpperCAmelCase )
__snake_case : Dict = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [[{'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )}] * N, [{'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )}] * N] , )
__snake_case : Optional[int] = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'}
__snake_case : List[Any] = text_classifier(_UpperCAmelCase )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , {'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )} , )
self.assertTrue(outputs['label'] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__snake_case : int = [['HuggingFace is in ', 'Paris is in France']]
with self.assertRaises(_UpperCAmelCase ):
text_classifier(_UpperCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__snake_case : int = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , [{'label': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase )}] , )
self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
| 679 | def UpperCAmelCase__( __UpperCAmelCase : int | float | str ):
try:
__snake_case : int = float(__UpperCAmelCase )
except ValueError:
raise ValueError('Please enter a valid number' )
__snake_case : Any = decimal - int(__UpperCAmelCase )
if fractional_part == 0:
return int(__UpperCAmelCase ), 1
else:
__snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] )
__snake_case : Tuple = int(decimal * (10**number_of_frac_digits) )
__snake_case : List[Any] = 10**number_of_frac_digits
__snake_case , __snake_case : List[Any] = denominator, numerator
while True:
__snake_case : Any = dividend % divisor
if remainder == 0:
break
__snake_case , __snake_case : Optional[int] = divisor, remainder
__snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor
return int(__UpperCAmelCase ), int(__UpperCAmelCase )
if __name__ == "__main__":
print(F'''{decimal_to_fraction(2) = }''')
print(F'''{decimal_to_fraction(89.0) = }''')
print(F'''{decimal_to_fraction("67") = }''')
print(F'''{decimal_to_fraction("45.0") = }''')
print(F'''{decimal_to_fraction(1.5) = }''')
print(F'''{decimal_to_fraction("6.25") = }''')
print(F'''{decimal_to_fraction("78td") = }''')
| 679 | 1 |
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=4 , ):
__snake_case : int = parent
__snake_case : Union[str, Any] = batch_size
__snake_case : List[Any] = seq_length
__snake_case : Optional[Any] = is_training
__snake_case : Optional[Any] = use_attention_mask
__snake_case : Tuple = use_token_type_ids
__snake_case : Union[str, Any] = use_labels
__snake_case : Optional[Any] = vocab_size
__snake_case : int = hidden_size
__snake_case : int = num_hidden_layers
__snake_case : List[str] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Optional[int] = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : List[Any] = type_vocab_size
__snake_case : List[Any] = type_sequence_label_size
__snake_case : Dict = initializer_range
__snake_case : Optional[int] = num_choices
def lowercase_ ( self ):
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Optional[int] = None
if self.use_attention_mask:
__snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[int] = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowercase_ ( self ):
__snake_case : List[str] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs
__snake_case : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def lowercase_ ( self ):
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = config_and_inputs
__snake_case : Optional[int] = True
__snake_case : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = True
__UpperCAmelCase = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowercase_ ( self ):
__snake_case : List[str] = FlaxRobertaPreLayerNormModelTester(self )
@slow
def lowercase_ ( self ):
for model_class_name in self.all_model_classes:
__snake_case : List[Any] = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=_UpperCAmelCase )
__snake_case : str = model(np.ones((1, 1) ) )
self.assertIsNotNone(_UpperCAmelCase )
@require_flax
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
@slow
def lowercase_ ( self ):
__snake_case : str = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=_UpperCAmelCase )
__snake_case : Dict = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
__snake_case : Any = model(_UpperCAmelCase )[0]
__snake_case : str = [1, 11, 50_265]
self.assertEqual(list(output.shape ) , _UpperCAmelCase )
# compare the actual values for a slice.
__snake_case : str = np.array(
[[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
@slow
def lowercase_ ( self ):
__snake_case : List[str] = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=_UpperCAmelCase )
__snake_case : Optional[Any] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
__snake_case : Optional[Any] = model(_UpperCAmelCase )[0]
# compare the actual values for a slice.
__snake_case : List[Any] = np.array(
[[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
| 679 | import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
__magic_name__ = logging.getLogger(__name__)
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
__UpperCAmelCase = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def lowercase_ ( self ):
if self.train_file is not None:
__snake_case : Union[str, Any] = self.train_file.split('.' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
__snake_case : List[str] = self.validation_file.split('.' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = True
__UpperCAmelCase = None
__UpperCAmelCase = None
def __call__( self , _UpperCAmelCase ):
__snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels'
__snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features]
__snake_case : List[Any] = len(_UpperCAmelCase )
__snake_case : Union[str, Any] = len(features[0]['input_ids'] )
__snake_case : Union[str, Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features
]
__snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) )
__snake_case : Optional[Any] = self.tokenizer.pad(
_UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
# Un-flatten
__snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()}
# Add back labels
__snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa )
return batch
def UpperCAmelCase__( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__snake_case : Tuple = training_args.get_process_log_level()
logger.setLevel(__UpperCAmelCase )
datasets.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
__snake_case : Dict = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__snake_case : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
__snake_case : Optional[int] = {}
if data_args.train_file is not None:
__snake_case : Optional[int] = data_args.train_file
if data_args.validation_file is not None:
__snake_case : int = data_args.validation_file
__snake_case : int = data_args.train_file.split('.' )[-1]
__snake_case : Tuple = load_dataset(
__UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
__snake_case : Optional[int] = load_dataset(
'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__snake_case : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__snake_case : str = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
__snake_case : str = [F"""ending{i}""" for i in range(4 )]
__snake_case : Optional[Any] = 'sent1'
__snake_case : Tuple = 'sent2'
if data_args.max_seq_length is None:
__snake_case : List[Any] = tokenizer.model_max_length
if max_seq_length > 10_24:
logger.warning(
'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'
' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'
' override this default with `--block_size xxx`.' )
__snake_case : List[Any] = 10_24
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
__snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(__UpperCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]]
__snake_case : Union[str, Any] = examples[question_header_name]
__snake_case : Optional[int] = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase )
]
# Flatten out
__snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) )
__snake_case : int = list(chain(*__UpperCAmelCase ) )
# Tokenize
__snake_case : Tuple = tokenizer(
__UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset' )
__snake_case : Optional[Any] = raw_datasets['train']
if data_args.max_train_samples is not None:
__snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples )
__snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
__snake_case : int = train_dataset.map(
__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset' )
__snake_case : Optional[Any] = raw_datasets['validation']
if data_args.max_eval_samples is not None:
__snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples )
__snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
__snake_case : List[Any] = eval_dataset.map(
__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
__snake_case : str = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(__UpperCAmelCase : int ):
__snake_case , __snake_case : Union[str, Any] = eval_predictions
__snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
__snake_case : List[str] = Trainer(
model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , )
# Training
if training_args.do_train:
__snake_case : Dict = None
if training_args.resume_from_checkpoint is not None:
__snake_case : Any = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__snake_case : List[str] = last_checkpoint
__snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase )
trainer.save_model() # Saves the tokenizer too for easy upload
__snake_case : List[Any] = train_result.metrics
__snake_case : Optional[Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase )
)
__snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.log_metrics('train' , __UpperCAmelCase )
trainer.save_metrics('train' , __UpperCAmelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__snake_case : Dict = trainer.evaluate()
__snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase )
__snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.log_metrics('eval' , __UpperCAmelCase )
trainer.save_metrics('eval' , __UpperCAmelCase )
__snake_case : List[Any] = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'multiple-choice',
'dataset_tags': 'swag',
'dataset_args': 'regular',
'dataset': 'SWAG',
'language': 'en',
}
if training_args.push_to_hub:
trainer.push_to_hub(**__UpperCAmelCase )
else:
trainer.create_model_card(**__UpperCAmelCase )
def UpperCAmelCase__( __UpperCAmelCase : Dict ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 679 | 1 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__magic_name__ = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 679 | import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = '''▁'''
__magic_name__ = {
'''vocab_file''': '''vocab.json''',
'''spm_file''': '''sentencepiece.bpe.model''',
}
__magic_name__ = {
'''vocab_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'''
),
},
'''spm_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'''
)
},
}
__magic_name__ = {
'''facebook/s2t-small-librispeech-asr''': 1_024,
}
__magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de''']
__magic_name__ = {'''mustc''': MUSTC_LANGS}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = MAX_MODEL_INPUT_SIZES
__UpperCAmelCase = ["input_ids", "attention_mask"]
__UpperCAmelCase = []
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ):
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
__snake_case : Dict = do_upper_case
__snake_case : Optional[Any] = do_lower_case
__snake_case : List[Any] = load_json(_UpperCAmelCase )
__snake_case : Dict = {v: k for k, v in self.encoder.items()}
__snake_case : Optional[Any] = spm_file
__snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs )
if lang_codes is not None:
__snake_case : Optional[Any] = lang_codes
__snake_case : int = LANGUAGES[lang_codes]
__snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs]
__snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs}
__snake_case : Dict = self.lang_tokens
__snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
__snake_case : Optional[int] = {}
@property
def lowercase_ ( self ):
return len(self.encoder )
@property
def lowercase_ ( self ):
return self._tgt_lang
@tgt_lang.setter
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : str = new_tgt_lang
self.set_tgt_lang_special_tokens(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Tuple = self.lang_code_to_id[tgt_lang]
__snake_case : Optional[Any] = [lang_code_id]
def lowercase_ ( self , _UpperCAmelCase ):
return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] )
def lowercase_ ( self , _UpperCAmelCase ):
return self.decoder.get(_UpperCAmelCase , self.unk_token )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : str = []
__snake_case : Any = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
__snake_case : Dict = self.sp_model.decode(_UpperCAmelCase )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
__snake_case : Any = []
else:
current_sub_tokens.append(_UpperCAmelCase )
__snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
__snake_case : Union[str, Any] = [1] * len(self.prefix_tokens )
__snake_case : Optional[Any] = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones
def lowercase_ ( self ):
__snake_case : List[Any] = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
__snake_case : int = self.__dict__.copy()
__snake_case : str = None
return state
def __setstate__( self , _UpperCAmelCase ):
__snake_case : List[Any] = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__snake_case : Optional[int] = {}
__snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
__snake_case : str = Path(_UpperCAmelCase )
assert save_dir.is_dir(), F"""{save_directory} should be a directory"""
__snake_case : int = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file']
)
__snake_case : Union[str, Any] = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file']
)
save_json(self.encoder , _UpperCAmelCase )
if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , _UpperCAmelCase )
elif not os.path.isfile(self.spm_file ):
with open(_UpperCAmelCase , 'wb' ) as fi:
__snake_case : List[str] = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (str(_UpperCAmelCase ), str(_UpperCAmelCase ))
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ):
__snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase )
spm.Load(str(__UpperCAmelCase ) )
return spm
def UpperCAmelCase__( __UpperCAmelCase : str ):
with open(__UpperCAmelCase , 'r' ) as f:
return json.load(__UpperCAmelCase )
def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ):
with open(__UpperCAmelCase , 'w' ) as f:
json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
| 679 | 1 |
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
__magic_name__ = logging.get_logger(__name__)
def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] ):
return [
int(10_00 * (box[0] / width) ),
int(10_00 * (box[1] / height) ),
int(10_00 * (box[2] / width) ),
int(10_00 * (box[3] / height) ),
]
def UpperCAmelCase__( __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Optional[str] , __UpperCAmelCase : Optional[str] ):
__snake_case : int = to_pil_image(__UpperCAmelCase )
__snake_case , __snake_case : Any = pil_image.size
__snake_case : Tuple = pytesseract.image_to_data(__UpperCAmelCase , lang=__UpperCAmelCase , output_type='dict' , config=__UpperCAmelCase )
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : int = data['text'], data['left'], data['top'], data['width'], data['height']
# filter empty words and corresponding coordinates
__snake_case : Optional[int] = [idx for idx, word in enumerate(__UpperCAmelCase ) if not word.strip()]
__snake_case : Any = [word for idx, word in enumerate(__UpperCAmelCase ) if idx not in irrelevant_indices]
__snake_case : Union[str, Any] = [coord for idx, coord in enumerate(__UpperCAmelCase ) if idx not in irrelevant_indices]
__snake_case : Optional[Any] = [coord for idx, coord in enumerate(__UpperCAmelCase ) if idx not in irrelevant_indices]
__snake_case : List[str] = [coord for idx, coord in enumerate(__UpperCAmelCase ) if idx not in irrelevant_indices]
__snake_case : List[str] = [coord for idx, coord in enumerate(__UpperCAmelCase ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
__snake_case : Any = []
for x, y, w, h in zip(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
__snake_case : Union[str, Any] = [x, y, x + w, y + h]
actual_boxes.append(__UpperCAmelCase )
# finally, normalize the bounding boxes
__snake_case : Optional[Any] = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) )
assert len(__UpperCAmelCase ) == len(__UpperCAmelCase ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = ["pixel_values"]
def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = "" , **_UpperCAmelCase , ):
super().__init__(**_UpperCAmelCase )
__snake_case : List[Any] = size if size is not None else {'height': 224, 'width': 224}
__snake_case : Any = get_size_dict(_UpperCAmelCase )
__snake_case : int = do_resize
__snake_case : Union[str, Any] = size
__snake_case : Optional[Any] = resample
__snake_case : Tuple = do_rescale
__snake_case : List[str] = rescale_value
__snake_case : str = do_normalize
__snake_case : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__snake_case : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
__snake_case : Dict = apply_ocr
__snake_case : List[Any] = ocr_lang
__snake_case : str = tesseract_config
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ):
__snake_case : str = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
__snake_case : Dict = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ):
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ):
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ):
__snake_case : Tuple = do_resize if do_resize is not None else self.do_resize
__snake_case : Union[str, Any] = size if size is not None else self.size
__snake_case : Dict = get_size_dict(_UpperCAmelCase )
__snake_case : Optional[int] = resample if resample is not None else self.resample
__snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
__snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
__snake_case : Any = image_mean if image_mean is not None else self.image_mean
__snake_case : Dict = image_std if image_std is not None else self.image_std
__snake_case : Optional[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr
__snake_case : Any = ocr_lang if ocr_lang is not None else self.ocr_lang
__snake_case : Tuple = tesseract_config if tesseract_config is not None else self.tesseract_config
__snake_case : str = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' )
# All transformations expect numpy arrays.
__snake_case : List[Any] = [to_numpy_array(_UpperCAmelCase ) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self , 'pytesseract' )
__snake_case : Optional[int] = []
__snake_case : str = []
for image in images:
__snake_case , __snake_case : Optional[Any] = apply_tesseract(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
words_batch.append(_UpperCAmelCase )
boxes_batch.append(_UpperCAmelCase )
if do_resize:
__snake_case : Optional[int] = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__snake_case : List[str] = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__snake_case : List[Any] = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__snake_case : int = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__snake_case : str = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
if apply_ocr:
__snake_case : Dict = words_batch
__snake_case : Any = boxes_batch
return data
| 679 | def UpperCAmelCase__( __UpperCAmelCase : list ):
__snake_case : List[Any] = len(__UpperCAmelCase )
for _ in range(__UpperCAmelCase ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
__snake_case , __snake_case : int = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
__magic_name__ = list(range(10, 0, -1))
print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
| 679 | 1 |
from math import pi, sqrt
def UpperCAmelCase__( __UpperCAmelCase : float ):
if num <= 0:
raise ValueError('math domain error' )
if num > 171.5:
raise OverflowError('math range error' )
elif num - int(__UpperCAmelCase ) not in (0, 0.5):
raise NotImplementedError('num must be an integer or a half-integer' )
elif num == 0.5:
return sqrt(__UpperCAmelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def UpperCAmelCase__( ):
assert gamma(0.5 ) == sqrt(__UpperCAmelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
__magic_name__ = 1.0
while num:
__magic_name__ = float(input('''Gamma of: '''))
print(F'''gamma({num}) = {gamma(num)}''')
print('''\nEnter 0 to exit...''')
| 679 | import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
__magic_name__ = '''pt'''
elif is_tf_available():
__magic_name__ = '''tf'''
else:
__magic_name__ = '''jax'''
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = PerceiverTokenizer
__UpperCAmelCase = False
def lowercase_ ( self ):
super().setUp()
__snake_case : str = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase_ ( self ):
return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' )
def lowercase_ ( self , **_UpperCAmelCase ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
__snake_case : List[Any] = []
for i in range(len(_UpperCAmelCase ) ):
try:
__snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) )
__snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) )
if max_length is not None and len(_UpperCAmelCase ) > max_length:
__snake_case : List[str] = toks[:max_length]
if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0:
while len(_UpperCAmelCase ) < min_length:
__snake_case : Optional[int] = toks + toks
# toks_str = [t[1] for t in toks]
__snake_case : List[Any] = [t[0] for t in toks]
# Ensure consistency
__snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
if " " not in output_txt and len(_UpperCAmelCase ) > 1:
__snake_case : List[str] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase )
)
if with_prefix_space:
__snake_case : List[Any] = ' ' + output_txt
__snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
return output_txt, output_ids
def lowercase_ ( self ):
__snake_case : List[Any] = self.perceiver_tokenizer
__snake_case : Dict = 'Unicode €.'
__snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase )
__snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['input_ids'] , _UpperCAmelCase )
# decoding
__snake_case : int = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' )
__snake_case : Optional[Any] = tokenizer('e è é ê ë' )
__snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['input_ids'] , _UpperCAmelCase )
# decoding
__snake_case : str = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' )
def lowercase_ ( self ):
__snake_case : Union[str, Any] = self.perceiver_tokenizer
__snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
__snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
__snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
if FRAMEWORK != "jax":
__snake_case : List[str] = list(batch.input_ids.numpy()[0] )
else:
__snake_case : List[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def lowercase_ ( self ):
__snake_case : Dict = self.perceiver_tokenizer
__snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _UpperCAmelCase )
self.assertIn('attention_mask' , _UpperCAmelCase )
self.assertNotIn('decoder_input_ids' , _UpperCAmelCase )
self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : List[str] = self.perceiver_tokenizer
__snake_case : Tuple = [
'Summary of the text.',
'Another summary.',
]
__snake_case : int = tokenizer(
text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def lowercase_ ( self ):
# safety check on max_len default value so we are sure the test works
__snake_case : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Tuple = tempfile.mkdtemp()
__snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running'
__snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
__snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
__snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
shutil.rmtree(_UpperCAmelCase )
__snake_case : Dict = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Tuple = tempfile.mkdtemp()
__snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
__snake_case : Optional[int] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
__snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
__snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
__snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Tuple = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
__snake_case : Any = json.load(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
__snake_case : List[str] = json.load(_UpperCAmelCase )
__snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )]
__snake_case : Dict = added_tokens_extra_ids + [
'an_additional_special_token'
]
__snake_case : List[Any] = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Optional[Any] = tokenizer_class.from_pretrained(
_UpperCAmelCase , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )]
__snake_case : str = tokenizer_class.from_pretrained(
_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def lowercase_ ( self ):
__snake_case : Tuple = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , '�' )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
__snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
__snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]']
__snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
| 679 | 1 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
@slow
def lowercase_ ( self ):
__snake_case : Any = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' )
__snake_case : Optional[int] = AutoTokenizer.from_pretrained('google/mt5-small' )
__snake_case : Optional[int] = tokenizer('Hello there' , return_tensors='tf' ).input_ids
__snake_case : Tuple = tokenizer('Hi I am' , return_tensors='tf' ).input_ids
__snake_case : List[str] = model(_UpperCAmelCase , labels=_UpperCAmelCase ).loss
__snake_case : int = -tf.math.reduce_mean(_UpperCAmelCase ).numpy()
__snake_case : Any = -21.228168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
| 679 | from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = None
# Automatically constructed
__UpperCAmelCase = "dict"
__UpperCAmelCase = None
__UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase)
def __call__( self ):
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def lowercase_ ( self ):
from .features import Value
return {k: Value('string' ) for k in sorted(self.languages )}
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
# Automatically constructed
__UpperCAmelCase = "dict"
__UpperCAmelCase = None
__UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase)
def lowercase_ ( self ):
__snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None
__snake_case : Optional[Any] = len(self.languages ) if self.languages else None
def __call__( self ):
return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Optional[int] = set(self.languages )
if self.languages and set(_UpperCAmelCase ) - lang_set:
raise ValueError(
F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__snake_case : Any = []
for lang, text in translation_dict.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def lowercase_ ( self ):
from .features import Sequence, Value
return {
"language": Sequence(Value('string' ) ),
"translation": Sequence(Value('string' ) ),
}
| 679 | 1 |
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple="shi-labs/oneformer_demo" ):
with open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='dataset' ) , 'r' ) as f:
__snake_case : Optional[int] = json.load(__UpperCAmelCase )
__snake_case : Tuple = {}
__snake_case : List[str] = []
__snake_case : Optional[Any] = []
for key, info in class_info.items():
__snake_case : Any = info['name']
class_names.append(info['name'] )
if info["isthing"]:
thing_ids.append(int(__UpperCAmelCase ) )
__snake_case : Union[str, Any] = thing_ids
__snake_case : Union[str, Any] = class_names
return metadata
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=10 , _UpperCAmelCase=False , _UpperCAmelCase=255 , _UpperCAmelCase="shi-labs/oneformer_demo" , _UpperCAmelCase="ade20k_panoptic.json" , _UpperCAmelCase=10 , ):
__snake_case : Dict = parent
__snake_case : List[str] = batch_size
__snake_case : Any = num_channels
__snake_case : Any = min_resolution
__snake_case : str = max_resolution
__snake_case : List[Any] = do_resize
__snake_case : Tuple = {'shortest_edge': 32, 'longest_edge': 1_333} if size is None else size
__snake_case : Dict = do_normalize
__snake_case : Any = image_mean
__snake_case : Any = image_std
__snake_case : Dict = class_info_file
__snake_case : Any = prepare_metadata(_UpperCAmelCase , _UpperCAmelCase )
__snake_case : str = num_text
__snake_case : Optional[Any] = repo_path
# for the post_process_functions
__snake_case : Optional[Any] = 2
__snake_case : List[str] = 10
__snake_case : int = 10
__snake_case : List[str] = 3
__snake_case : int = 4
__snake_case : str = num_labels
__snake_case : Optional[Any] = do_reduce_labels
__snake_case : Optional[int] = ignore_index
def lowercase_ ( self ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False ):
if not batched:
__snake_case : Any = image_inputs[0]
if isinstance(_UpperCAmelCase , Image.Image ):
__snake_case , __snake_case : Optional[int] = image.size
else:
__snake_case , __snake_case : List[Any] = image.shape[1], image.shape[2]
if w < h:
__snake_case : List[Any] = int(self.size['shortest_edge'] * h / w )
__snake_case : Optional[int] = self.size['shortest_edge']
elif w > h:
__snake_case : Union[str, Any] = self.size['shortest_edge']
__snake_case : Tuple = int(self.size['shortest_edge'] * w / h )
else:
__snake_case : List[Any] = self.size['shortest_edge']
__snake_case : int = self.size['shortest_edge']
else:
__snake_case : Optional[int] = []
for image in image_inputs:
__snake_case , __snake_case : List[str] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__snake_case : Optional[Any] = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[0] )[0]
__snake_case : Tuple = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[1] )[1]
return expected_height, expected_width
def lowercase_ ( self ):
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
__UpperCAmelCase = image_processing_class
def lowercase_ ( self ):
__snake_case : Optional[Any] = OneFormerImageProcessorTester(self )
@property
def lowercase_ ( self ):
return self.image_processing_tester.prepare_image_processor_dict()
def lowercase_ ( self ):
__snake_case : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'image_std' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'ignore_index' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'class_info_file' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'num_text' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'repo_path' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'metadata' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_reduce_labels' ) )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
# Initialize image_processor
__snake_case : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
__snake_case , __snake_case : Dict = self.image_processing_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__snake_case , __snake_case : str = self.image_processing_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase )
__snake_case : Dict = image_processor(
_UpperCAmelCase , ['semantic'] * len(_UpperCAmelCase ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def lowercase_ ( self ):
# Initialize image_processor
__snake_case : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case : Any = prepare_image_inputs(self.image_processing_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
__snake_case , __snake_case : Dict = self.image_processing_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__snake_case , __snake_case : int = self.image_processing_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase )
__snake_case : Optional[Any] = image_processor(
_UpperCAmelCase , ['semantic'] * len(_UpperCAmelCase ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def lowercase_ ( self ):
# Initialize image_processor
__snake_case : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__snake_case : Tuple = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
__snake_case , __snake_case : Optional[int] = self.image_processing_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__snake_case , __snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase )
__snake_case : List[str] = image_processor(
_UpperCAmelCase , ['semantic'] * len(_UpperCAmelCase ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def lowercase_ ( self , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="np" ):
__snake_case : Tuple = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
__snake_case : Union[str, Any] = self.image_processing_tester.num_labels
__snake_case : str = None
__snake_case : Tuple = None
__snake_case : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=_UpperCAmelCase )
if with_segmentation_maps:
__snake_case : List[str] = num_labels
if is_instance_map:
__snake_case : str = list(range(_UpperCAmelCase ) ) * 2
__snake_case : Union[str, Any] = dict(enumerate(_UpperCAmelCase ) )
__snake_case : str = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
__snake_case : Optional[Any] = [Image.fromarray(_UpperCAmelCase ) for annotation in annotations]
__snake_case : Dict = image_processor(
_UpperCAmelCase , ['semantic'] * len(_UpperCAmelCase ) , _UpperCAmelCase , return_tensors='pt' , instance_id_to_semantic_id=_UpperCAmelCase , pad_and_return_pixel_mask=_UpperCAmelCase , )
return inputs
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
def common(_UpperCAmelCase=False , _UpperCAmelCase=None ):
__snake_case : str = self.comm_get_image_processor_inputs(
with_segmentation_maps=_UpperCAmelCase , is_instance_map=_UpperCAmelCase , segmentation_type=_UpperCAmelCase )
__snake_case : Union[str, Any] = inputs['mask_labels']
__snake_case : Any = inputs['class_labels']
__snake_case : Optional[int] = inputs['pixel_values']
__snake_case : str = inputs['text_inputs']
# check the batch_size
for mask_label, class_label, text_input in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(_UpperCAmelCase ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=_UpperCAmelCase )
common(is_instance_map=_UpperCAmelCase , segmentation_type='pil' )
common(is_instance_map=_UpperCAmelCase , segmentation_type='pil' )
def lowercase_ ( self ):
__snake_case : List[Any] = np.zeros((20, 50) )
__snake_case : Any = 1
__snake_case : Optional[int] = 1
__snake_case : Dict = 1
__snake_case : Union[str, Any] = binary_mask_to_rle(_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def lowercase_ ( self ):
__snake_case : Union[str, Any] = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
__snake_case : Union[str, Any] = self.image_processing_tester.get_fake_oneformer_outputs()
__snake_case : str = fature_extractor.post_process_semantic_segmentation(_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
__snake_case : Tuple = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
__snake_case : Any = fature_extractor.post_process_semantic_segmentation(_UpperCAmelCase , target_sizes=_UpperCAmelCase )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def lowercase_ ( self ):
__snake_case : Optional[int] = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
__snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs()
__snake_case : List[str] = image_processor.post_process_instance_segmentation(_UpperCAmelCase , threshold=0 )
self.assertTrue(len(_UpperCAmelCase ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('segmentation' in el )
self.assertTrue('segments_info' in el )
self.assertEqual(type(el['segments_info'] ) , _UpperCAmelCase )
self.assertEqual(
el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def lowercase_ ( self ):
__snake_case : Optional[int] = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
__snake_case : Union[str, Any] = self.image_processing_tester.get_fake_oneformer_outputs()
__snake_case : List[str] = image_processor.post_process_panoptic_segmentation(_UpperCAmelCase , threshold=0 )
self.assertTrue(len(_UpperCAmelCase ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('segmentation' in el )
self.assertTrue('segments_info' in el )
self.assertEqual(type(el['segments_info'] ) , _UpperCAmelCase )
self.assertEqual(
el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 679 | from __future__ import annotations
__magic_name__ = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ):
__snake_case : Optional[int] = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) )
] # the reference grid
__snake_case : List[str] = 1
__snake_case : str = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) )
] # the action grid
__snake_case : Dict = init[0]
__snake_case : List[str] = init[1]
__snake_case : Optional[Any] = 0
__snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell
__snake_case : Any = [[f, g, x, y]]
__snake_case : List[str] = False # flag that is set when search is complete
__snake_case : str = False # flag set if we can't find expand
while not found and not resign:
if len(__UpperCAmelCase ) == 0:
raise ValueError('Algorithm is unable to find solution' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
__snake_case : List[Any] = cell.pop()
__snake_case : Optional[int] = next_cell[2]
__snake_case : int = next_cell[3]
__snake_case : Optional[Any] = next_cell[1]
if x == goal[0] and y == goal[1]:
__snake_case : Union[str, Any] = True
else:
for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions
__snake_case : Tuple = x + DIRECTIONS[i][0]
__snake_case : Tuple = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
__snake_case : List[str] = g + cost
__snake_case : Optional[Any] = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
__snake_case : Dict = 1
__snake_case : Any = i
__snake_case : Tuple = []
__snake_case : Dict = goal[0]
__snake_case : Optional[int] = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
__snake_case : Tuple = x - DIRECTIONS[action[x][y]][0]
__snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1]
__snake_case : Tuple = xa
__snake_case : List[str] = ya
invpath.append([x, y] )
__snake_case : Dict = []
for i in range(len(__UpperCAmelCase ) ):
path.append(invpath[len(__UpperCAmelCase ) - 1 - i] )
return path, action
if __name__ == "__main__":
__magic_name__ = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
__magic_name__ = [0, 0]
# all coordinates are given in format [y,x]
__magic_name__ = [len(grid) - 1, len(grid[0]) - 1]
__magic_name__ = 1
# the cost map which pushes the path closer to the goal
__magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
__magic_name__ = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
__magic_name__ = 99
__magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic)
print('''ACTION MAP''')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 679 | 1 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
__magic_name__ = '''pt'''
elif is_tf_available():
__magic_name__ = '''tf'''
else:
__magic_name__ = '''jax'''
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = PerceiverTokenizer
__UpperCAmelCase = False
def lowercase_ ( self ):
super().setUp()
__snake_case : str = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase_ ( self ):
return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' )
def lowercase_ ( self , **_UpperCAmelCase ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
__snake_case : List[Any] = []
for i in range(len(_UpperCAmelCase ) ):
try:
__snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) )
__snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) )
if max_length is not None and len(_UpperCAmelCase ) > max_length:
__snake_case : List[str] = toks[:max_length]
if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0:
while len(_UpperCAmelCase ) < min_length:
__snake_case : Optional[int] = toks + toks
# toks_str = [t[1] for t in toks]
__snake_case : List[Any] = [t[0] for t in toks]
# Ensure consistency
__snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
if " " not in output_txt and len(_UpperCAmelCase ) > 1:
__snake_case : List[str] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase )
)
if with_prefix_space:
__snake_case : List[Any] = ' ' + output_txt
__snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
return output_txt, output_ids
def lowercase_ ( self ):
__snake_case : List[Any] = self.perceiver_tokenizer
__snake_case : Dict = 'Unicode €.'
__snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase )
__snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['input_ids'] , _UpperCAmelCase )
# decoding
__snake_case : int = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' )
__snake_case : Optional[Any] = tokenizer('e è é ê ë' )
__snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['input_ids'] , _UpperCAmelCase )
# decoding
__snake_case : str = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' )
def lowercase_ ( self ):
__snake_case : Union[str, Any] = self.perceiver_tokenizer
__snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
__snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
__snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
if FRAMEWORK != "jax":
__snake_case : List[str] = list(batch.input_ids.numpy()[0] )
else:
__snake_case : List[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def lowercase_ ( self ):
__snake_case : Dict = self.perceiver_tokenizer
__snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _UpperCAmelCase )
self.assertIn('attention_mask' , _UpperCAmelCase )
self.assertNotIn('decoder_input_ids' , _UpperCAmelCase )
self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : List[str] = self.perceiver_tokenizer
__snake_case : Tuple = [
'Summary of the text.',
'Another summary.',
]
__snake_case : int = tokenizer(
text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def lowercase_ ( self ):
# safety check on max_len default value so we are sure the test works
__snake_case : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Tuple = tempfile.mkdtemp()
__snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running'
__snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
__snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
__snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
shutil.rmtree(_UpperCAmelCase )
__snake_case : Dict = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Tuple = tempfile.mkdtemp()
__snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
__snake_case : Optional[int] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
__snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
__snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
__snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Tuple = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
__snake_case : Any = json.load(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
__snake_case : List[str] = json.load(_UpperCAmelCase )
__snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )]
__snake_case : Dict = added_tokens_extra_ids + [
'an_additional_special_token'
]
__snake_case : List[Any] = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Optional[Any] = tokenizer_class.from_pretrained(
_UpperCAmelCase , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )]
__snake_case : str = tokenizer_class.from_pretrained(
_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def lowercase_ ( self ):
__snake_case : Tuple = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , '�' )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
__snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
__snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]']
__snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
| 679 | import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {
'''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''',
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "instructblip_vision_model"
def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ):
super().__init__(**_UpperCAmelCase )
__snake_case : Optional[Any] = hidden_size
__snake_case : Any = intermediate_size
__snake_case : str = num_hidden_layers
__snake_case : Any = num_attention_heads
__snake_case : int = patch_size
__snake_case : Dict = image_size
__snake_case : Any = initializer_range
__snake_case : List[Any] = attention_dropout
__snake_case : Optional[Any] = layer_norm_eps
__snake_case : Optional[int] = hidden_act
__snake_case : int = qkv_bias
@classmethod
def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ):
cls._set_token_in_kwargs(_UpperCAmelCase )
__snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
__snake_case : Any = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "instructblip_qformer"
def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__snake_case : Union[str, Any] = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : str = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Optional[Any] = hidden_act
__snake_case : int = intermediate_size
__snake_case : str = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = max_position_embeddings
__snake_case : Dict = initializer_range
__snake_case : Any = layer_norm_eps
__snake_case : Union[str, Any] = position_embedding_type
__snake_case : Optional[int] = cross_attention_frequency
__snake_case : Union[str, Any] = encoder_hidden_size
@classmethod
def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ):
cls._set_token_in_kwargs(_UpperCAmelCase )
__snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
__snake_case : List[Any] = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "instructblip"
__UpperCAmelCase = True
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ):
super().__init__(**_UpperCAmelCase )
if vision_config is None:
__snake_case : List[str] = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
__snake_case : Union[str, Any] = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
__snake_case : str = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
__snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase )
__snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase )
__snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt'
__snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase )
__snake_case : List[Any] = self.text_config.tie_word_embeddings
__snake_case : Optional[int] = self.text_config.is_encoder_decoder
__snake_case : List[str] = num_query_tokens
__snake_case : Tuple = self.vision_config.hidden_size
__snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__snake_case : str = 1.0
__snake_case : Optional[int] = 0.02
@classmethod
def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , )
def lowercase_ ( self ):
__snake_case : Tuple = copy.deepcopy(self.__dict__ )
__snake_case : Tuple = self.vision_config.to_dict()
__snake_case : List[Any] = self.qformer_config.to_dict()
__snake_case : Optional[int] = self.text_config.to_dict()
__snake_case : List[str] = self.__class__.model_type
return output
| 679 | 1 |
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__magic_name__ = '''\
@inproceedings{popovic-2015-chrf,
title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",
month = sep,
year = "2015",
address = "Lisbon, Portugal",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W15-3049",
doi = "10.18653/v1/W15-3049",
pages = "392--395",
}
@inproceedings{popovic-2017-chrf,
title = "chr{F}++: words helping character n-grams",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Second Conference on Machine Translation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4770",
doi = "10.18653/v1/W17-4770",
pages = "612--618",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__magic_name__ = '''\
ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,
and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation
that is already present in sacrebleu.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.
'''
__magic_name__ = '''
Produces ChrF(++) scores for hypotheses given reference translations.
Args:
predictions (list of str): The predicted sentences.
references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.
char_order (int): Character n-gram order. Defaults to `6`.
word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.
beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.
lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.
whitespace (bool): If `True`, include whitespaces when extracting character n-grams.
eps_smoothing (bool): If `True`, applies epsilon smoothing similar
to reference chrF++.py, NLTK and Moses implementations. If `False`,
it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.
Returns:
\'score\' (float): The chrF (chrF++) score,
\'char_order\' (int): The character n-gram order,
\'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,
\'beta\' (int): Determine the importance of recall w.r.t precision
Examples:
Example 1--a simple example of calculating chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction, references=reference)
>>> print(results)
{\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}
Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2)
>>> print(results)
{\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2,
... lowercase=True)
>>> print(results)
{\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class __SCREAMING_SNAKE_CASE ( datasets.Metric):
"""simple docstring"""
def lowercase_ ( self ):
if version.parse(scb.__version__ ) < version.parse('1.4.12' ):
raise ImportWarning(
'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'
'You can install it with `pip install "sacrebleu>=1.4.12"`.' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[
'https://github.com/m-popovic/chrF',
] , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = CHRF.CHAR_ORDER , _UpperCAmelCase = CHRF.WORD_ORDER , _UpperCAmelCase = CHRF.BETA , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , ):
__snake_case : Tuple = len(references[0] )
if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('Sacrebleu requires the same number of references for each prediction' )
__snake_case : Optional[Any] = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )]
__snake_case : int = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__snake_case : List[str] = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 679 | import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
__magic_name__ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ):
warnings.warn(
'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use BeitImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 679 | 1 |
def UpperCAmelCase__( __UpperCAmelCase : float , __UpperCAmelCase : float ):
if mass < 0:
raise ValueError('The mass of a body cannot be negative' )
return 0.5 * mass * abs(__UpperCAmelCase ) * abs(__UpperCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 679 | import math
import os
import sys
def UpperCAmelCase__( __UpperCAmelCase : str ):
__snake_case : Union[str, Any] = ''
try:
with open(__UpperCAmelCase , 'rb' ) as binary_file:
__snake_case : Optional[Any] = binary_file.read()
for dat in data:
__snake_case : Tuple = F"""{dat:08b}"""
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ):
lexicon.pop(__UpperCAmelCase )
__snake_case : Union[str, Any] = last_match_id
if math.loga(__UpperCAmelCase ).is_integer():
for curr_key in lexicon:
__snake_case : Tuple = '0' + lexicon[curr_key]
__snake_case : Any = bin(__UpperCAmelCase )[2:]
def UpperCAmelCase__( __UpperCAmelCase : str ):
__snake_case : Tuple = {'0': '0', '1': '1'}
__snake_case , __snake_case : Optional[int] = '', ''
__snake_case : str = len(__UpperCAmelCase )
for i in range(len(__UpperCAmelCase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
__snake_case : Optional[int] = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
index += 1
__snake_case : Union[str, Any] = ''
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
__snake_case : Any = lexicon[curr_string]
result += last_match_id
return result
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ):
__snake_case : str = os.path.getsize(__UpperCAmelCase )
__snake_case : List[Any] = bin(__UpperCAmelCase )[2:]
__snake_case : Any = len(__UpperCAmelCase )
return "0" * (length_length - 1) + file_length_binary + compressed
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ):
__snake_case : Tuple = 8
try:
with open(__UpperCAmelCase , 'wb' ) as opened_file:
__snake_case : int = [
to_write[i : i + byte_length]
for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ):
__snake_case : str = read_file_binary(__UpperCAmelCase )
__snake_case : Tuple = compress_data(__UpperCAmelCase )
__snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase )
write_file_binary(__UpperCAmelCase , __UpperCAmelCase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 679 | 1 |
from typing import Dict, Optional
import numpy as np
import datasets
__magic_name__ = '''
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
'''
__magic_name__ = '''
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric("mean_iou")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
'''
__magic_name__ = '''\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}'''
def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : bool , __UpperCAmelCase : Optional[Dict[int, int]] = None , __UpperCAmelCase : bool = False , ):
if label_map is not None:
for old_id, new_id in label_map.items():
__snake_case : Tuple = new_id
# turn into Numpy arrays
__snake_case : Optional[int] = np.array(__UpperCAmelCase )
__snake_case : Optional[int] = np.array(__UpperCAmelCase )
if reduce_labels:
__snake_case : Tuple = 2_55
__snake_case : List[str] = label - 1
__snake_case : List[str] = 2_55
__snake_case : Optional[Any] = label != ignore_index
__snake_case : str = np.not_equal(__UpperCAmelCase , __UpperCAmelCase )
__snake_case : Optional[Any] = pred_label[mask]
__snake_case : Union[str, Any] = np.array(__UpperCAmelCase )[mask]
__snake_case : Any = pred_label[pred_label == label]
__snake_case : int = np.histogram(__UpperCAmelCase , bins=__UpperCAmelCase , range=(0, num_labels - 1) )[0]
__snake_case : List[str] = np.histogram(__UpperCAmelCase , bins=__UpperCAmelCase , range=(0, num_labels - 1) )[0]
__snake_case : Union[str, Any] = np.histogram(__UpperCAmelCase , bins=__UpperCAmelCase , range=(0, num_labels - 1) )[0]
__snake_case : Any = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : bool , __UpperCAmelCase : Optional[Dict[int, int]] = None , __UpperCAmelCase : bool = False , ):
__snake_case : Tuple = np.zeros((num_labels,) , dtype=np.floataa )
__snake_case : Any = np.zeros((num_labels,) , dtype=np.floataa )
__snake_case : str = np.zeros((num_labels,) , dtype=np.floataa )
__snake_case : Any = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(__UpperCAmelCase , __UpperCAmelCase ):
__snake_case , __snake_case , __snake_case , __snake_case : Dict = intersect_and_union(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : bool , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[Dict[int, int]] = None , __UpperCAmelCase : bool = False , ):
__snake_case , __snake_case , __snake_case , __snake_case : int = total_intersect_and_union(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# compute metrics
__snake_case : Optional[int] = {}
__snake_case : str = total_area_intersect.sum() / total_area_label.sum()
__snake_case : List[Any] = total_area_intersect / total_area_union
__snake_case : List[Any] = total_area_intersect / total_area_label
__snake_case : Union[str, Any] = np.nanmean(__UpperCAmelCase )
__snake_case : Optional[Any] = np.nanmean(__UpperCAmelCase )
__snake_case : Dict = all_acc
__snake_case : List[Any] = iou
__snake_case : int = acc
if nan_to_num is not None:
__snake_case : Tuple = {metric: np.nan_to_num(__UpperCAmelCase , nan=__UpperCAmelCase ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class __SCREAMING_SNAKE_CASE ( datasets.Metric):
"""simple docstring"""
def lowercase_ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ),
'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ),
} ) , reference_urls=[
'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'
] , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , ):
__snake_case : Union[str, Any] = mean_iou(
results=_UpperCAmelCase , gt_seg_maps=_UpperCAmelCase , num_labels=_UpperCAmelCase , ignore_index=_UpperCAmelCase , nan_to_num=_UpperCAmelCase , label_map=_UpperCAmelCase , reduce_labels=_UpperCAmelCase , )
return iou_result
| 679 | from itertools import permutations
def UpperCAmelCase__( __UpperCAmelCase : tuple ):
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
__snake_case : Any = [7, 11, 13, 17]
for i, test in enumerate(__UpperCAmelCase ):
if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def UpperCAmelCase__( __UpperCAmelCase : int = 10 ):
return sum(
int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) )
for num in permutations(range(__UpperCAmelCase ) )
if is_substring_divisible(__UpperCAmelCase ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 679 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__ = {
'''configuration_trajectory_transformer''': [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TrajectoryTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrajectoryTransformerModel''',
'''TrajectoryTransformerPreTrainedModel''',
'''load_tf_weights_in_trajectory_transformer''',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 679 | # Function to print upper half of diamond (pyramid)
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
for i in range(0 , __UpperCAmelCase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(' ' , end='' )
for _ in range(0 , i + 1 ): # printing stars
print('* ' , end='' )
print()
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
for i in range(__UpperCAmelCase , 0 , -1 ):
for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars
print('* ' , end='' )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(' ' , end='' )
def UpperCAmelCase__( __UpperCAmelCase : List[Any] ):
if n <= 0:
print(' ... .... nothing printing :(' )
return
floyd(__UpperCAmelCase ) # upper half
reverse_floyd(__UpperCAmelCase ) # lower half
if __name__ == "__main__":
print(r'''| /\ | |- | |- |--| |\ /| |-''')
print(r'''|/ \| |- |_ |_ |__| | \/ | |_''')
__magic_name__ = 1
while K:
__magic_name__ = int(input('''enter the number and , and see the magic : '''))
print()
pretty_print(user_number)
__magic_name__ = int(input('''press 0 to exit... and 1 to continue...'''))
print('''Good Bye...''')
| 679 | 1 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : int ):
__snake_case : List[str] = AutoConfig.from_pretrained(__UpperCAmelCase )
__snake_case : List[Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=__UpperCAmelCase )
__snake_case : List[str] = checkpoints.load_tax_checkpoint(__UpperCAmelCase )
__snake_case : List[str] = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp']
if config.model_type == "t5":
__snake_case : Any = 'SelfAttention'
if config.model_type == "longt5" and config.encoder_attention_type == "local":
__snake_case : Optional[Any] = 'LocalSelfAttention'
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__snake_case : Union[str, Any] = 'TransientGlobalSelfAttention'
else:
raise ValueError(
'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'
' attribute with a value from [\'local\', \'transient-global].' )
# Encoder
for layer_index in range(config.num_layers ):
__snake_case : Optional[int] = F"""layers_{str(__UpperCAmelCase )}"""
# Self-Attention
__snake_case : Tuple = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel']
__snake_case : List[Any] = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel']
__snake_case : Dict = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel']
__snake_case : Tuple = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__snake_case : List[Any] = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale']
# Layer Normalization
__snake_case : Any = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale']
if split_mlp_wi:
__snake_case : Union[str, Any] = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel']
__snake_case : str = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel']
else:
__snake_case : Optional[Any] = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel']
__snake_case : str = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
__snake_case : List[str] = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
__snake_case : List[Any] = flax_model.params['encoder']['block'][str(__UpperCAmelCase )]['layer']
__snake_case : Optional[int] = tax_attention_key
__snake_case : List[Any] = tax_attention_out
__snake_case : Any = tax_attention_query
__snake_case : int = tax_attention_value
__snake_case : List[Any] = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__snake_case : Tuple = tax_global_layer_norm
if split_mlp_wi:
__snake_case : Tuple = tax_mlp_wi_a
__snake_case : int = tax_mlp_wi_a
else:
__snake_case : Optional[int] = tax_mlp_wi
__snake_case : List[str] = tax_mlp_wo
__snake_case : List[Any] = tax_mlp_layer_norm
__snake_case : str = flax_model_encoder_layer_block
# Only for layer 0:
__snake_case : Optional[int] = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T
__snake_case : List[str] = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__snake_case : Any = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T
__snake_case : str = tax_encoder_global_rel_embedding
# Assigning
__snake_case : str = tax_model['target']['encoder']['encoder_norm']['scale']
__snake_case : int = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
__snake_case : Optional[Any] = F"""layers_{str(__UpperCAmelCase )}"""
# Self-Attention
__snake_case : List[str] = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel']
__snake_case : Dict = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel']
__snake_case : List[Any] = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel']
__snake_case : Optional[Any] = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel']
# Layer Normalization
__snake_case : Union[str, Any] = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][
'scale'
]
# Encoder-Decoder-Attention
__snake_case : Optional[Any] = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention']
__snake_case : Optional[int] = tax_enc_dec_attention_module['key']['kernel']
__snake_case : Optional[int] = tax_enc_dec_attention_module['out']['kernel']
__snake_case : Union[str, Any] = tax_enc_dec_attention_module['query']['kernel']
__snake_case : List[str] = tax_enc_dec_attention_module['value']['kernel']
# Layer Normalization
__snake_case : Tuple = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale']
# MLP
if split_mlp_wi:
__snake_case : Optional[Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel']
__snake_case : Tuple = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel']
else:
__snake_case : Optional[Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel']
__snake_case : int = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
__snake_case : List[str] = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
__snake_case : int = flax_model.params['decoder']['block'][str(__UpperCAmelCase )]['layer']
__snake_case : Any = tax_attention_key
__snake_case : Union[str, Any] = tax_attention_out
__snake_case : List[str] = tax_attention_query
__snake_case : Tuple = tax_attention_value
__snake_case : List[str] = tax_pre_attention_layer_norm
__snake_case : Dict = tax_enc_dec_attention_key
__snake_case : List[str] = tax_enc_dec_attention_out
__snake_case : Union[str, Any] = tax_enc_dec_attention_query
__snake_case : Tuple = tax_enc_dec_attention_value
__snake_case : Union[str, Any] = tax_cross_layer_norm
if split_mlp_wi:
__snake_case : str = tax_mlp_wi_a
__snake_case : List[Any] = tax_mlp_wi_a
else:
__snake_case : Dict = tax_mlp_wi
__snake_case : Dict = tax_mlp_wo
__snake_case : Optional[Any] = txa_mlp_layer_norm
__snake_case : Any = flax_model_decoder_layer_block
# Decoder Normalization
__snake_case : Dict = tax_model['target']['decoder']['decoder_norm']['scale']
__snake_case : Union[str, Any] = txa_decoder_norm
# Only for layer 0:
__snake_case : List[str] = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T
__snake_case : Union[str, Any] = tax_decoder_rel_embedding
# Token Embeddings
__snake_case : Optional[Any] = tax_model['target']['token_embedder']['embedding']
__snake_case : Tuple = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
__snake_case : List[Any] = tax_model['target']['decoder']['logits_dense']['kernel']
flax_model.save_pretrained(__UpperCAmelCase )
print('T5X Model was sucessfully converted!' )
if __name__ == "__main__":
__magic_name__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
__magic_name__ = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 679 | from timeit import timeit
def UpperCAmelCase__( __UpperCAmelCase : int ):
if number < 0:
raise ValueError('the value of input must not be negative' )
__snake_case : Dict = 0
while number:
number &= number - 1
result += 1
return result
def UpperCAmelCase__( __UpperCAmelCase : int ):
if number < 0:
raise ValueError('the value of input must not be negative' )
__snake_case : Tuple = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def UpperCAmelCase__( ):
def do_benchmark(__UpperCAmelCase : int ) -> None:
__snake_case : Optional[Any] = 'import __main__ as z'
print(F"""Benchmark when {number = }:""" )
print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" )
__snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase )
print(F"""timeit() runs in {timing} seconds""" )
print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" )
__snake_case : Dict = timeit(
'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , )
print(F"""timeit() runs in {timing} seconds""" )
for number in (25, 37, 58, 0):
do_benchmark(__UpperCAmelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 679 | 1 |
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ):
def wrapper(*__UpperCAmelCase : List[str] , **__UpperCAmelCase : int ):
__snake_case : List[str] = timeit.default_timer()
__snake_case : Any = func(*__UpperCAmelCase , **__UpperCAmelCase )
__snake_case : Optional[int] = timeit.default_timer() - starttime
return delta
__snake_case : Tuple = func.__name__
return wrapper
def UpperCAmelCase__( __UpperCAmelCase : dict , __UpperCAmelCase : Optional[Any]=1_00 , __UpperCAmelCase : int=None ):
__snake_case : str = []
__snake_case : int = seq_shapes or {}
for i in range(__UpperCAmelCase ):
__snake_case : Any = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(__UpperCAmelCase , _ArrayXD ):
__snake_case : Optional[Any] = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(__UpperCAmelCase , datasets.Value ):
if v.dtype == "string":
__snake_case : str = 'The small grey turtle was surprisingly fast when challenged.'
else:
__snake_case : Tuple = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(__UpperCAmelCase , datasets.Sequence ):
while isinstance(__UpperCAmelCase , datasets.Sequence ):
__snake_case : Union[str, Any] = v.feature
__snake_case : str = seq_shapes[k]
__snake_case : List[Any] = np.random.rand(*__UpperCAmelCase ).astype(v.dtype )
__snake_case : Optional[int] = data
dummy_data.append((i, example) )
return dummy_data
def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int]=1_00 , __UpperCAmelCase : Optional[Any]=None ):
__snake_case : Optional[Any] = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase )
with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer:
for key, record in dummy_data:
__snake_case : int = features.encode_example(__UpperCAmelCase )
writer.write(__UpperCAmelCase )
__snake_case , __snake_case : str = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" )
__snake_case : Dict = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) )
return dataset
| 679 | import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('''3.8'''):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ):
try:
__snake_case : Optional[int] = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__snake_case : Union[str, Any] = default
else:
# KEY is set, convert it to True or False.
try:
__snake_case : Optional[Any] = strtobool(__UpperCAmelCase )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"""If set, {key} must be yes or no.""" )
return _value
__magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False)
__magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False)
__magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True)
__magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True)
# Compression
__magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''')
__magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''')
__magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''')
# Audio
__magic_name__ = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''),
reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''',
)
# Beam
__magic_name__ = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''),
reason='''test requires apache-beam and a compatible dill version''',
)
# Dill-cloudpickle compatibility
__magic_name__ = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('''0.3.2'''),
reason='''test requires dill>0.3.2 for cloudpickle compatibility''',
)
# Windows
__magic_name__ = pytest.mark.skipif(
sys.platform == '''win32''',
reason='''test should not be run on Windows''',
)
def UpperCAmelCase__( __UpperCAmelCase : Any ):
try:
import faiss # noqa
except ImportError:
__snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
try:
import regex # noqa
except ImportError:
__snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ):
try:
import elasticsearch # noqa
except ImportError:
__snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Dict ):
try:
import sqlalchemy # noqa
except ImportError:
__snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ):
if not config.TORCH_AVAILABLE:
__snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Any ):
if not config.TF_AVAILABLE:
__snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
if not config.JAX_AVAILABLE:
__snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Tuple ):
if not config.PIL_AVAILABLE:
__snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ):
try:
import transformers # noqa F401
except ImportError:
return unittest.skip('test requires transformers' )(__UpperCAmelCase )
else:
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Dict ):
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip('test requires tiktoken' )(__UpperCAmelCase )
else:
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Tuple ):
try:
import spacy # noqa F401
except ImportError:
return unittest.skip('test requires spacy' )(__UpperCAmelCase )
else:
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ):
def _require_spacy_model(__UpperCAmelCase : List[str] ):
try:
import spacy # noqa F401
spacy.load(__UpperCAmelCase )
except ImportError:
return unittest.skip('test requires spacy' )(__UpperCAmelCase )
except OSError:
return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase )
else:
return test_case
return _require_spacy_model
def UpperCAmelCase__( __UpperCAmelCase : int ):
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip('test requires pyspark' )(__UpperCAmelCase )
else:
return test_case
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip('test requires joblibspark' )(__UpperCAmelCase )
else:
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Any ):
if not _run_slow_tests or _run_slow_tests == 0:
__snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Dict ):
if not _run_local_tests or _run_local_tests == 0:
__snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : int ):
if not _run_packaged_tests or _run_packaged_tests == 0:
__snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : str ):
if not _run_remote_tests or _run_remote_tests == 0:
__snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( *__UpperCAmelCase : Any ):
def decorate(cls : List[str] ):
for name, fn in cls.__dict__.items():
if callable(__UpperCAmelCase ) and name.startswith('test' ):
for decorator in decorators:
__snake_case : Optional[Any] = decorator(__UpperCAmelCase )
setattr(cls , __UpperCAmelCase , __UpperCAmelCase )
return cls
return decorate
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
pass
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = 0
__UpperCAmelCase = 1
__UpperCAmelCase = 2
@contextmanager
def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ):
__snake_case : Optional[Any] = requests.Session().request
def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ):
# Change the url to an invalid url so that the connection hangs
__snake_case : int = 'https://10.255.255.1'
if kwargs.get('timeout' ) is None:
raise RequestWouldHangIndefinitelyError(
F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" )
__snake_case : str = timeout
try:
return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
__snake_case : Any = url
__snake_case : Union[str, Any] = e.args[0]
__snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),)
__snake_case : str = (max_retry_error,)
raise
def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ):
raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch('requests.Session.send' , __UpperCAmelCase ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch('requests.Session.request' , __UpperCAmelCase ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ):
yield
else:
raise ValueError('Please use a value from the OfflineSimulationMode enum.' )
@contextmanager
def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ):
__snake_case : Dict = str(Path().resolve() )
with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir:
try:
os.chdir(__UpperCAmelCase )
yield
finally:
os.chdir(__UpperCAmelCase )
@contextmanager
def UpperCAmelCase__( ):
import gc
gc.collect()
__snake_case : Any = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def UpperCAmelCase__( ):
import gc
gc.collect()
__snake_case : int = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ):
return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist()
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
import decorator
from requests.exceptions import HTTPError
def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ):
try:
return func(*__UpperCAmelCase , **__UpperCAmelCase )
except HTTPError as err:
if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ):
pytest.xfail(str(__UpperCAmelCase ) )
raise err
return decorator.decorator(_wrapper , __UpperCAmelCase )
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : int = returncode
__snake_case : Tuple = stdout
__snake_case : List[Any] = stderr
async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ):
while True:
__snake_case : Optional[int] = await stream.readline()
if line:
callback(__UpperCAmelCase )
else:
break
async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ):
if echo:
print('\nRunning: ' , ' '.join(__UpperCAmelCase ) )
__snake_case : Tuple = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__snake_case : Any = []
__snake_case : Tuple = []
def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ):
__snake_case : int = line.decode('utf-8' ).rstrip()
sink.append(__UpperCAmelCase )
if not quiet:
print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ),
_read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ),
] , timeout=__UpperCAmelCase , )
return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ):
__snake_case : Any = asyncio.get_event_loop()
__snake_case : List[str] = loop.run_until_complete(
_stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) )
__snake_case : Dict = ' '.join(__UpperCAmelCase )
if result.returncode > 0:
__snake_case : List[Any] = '\n'.join(result.stderr )
raise RuntimeError(
F"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
F"""The combined stderr from workers follows:\n{stderr}""" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F"""'{cmd_str}' produced no output.""" )
return result
def UpperCAmelCase__( ):
__snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' )
__snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M )
return int(__UpperCAmelCase )
def UpperCAmelCase__( ):
__snake_case : Dict = 2_95_00
__snake_case : Optional[int] = pytest_xdist_worker_id()
return port + uniq_delta
| 679 | 1 |
def UpperCAmelCase__( __UpperCAmelCase : int ):
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 679 | from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
__magic_name__ = TypeVar('''T''')
class __SCREAMING_SNAKE_CASE ( Generic[T]):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
__snake_case : Optional[Any] = data
__snake_case : Node[T] | None = None
def __str__( self ):
return F"""{self.data}"""
class __SCREAMING_SNAKE_CASE ( Generic[T]):
"""simple docstring"""
def __init__( self ):
__snake_case : Node[T] | None = None
def __iter__( self ):
__snake_case : List[str] = self.top
while node:
yield node.data
__snake_case : Union[str, Any] = node.next
def __str__( self ):
return "->".join([str(_UpperCAmelCase ) for item in self] )
def __len__( self ):
return len(tuple(iter(self ) ) )
def lowercase_ ( self ):
return self.top is None
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Any = Node(_UpperCAmelCase )
if not self.is_empty():
__snake_case : Any = self.top
__snake_case : Dict = node
def lowercase_ ( self ):
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top , _UpperCAmelCase )
__snake_case : Optional[int] = self.top
__snake_case : Dict = self.top.next
return pop_node.data
def lowercase_ ( self ):
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def lowercase_ ( self ):
__snake_case : Optional[int] = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 679 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
def lowercase_ ( self ):
__snake_case : Any = 'ZinengTang/tvlt-base'
__snake_case : List[str] = tempfile.mkdtemp()
def lowercase_ ( self , **_UpperCAmelCase ):
return TvltImageProcessor.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def lowercase_ ( self , **_UpperCAmelCase ):
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def lowercase_ ( self ):
shutil.rmtree(self.tmpdirname )
def lowercase_ ( self ):
__snake_case : Dict = self.get_image_processor()
__snake_case : Optional[int] = self.get_feature_extractor()
__snake_case : Dict = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__snake_case : Union[str, Any] = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , _UpperCAmelCase )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Any = self.get_image_processor()
__snake_case : Optional[int] = self.get_feature_extractor()
__snake_case : Optional[Any] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
__snake_case : Any = np.ones([12_000] )
__snake_case : str = feature_extractor(_UpperCAmelCase , return_tensors='np' )
__snake_case : Any = processor(audio=_UpperCAmelCase , return_tensors='np' )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase_ ( self ):
__snake_case : List[Any] = self.get_image_processor()
__snake_case : int = self.get_feature_extractor()
__snake_case : List[str] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
__snake_case : Dict = np.ones([3, 224, 224] )
__snake_case : Optional[Any] = image_processor(_UpperCAmelCase , return_tensors='np' )
__snake_case : Tuple = processor(images=_UpperCAmelCase , return_tensors='np' )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase_ ( self ):
__snake_case : str = self.get_image_processor()
__snake_case : int = self.get_feature_extractor()
__snake_case : List[Any] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
__snake_case : Optional[int] = np.ones([12_000] )
__snake_case : Any = np.ones([3, 224, 224] )
__snake_case : Any = processor(audio=_UpperCAmelCase , images=_UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask'] )
# test if it raises when no input is passed
with pytest.raises(_UpperCAmelCase ):
processor()
def lowercase_ ( self ):
__snake_case : int = self.get_image_processor()
__snake_case : Any = self.get_feature_extractor()
__snake_case : List[str] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
| 679 | import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = ShapEPipeline
__UpperCAmelCase = ["prompt"]
__UpperCAmelCase = ["prompt"]
__UpperCAmelCase = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
__UpperCAmelCase = False
@property
def lowercase_ ( self ):
return 32
@property
def lowercase_ ( self ):
return 32
@property
def lowercase_ ( self ):
return self.time_input_dim * 4
@property
def lowercase_ ( self ):
return 8
@property
def lowercase_ ( self ):
__snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def lowercase_ ( self ):
torch.manual_seed(0 )
__snake_case : Union[str, Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(_UpperCAmelCase )
@property
def lowercase_ ( self ):
torch.manual_seed(0 )
__snake_case : Any = {
'num_attention_heads': 2,
'attention_head_dim': 16,
'embedding_dim': self.time_input_dim,
'num_embeddings': 32,
'embedding_proj_dim': self.text_embedder_hidden_size,
'time_embed_dim': self.time_embed_dim,
'num_layers': 1,
'clip_embed_dim': self.time_input_dim * 2,
'additional_embeddings': 0,
'time_embed_act_fn': 'gelu',
'norm_in_type': 'layer',
'encoder_hid_proj_type': None,
'added_emb_type': None,
}
__snake_case : Dict = PriorTransformer(**_UpperCAmelCase )
return model
@property
def lowercase_ ( self ):
torch.manual_seed(0 )
__snake_case : Tuple = {
'param_shapes': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'd_latent': self.time_input_dim,
'd_hidden': self.renderer_dim,
'n_output': 12,
'background': (
0.1,
0.1,
0.1,
),
}
__snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase )
return model
def lowercase_ ( self ):
__snake_case : Tuple = self.dummy_prior
__snake_case : Dict = self.dummy_text_encoder
__snake_case : Optional[int] = self.dummy_tokenizer
__snake_case : str = self.dummy_renderer
__snake_case : Tuple = HeunDiscreteScheduler(
beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , )
__snake_case : Optional[int] = {
'prior': prior,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'renderer': renderer,
'scheduler': scheduler,
}
return components
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ):
if str(_UpperCAmelCase ).startswith('mps' ):
__snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase )
else:
__snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
__snake_case : Tuple = {
'prompt': 'horse',
'generator': generator,
'num_inference_steps': 1,
'frame_size': 32,
'output_type': 'np',
}
return inputs
def lowercase_ ( self ):
__snake_case : Optional[int] = 'cpu'
__snake_case : Tuple = self.get_dummy_components()
__snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase )
__snake_case : Any = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) )
__snake_case : Union[str, Any] = output.images[0]
__snake_case : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__snake_case : Dict = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowercase_ ( self ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowercase_ ( self ):
__snake_case : List[str] = torch_device == 'cpu'
__snake_case : int = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , )
def lowercase_ ( self ):
__snake_case : Dict = self.get_dummy_components()
__snake_case : Any = self.pipeline_class(**_UpperCAmelCase )
__snake_case : Tuple = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__snake_case : int = 1
__snake_case : Optional[int] = 2
__snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
__snake_case : Union[str, Any] = batch_size * [inputs[key]]
__snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
def lowercase_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ):
__snake_case : str = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/shap_e/test_shap_e_np_out.npy' )
__snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' )
__snake_case : List[str] = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
__snake_case : Optional[Any] = pipe(
'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
| 679 | 1 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
__magic_name__ = logging.get_logger(__name__)
@add_end_docstrings(UpperCamelCase)
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ):
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
self.check_model_type(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ):
__snake_case , __snake_case : List[Any] = {}, {}
if padding is not None:
__snake_case : List[Any] = padding
if truncation is not None:
__snake_case : Optional[int] = truncation
if top_k is not None:
__snake_case : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase ):
if isinstance(_UpperCAmelCase , (Image.Image, str) ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__snake_case : List[Any] = {'image': image, 'question': question}
else:
__snake_case : List[str] = image
__snake_case : Tuple = super().__call__(_UpperCAmelCase , **_UpperCAmelCase )
return results
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False ):
__snake_case : Union[str, Any] = load_image(inputs['image'] )
__snake_case : List[Any] = self.tokenizer(
inputs['question'] , return_tensors=self.framework , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )
__snake_case : Tuple = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework )
model_inputs.update(_UpperCAmelCase )
return model_inputs
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Union[str, Any] = self.model(**_UpperCAmelCase )
return model_outputs
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=5 ):
if top_k > self.model.config.num_labels:
__snake_case : Tuple = self.model.config.num_labels
if self.framework == "pt":
__snake_case : Tuple = model_outputs.logits.sigmoid()[0]
__snake_case , __snake_case : Optional[int] = probs.topk(_UpperCAmelCase )
else:
raise ValueError(F"""Unsupported framework: {self.framework}""" )
__snake_case : int = scores.tolist()
__snake_case : Any = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
| 679 | import argparse
from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ):
# Initialise PyTorch model
__snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase )
print(F"""Building PyTorch model from configuration: {config}""" )
__snake_case : int = TaForConditionalGeneration(__UpperCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(__UpperCAmelCase )
if __name__ == "__main__":
__magic_name__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__magic_name__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 679 | 1 |
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , _UpperCAmelCase = "" , _UpperCAmelCase = False ):
# Mapping from the first character of the prefix of the node
__snake_case : dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
__snake_case : str = is_leaf
__snake_case : str = prefix
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Any = 0
for q, w in zip(self.prefix , _UpperCAmelCase ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def lowercase_ ( self , _UpperCAmelCase ):
for word in words:
self.insert(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
__snake_case : str = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
__snake_case : int = RadixNode(prefix=_UpperCAmelCase , is_leaf=_UpperCAmelCase )
else:
__snake_case : Dict = self.nodes[word[0]]
__snake_case , __snake_case , __snake_case : str = incoming_node.match(
_UpperCAmelCase )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(_UpperCAmelCase )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
__snake_case : int = remaining_prefix
__snake_case : Optional[int] = self.nodes[matching_string[0]]
__snake_case : int = RadixNode(_UpperCAmelCase , _UpperCAmelCase )
__snake_case : Optional[int] = aux_node
if remaining_word == "":
__snake_case : Tuple = True
else:
self.nodes[matching_string[0]].insert(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Optional[int] = self.nodes.get(word[0] , _UpperCAmelCase )
if not incoming_node:
return False
else:
__snake_case , __snake_case , __snake_case : int = incoming_node.match(
_UpperCAmelCase )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Union[str, Any] = self.nodes.get(word[0] , _UpperCAmelCase )
if not incoming_node:
return False
else:
__snake_case , __snake_case , __snake_case : Any = incoming_node.match(
_UpperCAmelCase )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(_UpperCAmelCase )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
__snake_case : int = list(self.nodes.values() )[0]
__snake_case : Optional[Any] = merging_node.is_leaf
self.prefix += merging_node.prefix
__snake_case : Any = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
__snake_case : Union[str, Any] = False
# If there is 1 edge, we merge it with its child
else:
__snake_case : List[str] = list(incoming_node.nodes.values() )[0]
__snake_case : List[Any] = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
__snake_case : Tuple = merging_node.nodes
return True
def lowercase_ ( self , _UpperCAmelCase = 0 ):
if self.prefix != "":
print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' )
for value in self.nodes.values():
value.print_tree(height + 1 )
def UpperCAmelCase__( ):
__snake_case : Optional[int] = 'banana bananas bandana band apple all beast'.split()
__snake_case : Tuple = RadixNode()
root.insert_many(__UpperCAmelCase )
assert all(root.find(__UpperCAmelCase ) for word in words )
assert not root.find('bandanas' )
assert not root.find('apps' )
root.delete('all' )
assert not root.find('all' )
root.delete('banana' )
assert not root.find('banana' )
assert root.find('bananas' )
return True
def UpperCAmelCase__( ):
assert test_trie()
def UpperCAmelCase__( ):
__snake_case : Optional[Any] = RadixNode()
__snake_case : Optional[int] = 'banana bananas bandanas bandana band apple all beast'.split()
root.insert_many(__UpperCAmelCase )
print('Words:' , __UpperCAmelCase )
print('Tree:' )
root.print_tree()
if __name__ == "__main__":
main()
| 679 | import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
__magic_name__ = logging.getLogger(__name__)
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ):
__snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] )
__snake_case : Optional[Any] = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
super().__init__(_UpperCAmelCase )
__snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase )
self.init_weights()
__snake_case : str = 0
__snake_case : List[str] = 0
__snake_case : int = 0
__snake_case : Tuple = 0
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Dict = threshold
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : List[Any] = patience
def lowercase_ ( self ):
__snake_case : Dict = 0
__snake_case : Dict = 0
def lowercase_ ( self ):
__snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num
__snake_case : int = (
F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="""
F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"""
)
print(_UpperCAmelCase )
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
__snake_case : Union[str, Any] = input_ids.size()
elif inputs_embeds is not None:
__snake_case : int = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
__snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
__snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase )
if token_type_ids is None:
__snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
__snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
__snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size()
__snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
__snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase )
__snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase )
else:
__snake_case : str = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
__snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers )
__snake_case : Any = self.embeddings(
input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase )
__snake_case : List[str] = embedding_output
if self.training:
__snake_case : Dict = []
for i in range(self.config.num_hidden_layers ):
__snake_case : str = self.encoder.adaptive_forward(
_UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase )
__snake_case : Optional[Any] = self.pooler(_UpperCAmelCase )
__snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) )
res.append(_UpperCAmelCase )
elif self.patience == 0: # Use all layers for inference
__snake_case : Dict = self.encoder(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , )
__snake_case : str = self.pooler(encoder_outputs[0] )
__snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )]
else:
__snake_case : List[str] = 0
__snake_case : str = None
__snake_case : Tuple = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
__snake_case : List[Any] = self.encoder.adaptive_forward(
_UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase )
__snake_case : Any = self.pooler(_UpperCAmelCase )
__snake_case : int = output_layers[i](_UpperCAmelCase )
if regression:
__snake_case : Optional[int] = logits.detach()
if patient_result is not None:
__snake_case : Dict = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
__snake_case : Any = 0
else:
__snake_case : str = logits.detach().argmax(dim=1 )
if patient_result is not None:
__snake_case : List[str] = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ):
patient_counter += 1
else:
__snake_case : Dict = 0
__snake_case : str = logits
if patient_counter == self.patience:
break
__snake_case : str = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
super().__init__(_UpperCAmelCase )
__snake_case : List[str] = config.num_labels
__snake_case : Dict = BertModelWithPabee(_UpperCAmelCase )
__snake_case : int = nn.Dropout(config.hidden_dropout_prob )
__snake_case : Optional[int] = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ):
__snake_case : List[str] = self.bert(
input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
__snake_case : int = (logits[-1],)
if labels is not None:
__snake_case : List[Any] = None
__snake_case : Optional[int] = 0
for ix, logits_item in enumerate(_UpperCAmelCase ):
if self.num_labels == 1:
# We are doing regression
__snake_case : List[str] = MSELoss()
__snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
__snake_case : List[str] = CrossEntropyLoss()
__snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
__snake_case : List[Any] = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
__snake_case : int = (total_loss / total_weights,) + outputs
return outputs
| 679 | 1 |
def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ):
# Return True if there is node that has not iterated.
__snake_case : List[Any] = [False] * len(__UpperCAmelCase )
__snake_case : Union[str, Any] = []
queue.append(__UpperCAmelCase )
__snake_case : int = True
while queue:
__snake_case : List[str] = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(__UpperCAmelCase )
__snake_case : str = True
__snake_case : Any = u
return visited[t]
def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] ):
# This array is filled by BFS and to store path
__snake_case : List[str] = [-1] * (len(__UpperCAmelCase ))
__snake_case : List[str] = 0
while bfs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
__snake_case : List[str] = float('Inf' )
__snake_case : Optional[Any] = sink
while s != source:
# Find the minimum value in select path
__snake_case : str = min(__UpperCAmelCase , graph[parent[s]][s] )
__snake_case : Optional[Any] = parent[s]
max_flow += path_flow
__snake_case : List[str] = sink
while v != source:
__snake_case : str = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
__snake_case : str = parent[v]
return max_flow
__magic_name__ = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
__magic_name__ , __magic_name__ = 0, 5
print(ford_fulkerson(graph, source, sink))
| 679 | def UpperCAmelCase__( __UpperCAmelCase : str ):
if not all(x.isalpha() for x in string ):
raise ValueError('String must only contain alphabetic characters.' )
__snake_case : str = sorted(string.lower() )
return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) )
if __name__ == "__main__":
__magic_name__ = input('''Enter a string ''').strip()
__magic_name__ = is_isogram(input_str)
print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
| 679 | 1 |
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = BlenderbotConfig
__UpperCAmelCase = {}
__UpperCAmelCase = "gelu"
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ):
__snake_case : List[Any] = parent
__snake_case : Optional[int] = batch_size
__snake_case : Any = seq_length
__snake_case : Any = is_training
__snake_case : Any = use_labels
__snake_case : str = vocab_size
__snake_case : Optional[Any] = hidden_size
__snake_case : List[Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : str = intermediate_size
__snake_case : int = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : List[str] = max_position_embeddings
__snake_case : List[str] = eos_token_id
__snake_case : Tuple = pad_token_id
__snake_case : int = bos_token_id
def lowercase_ ( self ):
__snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__snake_case : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__snake_case : Dict = tf.concat([input_ids, eos_tensor] , axis=1 )
__snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__snake_case : List[str] = prepare_blenderbot_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, inputs_dict
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : int = TFBlenderbotModel(config=_UpperCAmelCase ).get_decoder()
__snake_case : Union[str, Any] = inputs_dict['input_ids']
__snake_case : List[Any] = input_ids[:1, :]
__snake_case : List[Any] = inputs_dict['attention_mask'][:1, :]
__snake_case : Optional[Any] = inputs_dict['head_mask']
__snake_case : int = 1
# first forward pass
__snake_case : Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase )
__snake_case , __snake_case : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__snake_case : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size )
__snake_case : List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 )
__snake_case : Optional[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__snake_case : Any = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
__snake_case : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__snake_case : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__snake_case : List[str] = output_from_no_past[:, -3:, random_slice_idx]
__snake_case : List[str] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-3 )
def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Union[str, Any]=None , ):
if attention_mask is None:
__snake_case : Tuple = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__snake_case : List[Any] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__snake_case : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__snake_case : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__snake_case : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__UpperCAmelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__UpperCAmelCase = (
{
"conversational": TFBlenderbotForConditionalGeneration,
"feature-extraction": TFBlenderbotModel,
"summarization": TFBlenderbotForConditionalGeneration,
"text2text-generation": TFBlenderbotForConditionalGeneration,
"translation": TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = False
def lowercase_ ( self ):
__snake_case : Optional[Any] = TFBlenderbotModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase )
def lowercase_ ( self ):
self.config_tester.run_common_tests()
def lowercase_ ( self ):
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase )
@require_tokenizers
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = ["My friends are cool but they eat too many carbs."]
__UpperCAmelCase = "facebook/blenderbot-400M-distill"
@cached_property
def lowercase_ ( self ):
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def lowercase_ ( self ):
__snake_case : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def lowercase_ ( self ):
__snake_case : Optional[Any] = self.tokenizer(self.src_text , return_tensors='tf' )
__snake_case : List[Any] = self.model.generate(
model_inputs.input_ids , )
__snake_case : Union[str, Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_UpperCAmelCase )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 679 | from ....configuration_utils import PretrainedConfig
from ....utils import logging
__magic_name__ = logging.get_logger(__name__)
# TODO: upload to AWS
__magic_name__ = {
'''yjernite/retribert-base-uncased''': (
'''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json'''
),
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "retribert"
def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__snake_case : Tuple = vocab_size
__snake_case : Optional[int] = hidden_size
__snake_case : str = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Any = hidden_act
__snake_case : List[Any] = intermediate_size
__snake_case : Dict = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : Optional[int] = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = layer_norm_eps
__snake_case : int = share_encoders
__snake_case : Optional[Any] = projection_dim
| 679 | 1 |
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
__magic_name__ = TypeVar('''T''')
class __SCREAMING_SNAKE_CASE ( Generic[T]):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
__snake_case : Optional[Any] = data
__snake_case : Node[T] | None = None
def __str__( self ):
return F"""{self.data}"""
class __SCREAMING_SNAKE_CASE ( Generic[T]):
"""simple docstring"""
def __init__( self ):
__snake_case : Node[T] | None = None
def __iter__( self ):
__snake_case : List[str] = self.top
while node:
yield node.data
__snake_case : Union[str, Any] = node.next
def __str__( self ):
return "->".join([str(_UpperCAmelCase ) for item in self] )
def __len__( self ):
return len(tuple(iter(self ) ) )
def lowercase_ ( self ):
return self.top is None
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Any = Node(_UpperCAmelCase )
if not self.is_empty():
__snake_case : Any = self.top
__snake_case : Dict = node
def lowercase_ ( self ):
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top , _UpperCAmelCase )
__snake_case : Optional[int] = self.top
__snake_case : Dict = self.top.next
return pop_node.data
def lowercase_ ( self ):
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def lowercase_ ( self ):
__snake_case : Optional[int] = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 679 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__magic_name__ = {
'''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''],
'''tokenization_biogpt''': ['''BioGptTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BioGptForCausalLM''',
'''BioGptForTokenClassification''',
'''BioGptForSequenceClassification''',
'''BioGptModel''',
'''BioGptPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 679 | 1 |
def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ):
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def UpperCAmelCase__( __UpperCAmelCase : dict[int, list[int]] ):
__snake_case : Tuple = 0
__snake_case : List[str] = len(__UpperCAmelCase ) # No of vertices in graph
__snake_case : str = [0] * n
__snake_case : Union[str, Any] = [False] * n
def dfs(__UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] ):
__snake_case : Dict = True
__snake_case : Dict = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , id_ )
__snake_case : Dict = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
__snake_case : List[str] = min(low[at] , low[to] )
__snake_case : list[tuple[int, int]] = []
for i in range(__UpperCAmelCase ):
if not visited[i]:
dfs(__UpperCAmelCase , -1 , __UpperCAmelCase , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
| 679 | import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def lowercase_ ( self ):
__snake_case : List[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) )
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ):
__snake_case : List[str] = parent
__snake_case : Tuple = batch_size
__snake_case : str = image_size
__snake_case : Union[str, Any] = patch_size
__snake_case : Optional[int] = num_channels
__snake_case : List[str] = last_hidden_size
__snake_case : Optional[Any] = num_attention_heads
__snake_case : Dict = hidden_act
__snake_case : List[Any] = conv_kernel_size
__snake_case : int = output_stride
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Dict = attention_probs_dropout_prob
__snake_case : Any = classifier_dropout_prob
__snake_case : str = use_labels
__snake_case : Optional[Any] = is_training
__snake_case : Dict = num_labels
__snake_case : str = initializer_range
__snake_case : Union[str, Any] = scope
def lowercase_ ( self ):
__snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : str = None
__snake_case : Dict = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__snake_case : Tuple = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase_ ( self ):
return MobileViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : List[Any] = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : Tuple = self.num_labels
__snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : Optional[Any] = self.num_labels
__snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : Tuple = model(_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase_ ( self ):
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs
__snake_case : Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
"feature-extraction": MobileViTModel,
"image-classification": MobileViTForImageClassification,
"image-segmentation": MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def lowercase_ ( self ):
__snake_case : Dict = MobileViTModelTester(self )
__snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def lowercase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def lowercase_ ( self ):
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def lowercase_ ( self ):
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
__snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Tuple = model_class(_UpperCAmelCase )
__snake_case : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : List[str] = [*signature.parameters.keys()]
__snake_case : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase_ ( self ):
def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : str = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
__snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__snake_case : Optional[Any] = outputs.hidden_states
__snake_case : str = 5
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__snake_case : Optional[Any] = 2
for i in range(len(_UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Tuple = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase )
@slow
def lowercase_ ( self ):
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def UpperCAmelCase__( ):
__snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
@cached_property
def lowercase_ ( self ):
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def lowercase_ ( self ):
__snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : str = prepare_img()
__snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : Tuple = model(**_UpperCAmelCase )
# verify the logits
__snake_case : Tuple = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
__snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
@slow
def lowercase_ ( self ):
__snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case : str = model.to(_UpperCAmelCase )
__snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case : Optional[int] = prepare_img()
__snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : int = model(**_UpperCAmelCase )
__snake_case : int = outputs.logits
# verify the logits
__snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _UpperCAmelCase )
__snake_case : Optional[int] = torch.tensor(
[
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
] , device=_UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
@slow
def lowercase_ ( self ):
__snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case : str = model.to(_UpperCAmelCase )
__snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case : Any = prepare_img()
__snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : Optional[Any] = model(**_UpperCAmelCase )
__snake_case : str = outputs.logits.detach().cpu()
__snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] )
__snake_case : List[Any] = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
__snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase )
__snake_case : List[str] = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
| 679 | 1 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
__magic_name__ = {
'''vocab_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'''
},
'''merges_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'''
},
'''tokenizer_config_file''': {
'''facebook/blenderbot_small-90M''': (
'''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'''
)
},
}
__magic_name__ = {'''facebook/blenderbot_small-90M''': 512}
def UpperCAmelCase__( __UpperCAmelCase : str ):
__snake_case : Optional[Any] = set()
__snake_case : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__snake_case : List[Any] = char
__snake_case : Dict = set(__UpperCAmelCase )
return pairs
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = ["input_ids", "attention_mask"]
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="__start__" , _UpperCAmelCase="__end__" , _UpperCAmelCase="__unk__" , _UpperCAmelCase="__null__" , **_UpperCAmelCase , ):
super().__init__(unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , **_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__snake_case : List[Any] = json.load(_UpperCAmelCase )
__snake_case : Tuple = {v: k for k, v in self.encoder.items()}
with open(_UpperCAmelCase , encoding='utf-8' ) as merges_handle:
__snake_case : List[Any] = merges_handle.read().split('\n' )[1:-1]
__snake_case : List[Any] = [tuple(merge.split() ) for merge in merges]
__snake_case : Union[str, Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__snake_case : int = {}
@property
def lowercase_ ( self ):
return len(self.encoder )
def lowercase_ ( self ):
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase_ ( self , _UpperCAmelCase ):
if token in self.cache:
return self.cache[token]
__snake_case : Tuple = re.sub('([.,!?()])' , R' \1' , _UpperCAmelCase )
__snake_case : List[str] = re.sub('(\')' , R' \1 ' , _UpperCAmelCase )
__snake_case : Optional[Any] = re.sub(R'\s{2,}' , ' ' , _UpperCAmelCase )
if "\n" in token:
__snake_case : int = token.replace('\n' , ' __newln__' )
__snake_case : Optional[int] = token.split(' ' )
__snake_case : Tuple = []
for token in tokens:
if not len(_UpperCAmelCase ):
continue
__snake_case : List[str] = token.lower()
__snake_case : Optional[Any] = tuple(_UpperCAmelCase )
__snake_case : Optional[int] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] )
__snake_case : Optional[Any] = get_pairs(_UpperCAmelCase )
if not pairs:
words.append(_UpperCAmelCase )
continue
while True:
__snake_case : Union[str, Any] = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
__snake_case , __snake_case : List[Any] = bigram
__snake_case : Optional[int] = []
__snake_case : Optional[int] = 0
while i < len(_UpperCAmelCase ):
try:
__snake_case : List[Any] = word.index(_UpperCAmelCase , _UpperCAmelCase )
new_word.extend(word[i:j] )
__snake_case : Optional[Any] = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__snake_case : int = tuple(_UpperCAmelCase )
__snake_case : Dict = new_word
if len(_UpperCAmelCase ) == 1:
break
else:
__snake_case : Dict = get_pairs(_UpperCAmelCase )
__snake_case : Union[str, Any] = '@@ '.join(_UpperCAmelCase )
__snake_case : Optional[int] = word[:-4]
__snake_case : Union[str, Any] = word
words.append(_UpperCAmelCase )
return " ".join(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Any = []
__snake_case : int = re.findall(R'\S+\n?' , _UpperCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(_UpperCAmelCase ).split(' ' ) ) )
return split_tokens
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Dict = token.lower()
return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) )
def lowercase_ ( self , _UpperCAmelCase ):
return self.decoder.get(_UpperCAmelCase , self.unk_token )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : str = ' '.join(_UpperCAmelCase ).replace('@@ ' , '' ).strip()
return out_string
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : int = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
__snake_case : str = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '\n' )
__snake_case : str = 0
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
__snake_case : Union[str, Any] = token_index
writer.write(' '.join(_UpperCAmelCase ) + '\n' )
index += 1
return vocab_file, merge_file
| 679 | def UpperCAmelCase__( __UpperCAmelCase : int | float | str ):
try:
__snake_case : int = float(__UpperCAmelCase )
except ValueError:
raise ValueError('Please enter a valid number' )
__snake_case : Any = decimal - int(__UpperCAmelCase )
if fractional_part == 0:
return int(__UpperCAmelCase ), 1
else:
__snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] )
__snake_case : Tuple = int(decimal * (10**number_of_frac_digits) )
__snake_case : List[Any] = 10**number_of_frac_digits
__snake_case , __snake_case : List[Any] = denominator, numerator
while True:
__snake_case : Any = dividend % divisor
if remainder == 0:
break
__snake_case , __snake_case : Optional[int] = divisor, remainder
__snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor
return int(__UpperCAmelCase ), int(__UpperCAmelCase )
if __name__ == "__main__":
print(F'''{decimal_to_fraction(2) = }''')
print(F'''{decimal_to_fraction(89.0) = }''')
print(F'''{decimal_to_fraction("67") = }''')
print(F'''{decimal_to_fraction("45.0") = }''')
print(F'''{decimal_to_fraction(1.5) = }''')
print(F'''{decimal_to_fraction("6.25") = }''')
print(F'''{decimal_to_fraction("78td") = }''')
| 679 | 1 |
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ):
try:
__snake_case : int = float(__UpperCAmelCase )
except ValueError:
raise ValueError('Please enter a valid number' )
__snake_case : Any = decimal - int(__UpperCAmelCase )
if fractional_part == 0:
return int(__UpperCAmelCase ), 1
else:
__snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] )
__snake_case : Tuple = int(decimal * (10**number_of_frac_digits) )
__snake_case : List[Any] = 10**number_of_frac_digits
__snake_case , __snake_case : List[Any] = denominator, numerator
while True:
__snake_case : Any = dividend % divisor
if remainder == 0:
break
__snake_case , __snake_case : Optional[int] = divisor, remainder
__snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor
return int(__UpperCAmelCase ), int(__UpperCAmelCase )
if __name__ == "__main__":
print(F'''{decimal_to_fraction(2) = }''')
print(F'''{decimal_to_fraction(89.0) = }''')
print(F'''{decimal_to_fraction("67") = }''')
print(F'''{decimal_to_fraction("45.0") = }''')
print(F'''{decimal_to_fraction(1.5) = }''')
print(F'''{decimal_to_fraction("6.25") = }''')
print(F'''{decimal_to_fraction("78td") = }''')
| 679 | import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
__magic_name__ = logging.getLogger(__name__)
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
__UpperCAmelCase = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def lowercase_ ( self ):
if self.train_file is not None:
__snake_case : Union[str, Any] = self.train_file.split('.' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
__snake_case : List[str] = self.validation_file.split('.' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = True
__UpperCAmelCase = None
__UpperCAmelCase = None
def __call__( self , _UpperCAmelCase ):
__snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels'
__snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features]
__snake_case : List[Any] = len(_UpperCAmelCase )
__snake_case : Union[str, Any] = len(features[0]['input_ids'] )
__snake_case : Union[str, Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features
]
__snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) )
__snake_case : Optional[Any] = self.tokenizer.pad(
_UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
# Un-flatten
__snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()}
# Add back labels
__snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa )
return batch
def UpperCAmelCase__( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__snake_case : Tuple = training_args.get_process_log_level()
logger.setLevel(__UpperCAmelCase )
datasets.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
__snake_case : Dict = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__snake_case : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
__snake_case : Optional[int] = {}
if data_args.train_file is not None:
__snake_case : Optional[int] = data_args.train_file
if data_args.validation_file is not None:
__snake_case : int = data_args.validation_file
__snake_case : int = data_args.train_file.split('.' )[-1]
__snake_case : Tuple = load_dataset(
__UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
__snake_case : Optional[int] = load_dataset(
'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__snake_case : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__snake_case : str = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
__snake_case : str = [F"""ending{i}""" for i in range(4 )]
__snake_case : Optional[Any] = 'sent1'
__snake_case : Tuple = 'sent2'
if data_args.max_seq_length is None:
__snake_case : List[Any] = tokenizer.model_max_length
if max_seq_length > 10_24:
logger.warning(
'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'
' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'
' override this default with `--block_size xxx`.' )
__snake_case : List[Any] = 10_24
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
__snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(__UpperCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]]
__snake_case : Union[str, Any] = examples[question_header_name]
__snake_case : Optional[int] = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase )
]
# Flatten out
__snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) )
__snake_case : int = list(chain(*__UpperCAmelCase ) )
# Tokenize
__snake_case : Tuple = tokenizer(
__UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset' )
__snake_case : Optional[Any] = raw_datasets['train']
if data_args.max_train_samples is not None:
__snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples )
__snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
__snake_case : int = train_dataset.map(
__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset' )
__snake_case : Optional[Any] = raw_datasets['validation']
if data_args.max_eval_samples is not None:
__snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples )
__snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
__snake_case : List[Any] = eval_dataset.map(
__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
__snake_case : str = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(__UpperCAmelCase : int ):
__snake_case , __snake_case : Union[str, Any] = eval_predictions
__snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
__snake_case : List[str] = Trainer(
model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , )
# Training
if training_args.do_train:
__snake_case : Dict = None
if training_args.resume_from_checkpoint is not None:
__snake_case : Any = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__snake_case : List[str] = last_checkpoint
__snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase )
trainer.save_model() # Saves the tokenizer too for easy upload
__snake_case : List[Any] = train_result.metrics
__snake_case : Optional[Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase )
)
__snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.log_metrics('train' , __UpperCAmelCase )
trainer.save_metrics('train' , __UpperCAmelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__snake_case : Dict = trainer.evaluate()
__snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase )
__snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.log_metrics('eval' , __UpperCAmelCase )
trainer.save_metrics('eval' , __UpperCAmelCase )
__snake_case : List[Any] = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'multiple-choice',
'dataset_tags': 'swag',
'dataset_args': 'regular',
'dataset': 'SWAG',
'language': 'en',
}
if training_args.push_to_hub:
trainer.push_to_hub(**__UpperCAmelCase )
else:
trainer.create_model_card(**__UpperCAmelCase )
def UpperCAmelCase__( __UpperCAmelCase : Dict ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 679 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__magic_name__ = {
'''configuration_m2m_100''': ['''M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''M2M100Config''', '''M2M100OnnxConfig'''],
'''tokenization_m2m_100''': ['''M2M100Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'''M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''M2M100ForConditionalGeneration''',
'''M2M100Model''',
'''M2M100PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 679 | import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = '''▁'''
__magic_name__ = {
'''vocab_file''': '''vocab.json''',
'''spm_file''': '''sentencepiece.bpe.model''',
}
__magic_name__ = {
'''vocab_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'''
),
},
'''spm_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'''
)
},
}
__magic_name__ = {
'''facebook/s2t-small-librispeech-asr''': 1_024,
}
__magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de''']
__magic_name__ = {'''mustc''': MUSTC_LANGS}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = MAX_MODEL_INPUT_SIZES
__UpperCAmelCase = ["input_ids", "attention_mask"]
__UpperCAmelCase = []
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ):
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
__snake_case : Dict = do_upper_case
__snake_case : Optional[Any] = do_lower_case
__snake_case : List[Any] = load_json(_UpperCAmelCase )
__snake_case : Dict = {v: k for k, v in self.encoder.items()}
__snake_case : Optional[Any] = spm_file
__snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs )
if lang_codes is not None:
__snake_case : Optional[Any] = lang_codes
__snake_case : int = LANGUAGES[lang_codes]
__snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs]
__snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs}
__snake_case : Dict = self.lang_tokens
__snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
__snake_case : Optional[int] = {}
@property
def lowercase_ ( self ):
return len(self.encoder )
@property
def lowercase_ ( self ):
return self._tgt_lang
@tgt_lang.setter
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : str = new_tgt_lang
self.set_tgt_lang_special_tokens(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Tuple = self.lang_code_to_id[tgt_lang]
__snake_case : Optional[Any] = [lang_code_id]
def lowercase_ ( self , _UpperCAmelCase ):
return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] )
def lowercase_ ( self , _UpperCAmelCase ):
return self.decoder.get(_UpperCAmelCase , self.unk_token )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : str = []
__snake_case : Any = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
__snake_case : Dict = self.sp_model.decode(_UpperCAmelCase )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
__snake_case : Any = []
else:
current_sub_tokens.append(_UpperCAmelCase )
__snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
__snake_case : Union[str, Any] = [1] * len(self.prefix_tokens )
__snake_case : Optional[Any] = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones
def lowercase_ ( self ):
__snake_case : List[Any] = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
__snake_case : int = self.__dict__.copy()
__snake_case : str = None
return state
def __setstate__( self , _UpperCAmelCase ):
__snake_case : List[Any] = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__snake_case : Optional[int] = {}
__snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
__snake_case : str = Path(_UpperCAmelCase )
assert save_dir.is_dir(), F"""{save_directory} should be a directory"""
__snake_case : int = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file']
)
__snake_case : Union[str, Any] = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file']
)
save_json(self.encoder , _UpperCAmelCase )
if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , _UpperCAmelCase )
elif not os.path.isfile(self.spm_file ):
with open(_UpperCAmelCase , 'wb' ) as fi:
__snake_case : List[str] = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (str(_UpperCAmelCase ), str(_UpperCAmelCase ))
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ):
__snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase )
spm.Load(str(__UpperCAmelCase ) )
return spm
def UpperCAmelCase__( __UpperCAmelCase : str ):
with open(__UpperCAmelCase , 'r' ) as f:
return json.load(__UpperCAmelCase )
def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ):
with open(__UpperCAmelCase , 'w' ) as f:
json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
| 679 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , ):
__snake_case : List[Any] = size if size is not None else {'shortest_edge': 20}
__snake_case : Optional[Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18}
__snake_case : int = parent
__snake_case : Optional[Any] = batch_size
__snake_case : Optional[int] = num_channels
__snake_case : Tuple = image_size
__snake_case : List[str] = min_resolution
__snake_case : Dict = max_resolution
__snake_case : List[str] = do_resize
__snake_case : List[Any] = size
__snake_case : Dict = do_center_crop
__snake_case : int = crop_size
def lowercase_ ( self ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = MobileNetVaImageProcessor if is_vision_available() else None
def lowercase_ ( self ):
__snake_case : Union[str, Any] = MobileNetVaImageProcessingTester(self )
@property
def lowercase_ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase_ ( self ):
__snake_case : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'crop_size' ) )
def lowercase_ ( self ):
__snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
__snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
# Initialize image_processing
__snake_case : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__snake_case : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
__snake_case : Union[str, Any] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowercase_ ( self ):
# Initialize image_processing
__snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__snake_case : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
__snake_case : int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowercase_ ( self ):
# Initialize image_processing
__snake_case : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__snake_case : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
__snake_case : str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 679 | def UpperCAmelCase__( __UpperCAmelCase : list ):
__snake_case : List[Any] = len(__UpperCAmelCase )
for _ in range(__UpperCAmelCase ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
__snake_case , __snake_case : int = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
__magic_name__ = list(range(10, 0, -1))
print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
| 679 | 1 |
from itertools import permutations
def UpperCAmelCase__( __UpperCAmelCase : tuple ):
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
__snake_case : Any = [7, 11, 13, 17]
for i, test in enumerate(__UpperCAmelCase ):
if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def UpperCAmelCase__( __UpperCAmelCase : int = 10 ):
return sum(
int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) )
for num in permutations(range(__UpperCAmelCase ) )
if is_substring_divisible(__UpperCAmelCase ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 679 | import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
__magic_name__ = '''pt'''
elif is_tf_available():
__magic_name__ = '''tf'''
else:
__magic_name__ = '''jax'''
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = PerceiverTokenizer
__UpperCAmelCase = False
def lowercase_ ( self ):
super().setUp()
__snake_case : str = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase_ ( self ):
return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' )
def lowercase_ ( self , **_UpperCAmelCase ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
__snake_case : List[Any] = []
for i in range(len(_UpperCAmelCase ) ):
try:
__snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) )
__snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) )
if max_length is not None and len(_UpperCAmelCase ) > max_length:
__snake_case : List[str] = toks[:max_length]
if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0:
while len(_UpperCAmelCase ) < min_length:
__snake_case : Optional[int] = toks + toks
# toks_str = [t[1] for t in toks]
__snake_case : List[Any] = [t[0] for t in toks]
# Ensure consistency
__snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
if " " not in output_txt and len(_UpperCAmelCase ) > 1:
__snake_case : List[str] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase )
)
if with_prefix_space:
__snake_case : List[Any] = ' ' + output_txt
__snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
return output_txt, output_ids
def lowercase_ ( self ):
__snake_case : List[Any] = self.perceiver_tokenizer
__snake_case : Dict = 'Unicode €.'
__snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase )
__snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['input_ids'] , _UpperCAmelCase )
# decoding
__snake_case : int = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' )
__snake_case : Optional[Any] = tokenizer('e è é ê ë' )
__snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['input_ids'] , _UpperCAmelCase )
# decoding
__snake_case : str = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' )
def lowercase_ ( self ):
__snake_case : Union[str, Any] = self.perceiver_tokenizer
__snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
__snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
__snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
if FRAMEWORK != "jax":
__snake_case : List[str] = list(batch.input_ids.numpy()[0] )
else:
__snake_case : List[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def lowercase_ ( self ):
__snake_case : Dict = self.perceiver_tokenizer
__snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _UpperCAmelCase )
self.assertIn('attention_mask' , _UpperCAmelCase )
self.assertNotIn('decoder_input_ids' , _UpperCAmelCase )
self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : List[str] = self.perceiver_tokenizer
__snake_case : Tuple = [
'Summary of the text.',
'Another summary.',
]
__snake_case : int = tokenizer(
text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def lowercase_ ( self ):
# safety check on max_len default value so we are sure the test works
__snake_case : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Tuple = tempfile.mkdtemp()
__snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running'
__snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
__snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
__snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
shutil.rmtree(_UpperCAmelCase )
__snake_case : Dict = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Tuple = tempfile.mkdtemp()
__snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
__snake_case : Optional[int] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
__snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
__snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
__snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Tuple = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
__snake_case : Any = json.load(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
__snake_case : List[str] = json.load(_UpperCAmelCase )
__snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )]
__snake_case : Dict = added_tokens_extra_ids + [
'an_additional_special_token'
]
__snake_case : List[Any] = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Optional[Any] = tokenizer_class.from_pretrained(
_UpperCAmelCase , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )]
__snake_case : str = tokenizer_class.from_pretrained(
_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def lowercase_ ( self ):
__snake_case : Tuple = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , '�' )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
__snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
__snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]']
__snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
| 679 | 1 |
from ... import PretrainedConfig
__magic_name__ = {
'''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''',
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
__UpperCAmelCase = "nezha"
def __init__( self , _UpperCAmelCase=21_128 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , **_UpperCAmelCase , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__snake_case : str = vocab_size
__snake_case : Dict = hidden_size
__snake_case : List[Any] = num_hidden_layers
__snake_case : Optional[int] = num_attention_heads
__snake_case : List[str] = hidden_act
__snake_case : Any = intermediate_size
__snake_case : Union[str, Any] = hidden_dropout_prob
__snake_case : str = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = max_relative_position
__snake_case : List[Any] = type_vocab_size
__snake_case : List[Any] = initializer_range
__snake_case : int = layer_norm_eps
__snake_case : Optional[int] = classifier_dropout
__snake_case : str = use_cache
| 679 | from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = None
# Automatically constructed
__UpperCAmelCase = "dict"
__UpperCAmelCase = None
__UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase)
def __call__( self ):
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def lowercase_ ( self ):
from .features import Value
return {k: Value('string' ) for k in sorted(self.languages )}
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
# Automatically constructed
__UpperCAmelCase = "dict"
__UpperCAmelCase = None
__UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase)
def lowercase_ ( self ):
__snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None
__snake_case : Optional[Any] = len(self.languages ) if self.languages else None
def __call__( self ):
return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Optional[int] = set(self.languages )
if self.languages and set(_UpperCAmelCase ) - lang_set:
raise ValueError(
F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__snake_case : Any = []
for lang, text in translation_dict.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def lowercase_ ( self ):
from .features import Sequence, Value
return {
"language": Sequence(Value('string' ) ),
"translation": Sequence(Value('string' ) ),
}
| 679 | 1 |
def UpperCAmelCase__( __UpperCAmelCase : int = 10**9 ):
__snake_case : int = 1
__snake_case : Optional[Any] = 2
__snake_case : List[Any] = 0
__snake_case : int = 0
__snake_case : Union[str, Any] = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
__snake_case : Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F'''{solution() = }''')
| 679 | from __future__ import annotations
__magic_name__ = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ):
__snake_case : Optional[int] = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) )
] # the reference grid
__snake_case : List[str] = 1
__snake_case : str = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) )
] # the action grid
__snake_case : Dict = init[0]
__snake_case : List[str] = init[1]
__snake_case : Optional[Any] = 0
__snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell
__snake_case : Any = [[f, g, x, y]]
__snake_case : List[str] = False # flag that is set when search is complete
__snake_case : str = False # flag set if we can't find expand
while not found and not resign:
if len(__UpperCAmelCase ) == 0:
raise ValueError('Algorithm is unable to find solution' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
__snake_case : List[Any] = cell.pop()
__snake_case : Optional[int] = next_cell[2]
__snake_case : int = next_cell[3]
__snake_case : Optional[Any] = next_cell[1]
if x == goal[0] and y == goal[1]:
__snake_case : Union[str, Any] = True
else:
for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions
__snake_case : Tuple = x + DIRECTIONS[i][0]
__snake_case : Tuple = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
__snake_case : List[str] = g + cost
__snake_case : Optional[Any] = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
__snake_case : Dict = 1
__snake_case : Any = i
__snake_case : Tuple = []
__snake_case : Dict = goal[0]
__snake_case : Optional[int] = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
__snake_case : Tuple = x - DIRECTIONS[action[x][y]][0]
__snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1]
__snake_case : Tuple = xa
__snake_case : List[str] = ya
invpath.append([x, y] )
__snake_case : Dict = []
for i in range(len(__UpperCAmelCase ) ):
path.append(invpath[len(__UpperCAmelCase ) - 1 - i] )
return path, action
if __name__ == "__main__":
__magic_name__ = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
__magic_name__ = [0, 0]
# all coordinates are given in format [y,x]
__magic_name__ = [len(grid) - 1, len(grid[0]) - 1]
__magic_name__ = 1
# the cost map which pushes the path closer to the goal
__magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
__magic_name__ = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
__magic_name__ = 99
__magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic)
print('''ACTION MAP''')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 679 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {
'''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''',
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "wav2vec2"
def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="sum" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1_500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ):
super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase )
__snake_case : List[str] = hidden_size
__snake_case : int = feat_extract_norm
__snake_case : str = feat_extract_activation
__snake_case : Union[str, Any] = list(_UpperCAmelCase )
__snake_case : Optional[Any] = list(_UpperCAmelCase )
__snake_case : Dict = list(_UpperCAmelCase )
__snake_case : Any = conv_bias
__snake_case : List[Any] = num_conv_pos_embeddings
__snake_case : Union[str, Any] = num_conv_pos_embedding_groups
__snake_case : int = len(self.conv_dim )
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : List[str] = intermediate_size
__snake_case : List[Any] = hidden_act
__snake_case : Optional[Any] = num_attention_heads
__snake_case : Tuple = hidden_dropout
__snake_case : Optional[int] = attention_dropout
__snake_case : str = activation_dropout
__snake_case : Optional[int] = feat_proj_dropout
__snake_case : Optional[int] = final_dropout
__snake_case : str = layerdrop
__snake_case : List[Any] = layer_norm_eps
__snake_case : Dict = initializer_range
__snake_case : str = vocab_size
__snake_case : Dict = do_stable_layer_norm
__snake_case : Any = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__snake_case : str = apply_spec_augment
__snake_case : Tuple = mask_time_prob
__snake_case : int = mask_time_length
__snake_case : List[str] = mask_time_min_masks
__snake_case : List[str] = mask_feature_prob
__snake_case : Union[str, Any] = mask_feature_length
__snake_case : Optional[Any] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__snake_case : Optional[int] = num_codevectors_per_group
__snake_case : Any = num_codevector_groups
__snake_case : str = contrastive_logits_temperature
__snake_case : List[Any] = feat_quantizer_dropout
__snake_case : int = num_negatives
__snake_case : Dict = codevector_dim
__snake_case : Tuple = proj_codevector_dim
__snake_case : Optional[Any] = diversity_loss_weight
# ctc loss
__snake_case : str = ctc_loss_reduction
__snake_case : List[str] = ctc_zero_infinity
# adapter
__snake_case : Optional[Any] = add_adapter
__snake_case : Dict = adapter_kernel_size
__snake_case : List[str] = adapter_stride
__snake_case : Optional[int] = num_adapter_layers
__snake_case : Any = output_hidden_size or hidden_size
__snake_case : Union[str, Any] = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__snake_case : Optional[Any] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__snake_case : Dict = list(_UpperCAmelCase )
__snake_case : Optional[int] = list(_UpperCAmelCase )
__snake_case : Optional[Any] = list(_UpperCAmelCase )
__snake_case : Any = xvector_output_dim
@property
def lowercase_ ( self ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 679 | import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {
'''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''',
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "instructblip_vision_model"
def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ):
super().__init__(**_UpperCAmelCase )
__snake_case : Optional[Any] = hidden_size
__snake_case : Any = intermediate_size
__snake_case : str = num_hidden_layers
__snake_case : Any = num_attention_heads
__snake_case : int = patch_size
__snake_case : Dict = image_size
__snake_case : Any = initializer_range
__snake_case : List[Any] = attention_dropout
__snake_case : Optional[Any] = layer_norm_eps
__snake_case : Optional[int] = hidden_act
__snake_case : int = qkv_bias
@classmethod
def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ):
cls._set_token_in_kwargs(_UpperCAmelCase )
__snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
__snake_case : Any = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "instructblip_qformer"
def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__snake_case : Union[str, Any] = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : str = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Optional[Any] = hidden_act
__snake_case : int = intermediate_size
__snake_case : str = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = max_position_embeddings
__snake_case : Dict = initializer_range
__snake_case : Any = layer_norm_eps
__snake_case : Union[str, Any] = position_embedding_type
__snake_case : Optional[int] = cross_attention_frequency
__snake_case : Union[str, Any] = encoder_hidden_size
@classmethod
def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ):
cls._set_token_in_kwargs(_UpperCAmelCase )
__snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
__snake_case : List[Any] = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "instructblip"
__UpperCAmelCase = True
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ):
super().__init__(**_UpperCAmelCase )
if vision_config is None:
__snake_case : List[str] = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
__snake_case : Union[str, Any] = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
__snake_case : str = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
__snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase )
__snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase )
__snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt'
__snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase )
__snake_case : List[Any] = self.text_config.tie_word_embeddings
__snake_case : Optional[int] = self.text_config.is_encoder_decoder
__snake_case : List[str] = num_query_tokens
__snake_case : Tuple = self.vision_config.hidden_size
__snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__snake_case : str = 1.0
__snake_case : Optional[int] = 0.02
@classmethod
def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , )
def lowercase_ ( self ):
__snake_case : Tuple = copy.deepcopy(self.__dict__ )
__snake_case : Tuple = self.vision_config.to_dict()
__snake_case : List[Any] = self.qformer_config.to_dict()
__snake_case : Optional[int] = self.text_config.to_dict()
__snake_case : List[str] = self.__class__.model_type
return output
| 679 | 1 |
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
__magic_name__ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
__magic_name__ = [ord(letter) for letter in string.ascii_lowercase]
__magic_name__ = {ord(char) for char in VALID_CHARS}
__magic_name__ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def UpperCAmelCase__( __UpperCAmelCase : list[int] , __UpperCAmelCase : tuple[int, ...] ):
__snake_case : str = ""
__snake_case : int
__snake_case : int
__snake_case : int
for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ):
__snake_case : List[str] = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(__UpperCAmelCase )
return decoded
def UpperCAmelCase__( __UpperCAmelCase : list[int] ):
__snake_case : list[str] = []
for key in product(__UpperCAmelCase , repeat=3 ):
__snake_case : List[str] = try_key(__UpperCAmelCase , __UpperCAmelCase )
if encoded is not None:
possibles.append(__UpperCAmelCase )
return possibles
def UpperCAmelCase__( __UpperCAmelCase : list[str] , __UpperCAmelCase : str ):
return [possible for possible in possibles if common_word in possible.lower()]
def UpperCAmelCase__( __UpperCAmelCase : str = "p059_cipher.txt" ):
__snake_case : list[int]
__snake_case : list[str]
__snake_case : str
__snake_case : str
__snake_case : str = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='utf-8' )
__snake_case : Tuple = [int(__UpperCAmelCase ) for number in data.strip().split(',' )]
__snake_case : List[Any] = filter_valid_chars(__UpperCAmelCase )
for common_word in COMMON_WORDS:
__snake_case : Tuple = filter_common_word(__UpperCAmelCase , __UpperCAmelCase )
if len(__UpperCAmelCase ) == 1:
break
__snake_case : int = possibles[0]
return sum(ord(__UpperCAmelCase ) for char in decoded_text )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 679 | import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
__magic_name__ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ):
warnings.warn(
'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use BeitImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 679 | 1 |
import numpy as np
def UpperCAmelCase__( __UpperCAmelCase : np.ndarray ):
return 1 / (1 + np.exp(-vector ))
def UpperCAmelCase__( __UpperCAmelCase : np.ndarray ):
return vector * sigmoid(__UpperCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 679 | import math
import os
import sys
def UpperCAmelCase__( __UpperCAmelCase : str ):
__snake_case : Union[str, Any] = ''
try:
with open(__UpperCAmelCase , 'rb' ) as binary_file:
__snake_case : Optional[Any] = binary_file.read()
for dat in data:
__snake_case : Tuple = F"""{dat:08b}"""
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ):
lexicon.pop(__UpperCAmelCase )
__snake_case : Union[str, Any] = last_match_id
if math.loga(__UpperCAmelCase ).is_integer():
for curr_key in lexicon:
__snake_case : Tuple = '0' + lexicon[curr_key]
__snake_case : Any = bin(__UpperCAmelCase )[2:]
def UpperCAmelCase__( __UpperCAmelCase : str ):
__snake_case : Tuple = {'0': '0', '1': '1'}
__snake_case , __snake_case : Optional[int] = '', ''
__snake_case : str = len(__UpperCAmelCase )
for i in range(len(__UpperCAmelCase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
__snake_case : Optional[int] = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
index += 1
__snake_case : Union[str, Any] = ''
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
__snake_case : Any = lexicon[curr_string]
result += last_match_id
return result
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ):
__snake_case : str = os.path.getsize(__UpperCAmelCase )
__snake_case : List[Any] = bin(__UpperCAmelCase )[2:]
__snake_case : Any = len(__UpperCAmelCase )
return "0" * (length_length - 1) + file_length_binary + compressed
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ):
__snake_case : Tuple = 8
try:
with open(__UpperCAmelCase , 'wb' ) as opened_file:
__snake_case : int = [
to_write[i : i + byte_length]
for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ):
__snake_case : str = read_file_binary(__UpperCAmelCase )
__snake_case : Tuple = compress_data(__UpperCAmelCase )
__snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase )
write_file_binary(__UpperCAmelCase , __UpperCAmelCase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 679 | 1 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
__magic_name__ = logging.get_logger(__name__)
# General docstring
__magic_name__ = '''ResNetConfig'''
# Base docstring
__magic_name__ = '''microsoft/resnet-50'''
__magic_name__ = [1, 2_048, 7, 7]
# Image classification docstring
__magic_name__ = '''microsoft/resnet-50'''
__magic_name__ = '''tiger cat'''
__magic_name__ = [
'''microsoft/resnet-50''',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __SCREAMING_SNAKE_CASE ( nn.Module):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 3 , _UpperCAmelCase = 1 , _UpperCAmelCase = "relu" ):
super().__init__()
__snake_case : Tuple = nn.Convad(
_UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , bias=_UpperCAmelCase )
__snake_case : Tuple = nn.BatchNormad(_UpperCAmelCase )
__snake_case : List[str] = ACTaFN[activation] if activation is not None else nn.Identity()
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Union[str, Any] = self.convolution(_UpperCAmelCase )
__snake_case : Any = self.normalization(_UpperCAmelCase )
__snake_case : Union[str, Any] = self.activation(_UpperCAmelCase )
return hidden_state
class __SCREAMING_SNAKE_CASE ( nn.Module):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
super().__init__()
__snake_case : Dict = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
__snake_case : Union[str, Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
__snake_case : Optional[int] = config.num_channels
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : str = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
__snake_case : int = self.embedder(_UpperCAmelCase )
__snake_case : Optional[int] = self.pooler(_UpperCAmelCase )
return embedding
class __SCREAMING_SNAKE_CASE ( nn.Module):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 2 ):
super().__init__()
__snake_case : Union[str, Any] = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase )
__snake_case : List[Any] = nn.BatchNormad(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Tuple = self.convolution(_UpperCAmelCase )
__snake_case : int = self.normalization(_UpperCAmelCase )
return hidden_state
class __SCREAMING_SNAKE_CASE ( nn.Module):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , _UpperCAmelCase = "relu" ):
super().__init__()
__snake_case : List[Any] = in_channels != out_channels or stride != 1
__snake_case : Any = (
ResNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__snake_case : Optional[int] = nn.Sequential(
ResNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) , ResNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , activation=_UpperCAmelCase ) , )
__snake_case : List[str] = ACTaFN[activation]
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : List[Any] = hidden_state
__snake_case : Optional[Any] = self.layer(_UpperCAmelCase )
__snake_case : Optional[Any] = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__snake_case : Optional[Any] = self.activation(_UpperCAmelCase )
return hidden_state
class __SCREAMING_SNAKE_CASE ( nn.Module):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , _UpperCAmelCase = "relu" , _UpperCAmelCase = 4 ):
super().__init__()
__snake_case : Union[str, Any] = in_channels != out_channels or stride != 1
__snake_case : int = out_channels // reduction
__snake_case : List[Any] = (
ResNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__snake_case : str = nn.Sequential(
ResNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , ResNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) , ResNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__snake_case : Union[str, Any] = ACTaFN[activation]
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Dict = hidden_state
__snake_case : int = self.layer(_UpperCAmelCase )
__snake_case : List[str] = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__snake_case : List[str] = self.activation(_UpperCAmelCase )
return hidden_state
class __SCREAMING_SNAKE_CASE ( nn.Module):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , ):
super().__init__()
__snake_case : Union[str, Any] = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer
__snake_case : Optional[int] = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , activation=config.hidden_act ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Tuple = input
for layer in self.layers:
__snake_case : int = layer(_UpperCAmelCase )
return hidden_state
class __SCREAMING_SNAKE_CASE ( nn.Module):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
super().__init__()
__snake_case : int = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
_UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
__snake_case : List[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ):
self.stages.append(ResNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = True ):
__snake_case : int = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__snake_case : List[str] = hidden_states + (hidden_state,)
__snake_case : Any = stage_module(_UpperCAmelCase )
if output_hidden_states:
__snake_case : Any = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase , )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = ResNetConfig
__UpperCAmelCase = "resnet"
__UpperCAmelCase = "pixel_values"
__UpperCAmelCase = True
def lowercase_ ( self , _UpperCAmelCase ):
if isinstance(_UpperCAmelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' )
elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__snake_case : str = value
__magic_name__ = r'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
__magic_name__ = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
"The bare ResNet model outputting raw features without any specific head on top." , UpperCamelCase , )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
super().__init__(_UpperCAmelCase )
__snake_case : List[str] = config
__snake_case : List[Any] = ResNetEmbeddings(_UpperCAmelCase )
__snake_case : Optional[int] = ResNetEncoder(_UpperCAmelCase )
__snake_case : List[Any] = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ):
__snake_case : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict
__snake_case : List[str] = self.embedder(_UpperCAmelCase )
__snake_case : Optional[Any] = self.encoder(
_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__snake_case : Optional[int] = encoder_outputs[0]
__snake_case : str = self.pooler(_UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCamelCase , )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
super().__init__(_UpperCAmelCase )
__snake_case : List[str] = config.num_labels
__snake_case : List[str] = ResNetModel(_UpperCAmelCase )
# classification head
__snake_case : List[Any] = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowercase_ ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ):
__snake_case : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
__snake_case : Optional[Any] = self.resnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__snake_case : str = outputs.pooler_output if return_dict else outputs[1]
__snake_case : Union[str, Any] = self.classifier(_UpperCAmelCase )
__snake_case : List[str] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__snake_case : Optional[Any] = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__snake_case : Optional[int] = 'single_label_classification'
else:
__snake_case : List[Any] = 'multi_label_classification'
if self.config.problem_type == "regression":
__snake_case : int = MSELoss()
if self.num_labels == 1:
__snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__snake_case : List[str] = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
__snake_case : str = CrossEntropyLoss()
__snake_case : List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__snake_case : Any = BCEWithLogitsLoss()
__snake_case : Dict = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
if not return_dict:
__snake_case : List[Any] = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
@add_start_docstrings(
"\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , UpperCamelCase , )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
super().__init__(_UpperCAmelCase )
super()._init_backbone(_UpperCAmelCase )
__snake_case : List[str] = [config.embedding_size] + config.hidden_sizes
__snake_case : Optional[Any] = ResNetEmbeddings(_UpperCAmelCase )
__snake_case : List[str] = ResNetEncoder(_UpperCAmelCase )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@replace_return_docstrings(output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ):
__snake_case : str = return_dict if return_dict is not None else self.config.use_return_dict
__snake_case : int = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__snake_case : List[Any] = self.embedder(_UpperCAmelCase )
__snake_case : str = self.encoder(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__snake_case : Tuple = outputs.hidden_states
__snake_case : Optional[int] = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
__snake_case : int = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=_UpperCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_UpperCAmelCase , )
| 679 | from itertools import permutations
def UpperCAmelCase__( __UpperCAmelCase : tuple ):
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
__snake_case : Any = [7, 11, 13, 17]
for i, test in enumerate(__UpperCAmelCase ):
if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def UpperCAmelCase__( __UpperCAmelCase : int = 10 ):
return sum(
int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) )
for num in permutations(range(__UpperCAmelCase ) )
if is_substring_divisible(__UpperCAmelCase ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 679 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
__magic_name__ = logging.getLogger(__name__)
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
__UpperCAmelCase = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def lowercase_ ( self ):
if self.train_file is not None:
__snake_case : Union[str, Any] = self.train_file.split('.' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
__snake_case : List[str] = self.validation_file.split('.' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = True
__UpperCAmelCase = None
__UpperCAmelCase = None
def __call__( self , _UpperCAmelCase ):
__snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels'
__snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features]
__snake_case : List[Any] = len(_UpperCAmelCase )
__snake_case : Union[str, Any] = len(features[0]['input_ids'] )
__snake_case : Union[str, Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features
]
__snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) )
__snake_case : Optional[Any] = self.tokenizer.pad(
_UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
# Un-flatten
__snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()}
# Add back labels
__snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa )
return batch
def UpperCAmelCase__( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__snake_case : Tuple = training_args.get_process_log_level()
logger.setLevel(__UpperCAmelCase )
datasets.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
__snake_case : Dict = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__snake_case : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
__snake_case : Optional[int] = {}
if data_args.train_file is not None:
__snake_case : Optional[int] = data_args.train_file
if data_args.validation_file is not None:
__snake_case : int = data_args.validation_file
__snake_case : int = data_args.train_file.split('.' )[-1]
__snake_case : Tuple = load_dataset(
__UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
__snake_case : Optional[int] = load_dataset(
'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__snake_case : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__snake_case : str = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
__snake_case : str = [F"""ending{i}""" for i in range(4 )]
__snake_case : Optional[Any] = 'sent1'
__snake_case : Tuple = 'sent2'
if data_args.max_seq_length is None:
__snake_case : List[Any] = tokenizer.model_max_length
if max_seq_length > 10_24:
logger.warning(
'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'
' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'
' override this default with `--block_size xxx`.' )
__snake_case : List[Any] = 10_24
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
__snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(__UpperCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]]
__snake_case : Union[str, Any] = examples[question_header_name]
__snake_case : Optional[int] = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase )
]
# Flatten out
__snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) )
__snake_case : int = list(chain(*__UpperCAmelCase ) )
# Tokenize
__snake_case : Tuple = tokenizer(
__UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset' )
__snake_case : Optional[Any] = raw_datasets['train']
if data_args.max_train_samples is not None:
__snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples )
__snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
__snake_case : int = train_dataset.map(
__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset' )
__snake_case : Optional[Any] = raw_datasets['validation']
if data_args.max_eval_samples is not None:
__snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples )
__snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
__snake_case : List[Any] = eval_dataset.map(
__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
__snake_case : str = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(__UpperCAmelCase : int ):
__snake_case , __snake_case : Union[str, Any] = eval_predictions
__snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
__snake_case : List[str] = Trainer(
model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , )
# Training
if training_args.do_train:
__snake_case : Dict = None
if training_args.resume_from_checkpoint is not None:
__snake_case : Any = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__snake_case : List[str] = last_checkpoint
__snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase )
trainer.save_model() # Saves the tokenizer too for easy upload
__snake_case : List[Any] = train_result.metrics
__snake_case : Optional[Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase )
)
__snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.log_metrics('train' , __UpperCAmelCase )
trainer.save_metrics('train' , __UpperCAmelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__snake_case : Dict = trainer.evaluate()
__snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase )
__snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.log_metrics('eval' , __UpperCAmelCase )
trainer.save_metrics('eval' , __UpperCAmelCase )
__snake_case : List[Any] = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'multiple-choice',
'dataset_tags': 'swag',
'dataset_args': 'regular',
'dataset': 'SWAG',
'language': 'en',
}
if training_args.push_to_hub:
trainer.push_to_hub(**__UpperCAmelCase )
else:
trainer.create_model_card(**__UpperCAmelCase )
def UpperCAmelCase__( __UpperCAmelCase : Dict ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 679 | # Function to print upper half of diamond (pyramid)
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
for i in range(0 , __UpperCAmelCase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(' ' , end='' )
for _ in range(0 , i + 1 ): # printing stars
print('* ' , end='' )
print()
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
for i in range(__UpperCAmelCase , 0 , -1 ):
for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars
print('* ' , end='' )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(' ' , end='' )
def UpperCAmelCase__( __UpperCAmelCase : List[Any] ):
if n <= 0:
print(' ... .... nothing printing :(' )
return
floyd(__UpperCAmelCase ) # upper half
reverse_floyd(__UpperCAmelCase ) # lower half
if __name__ == "__main__":
print(r'''| /\ | |- | |- |--| |\ /| |-''')
print(r'''|/ \| |- |_ |_ |__| | \/ | |_''')
__magic_name__ = 1
while K:
__magic_name__ = int(input('''enter the number and , and see the magic : '''))
print()
pretty_print(user_number)
__magic_name__ = int(input('''press 0 to exit... and 1 to continue...'''))
print('''Good Bye...''')
| 679 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {
'''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''',
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "instructblip_vision_model"
def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ):
super().__init__(**_UpperCAmelCase )
__snake_case : Optional[Any] = hidden_size
__snake_case : Any = intermediate_size
__snake_case : str = num_hidden_layers
__snake_case : Any = num_attention_heads
__snake_case : int = patch_size
__snake_case : Dict = image_size
__snake_case : Any = initializer_range
__snake_case : List[Any] = attention_dropout
__snake_case : Optional[Any] = layer_norm_eps
__snake_case : Optional[int] = hidden_act
__snake_case : int = qkv_bias
@classmethod
def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ):
cls._set_token_in_kwargs(_UpperCAmelCase )
__snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
__snake_case : Any = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "instructblip_qformer"
def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__snake_case : Union[str, Any] = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : str = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Optional[Any] = hidden_act
__snake_case : int = intermediate_size
__snake_case : str = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = max_position_embeddings
__snake_case : Dict = initializer_range
__snake_case : Any = layer_norm_eps
__snake_case : Union[str, Any] = position_embedding_type
__snake_case : Optional[int] = cross_attention_frequency
__snake_case : Union[str, Any] = encoder_hidden_size
@classmethod
def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ):
cls._set_token_in_kwargs(_UpperCAmelCase )
__snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
__snake_case : List[Any] = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "instructblip"
__UpperCAmelCase = True
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ):
super().__init__(**_UpperCAmelCase )
if vision_config is None:
__snake_case : List[str] = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
__snake_case : Union[str, Any] = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
__snake_case : str = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
__snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase )
__snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase )
__snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt'
__snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase )
__snake_case : List[Any] = self.text_config.tie_word_embeddings
__snake_case : Optional[int] = self.text_config.is_encoder_decoder
__snake_case : List[str] = num_query_tokens
__snake_case : Tuple = self.vision_config.hidden_size
__snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__snake_case : str = 1.0
__snake_case : Optional[int] = 0.02
@classmethod
def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , )
def lowercase_ ( self ):
__snake_case : Tuple = copy.deepcopy(self.__dict__ )
__snake_case : Tuple = self.vision_config.to_dict()
__snake_case : List[Any] = self.qformer_config.to_dict()
__snake_case : Optional[int] = self.text_config.to_dict()
__snake_case : List[str] = self.__class__.model_type
return output
| 679 | from timeit import timeit
def UpperCAmelCase__( __UpperCAmelCase : int ):
if number < 0:
raise ValueError('the value of input must not be negative' )
__snake_case : Dict = 0
while number:
number &= number - 1
result += 1
return result
def UpperCAmelCase__( __UpperCAmelCase : int ):
if number < 0:
raise ValueError('the value of input must not be negative' )
__snake_case : Tuple = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def UpperCAmelCase__( ):
def do_benchmark(__UpperCAmelCase : int ) -> None:
__snake_case : Optional[Any] = 'import __main__ as z'
print(F"""Benchmark when {number = }:""" )
print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" )
__snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase )
print(F"""timeit() runs in {timing} seconds""" )
print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" )
__snake_case : Dict = timeit(
'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , )
print(F"""timeit() runs in {timing} seconds""" )
for number in (25, 37, 58, 0):
do_benchmark(__UpperCAmelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 679 | 1 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def lowercase_ ( self , _UpperCAmelCase ):
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
__snake_case : Optional[int] = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' )
__snake_case : int = input_file.read()
__snake_case : List[Any] = regexp.search(_UpperCAmelCase )
return match
def lowercase_ ( self , _UpperCAmelCase ):
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
__snake_case : Any = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL )
__snake_case : Tuple = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
__snake_case : str = regexp.finditer(_UpperCAmelCase )
__snake_case : Dict = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def lowercase_ ( self ):
__snake_case : Dict = Path('./datasets' )
__snake_case : List[str] = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ):
raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" )
def lowercase_ ( self ):
__snake_case : Optional[int] = Path('./datasets' )
__snake_case : Optional[Any] = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_print_statements(str(_UpperCAmelCase ) ):
raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
| 679 | import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('''3.8'''):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ):
try:
__snake_case : Optional[int] = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__snake_case : Union[str, Any] = default
else:
# KEY is set, convert it to True or False.
try:
__snake_case : Optional[Any] = strtobool(__UpperCAmelCase )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"""If set, {key} must be yes or no.""" )
return _value
__magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False)
__magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False)
__magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True)
__magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True)
# Compression
__magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''')
__magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''')
__magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''')
# Audio
__magic_name__ = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''),
reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''',
)
# Beam
__magic_name__ = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''),
reason='''test requires apache-beam and a compatible dill version''',
)
# Dill-cloudpickle compatibility
__magic_name__ = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('''0.3.2'''),
reason='''test requires dill>0.3.2 for cloudpickle compatibility''',
)
# Windows
__magic_name__ = pytest.mark.skipif(
sys.platform == '''win32''',
reason='''test should not be run on Windows''',
)
def UpperCAmelCase__( __UpperCAmelCase : Any ):
try:
import faiss # noqa
except ImportError:
__snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
try:
import regex # noqa
except ImportError:
__snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ):
try:
import elasticsearch # noqa
except ImportError:
__snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Dict ):
try:
import sqlalchemy # noqa
except ImportError:
__snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ):
if not config.TORCH_AVAILABLE:
__snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Any ):
if not config.TF_AVAILABLE:
__snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
if not config.JAX_AVAILABLE:
__snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Tuple ):
if not config.PIL_AVAILABLE:
__snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ):
try:
import transformers # noqa F401
except ImportError:
return unittest.skip('test requires transformers' )(__UpperCAmelCase )
else:
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Dict ):
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip('test requires tiktoken' )(__UpperCAmelCase )
else:
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Tuple ):
try:
import spacy # noqa F401
except ImportError:
return unittest.skip('test requires spacy' )(__UpperCAmelCase )
else:
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ):
def _require_spacy_model(__UpperCAmelCase : List[str] ):
try:
import spacy # noqa F401
spacy.load(__UpperCAmelCase )
except ImportError:
return unittest.skip('test requires spacy' )(__UpperCAmelCase )
except OSError:
return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase )
else:
return test_case
return _require_spacy_model
def UpperCAmelCase__( __UpperCAmelCase : int ):
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip('test requires pyspark' )(__UpperCAmelCase )
else:
return test_case
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip('test requires joblibspark' )(__UpperCAmelCase )
else:
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Any ):
if not _run_slow_tests or _run_slow_tests == 0:
__snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : Dict ):
if not _run_local_tests or _run_local_tests == 0:
__snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : int ):
if not _run_packaged_tests or _run_packaged_tests == 0:
__snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( __UpperCAmelCase : str ):
if not _run_remote_tests or _run_remote_tests == 0:
__snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase )
return test_case
def UpperCAmelCase__( *__UpperCAmelCase : Any ):
def decorate(cls : List[str] ):
for name, fn in cls.__dict__.items():
if callable(__UpperCAmelCase ) and name.startswith('test' ):
for decorator in decorators:
__snake_case : Optional[Any] = decorator(__UpperCAmelCase )
setattr(cls , __UpperCAmelCase , __UpperCAmelCase )
return cls
return decorate
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
pass
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = 0
__UpperCAmelCase = 1
__UpperCAmelCase = 2
@contextmanager
def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ):
__snake_case : Optional[Any] = requests.Session().request
def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ):
# Change the url to an invalid url so that the connection hangs
__snake_case : int = 'https://10.255.255.1'
if kwargs.get('timeout' ) is None:
raise RequestWouldHangIndefinitelyError(
F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" )
__snake_case : str = timeout
try:
return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
__snake_case : Any = url
__snake_case : Union[str, Any] = e.args[0]
__snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),)
__snake_case : str = (max_retry_error,)
raise
def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ):
raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch('requests.Session.send' , __UpperCAmelCase ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch('requests.Session.request' , __UpperCAmelCase ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ):
yield
else:
raise ValueError('Please use a value from the OfflineSimulationMode enum.' )
@contextmanager
def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ):
__snake_case : Dict = str(Path().resolve() )
with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir:
try:
os.chdir(__UpperCAmelCase )
yield
finally:
os.chdir(__UpperCAmelCase )
@contextmanager
def UpperCAmelCase__( ):
import gc
gc.collect()
__snake_case : Any = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def UpperCAmelCase__( ):
import gc
gc.collect()
__snake_case : int = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ):
return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist()
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
import decorator
from requests.exceptions import HTTPError
def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ):
try:
return func(*__UpperCAmelCase , **__UpperCAmelCase )
except HTTPError as err:
if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ):
pytest.xfail(str(__UpperCAmelCase ) )
raise err
return decorator.decorator(_wrapper , __UpperCAmelCase )
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : int = returncode
__snake_case : Tuple = stdout
__snake_case : List[Any] = stderr
async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ):
while True:
__snake_case : Optional[int] = await stream.readline()
if line:
callback(__UpperCAmelCase )
else:
break
async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ):
if echo:
print('\nRunning: ' , ' '.join(__UpperCAmelCase ) )
__snake_case : Tuple = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__snake_case : Any = []
__snake_case : Tuple = []
def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ):
__snake_case : int = line.decode('utf-8' ).rstrip()
sink.append(__UpperCAmelCase )
if not quiet:
print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ),
_read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ),
] , timeout=__UpperCAmelCase , )
return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ):
__snake_case : Any = asyncio.get_event_loop()
__snake_case : List[str] = loop.run_until_complete(
_stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) )
__snake_case : Dict = ' '.join(__UpperCAmelCase )
if result.returncode > 0:
__snake_case : List[Any] = '\n'.join(result.stderr )
raise RuntimeError(
F"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
F"""The combined stderr from workers follows:\n{stderr}""" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F"""'{cmd_str}' produced no output.""" )
return result
def UpperCAmelCase__( ):
__snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' )
__snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M )
return int(__UpperCAmelCase )
def UpperCAmelCase__( ):
__snake_case : Dict = 2_95_00
__snake_case : Optional[int] = pytest_xdist_worker_id()
return port + uniq_delta
| 679 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = KandinskyVaaControlnetImgaImgPipeline
__UpperCAmelCase = ["image_embeds", "negative_image_embeds", "image", "hint"]
__UpperCAmelCase = ["image_embeds", "negative_image_embeds", "image", "hint"]
__UpperCAmelCase = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
__UpperCAmelCase = False
@property
def lowercase_ ( self ):
return 32
@property
def lowercase_ ( self ):
return 32
@property
def lowercase_ ( self ):
return self.time_input_dim
@property
def lowercase_ ( self ):
return self.time_input_dim * 4
@property
def lowercase_ ( self ):
return 100
@property
def lowercase_ ( self ):
torch.manual_seed(0 )
__snake_case : List[str] = {
'in_channels': 8,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image_hint',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__snake_case : str = UNetaDConditionModel(**_UpperCAmelCase )
return model
@property
def lowercase_ ( self ):
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowercase_ ( self ):
torch.manual_seed(0 )
__snake_case : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase_ ( self ):
__snake_case : Union[str, Any] = self.dummy_unet
__snake_case : Dict = self.dummy_movq
__snake_case : Optional[Any] = {
'num_train_timesteps': 1_000,
'beta_schedule': 'linear',
'beta_start': 0.00085,
'beta_end': 0.012,
'clip_sample': False,
'set_alpha_to_one': False,
'steps_offset': 0,
'prediction_type': 'epsilon',
'thresholding': False,
}
__snake_case : Dict = DDIMScheduler(**_UpperCAmelCase )
__snake_case : int = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ):
__snake_case : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
__snake_case : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_UpperCAmelCase )
# create init_image
__snake_case : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
__snake_case : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Any = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('RGB' ).resize((256, 256) )
# create hint
__snake_case : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
if str(_UpperCAmelCase ).startswith('mps' ):
__snake_case : Any = torch.manual_seed(_UpperCAmelCase )
else:
__snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
__snake_case : Dict = {
'image': init_image,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'hint': hint,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 10,
'guidance_scale': 7.0,
'strength': 0.2,
'output_type': 'np',
}
return inputs
def lowercase_ ( self ):
__snake_case : Optional[Any] = 'cpu'
__snake_case : Optional[Any] = self.get_dummy_components()
__snake_case : List[Any] = self.pipeline_class(**_UpperCAmelCase )
__snake_case : List[str] = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__snake_case : List[Any] = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) )
__snake_case : Optional[Any] = output.images
__snake_case : Dict = pipe(
**self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0]
__snake_case : str = image[0, -3:, -3:, -1]
__snake_case : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : List[Any] = np.array(
[0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
def lowercase_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ):
__snake_case : str = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' )
__snake_case : List[str] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
__snake_case : str = init_image.resize((512, 512) )
__snake_case : Any = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/hint_image_cat.png' )
__snake_case : List[str] = torch.from_numpy(np.array(_UpperCAmelCase ) ).float() / 255.0
__snake_case : Any = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
__snake_case : int = 'A robot, 4k photo'
__snake_case : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(_UpperCAmelCase )
__snake_case : List[str] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa )
__snake_case : List[str] = pipeline.to(_UpperCAmelCase )
pipeline.set_progress_bar_config(disable=_UpperCAmelCase )
__snake_case : Tuple = torch.Generator(device='cpu' ).manual_seed(0 )
__snake_case , __snake_case : Union[str, Any] = pipe_prior(
_UpperCAmelCase , image=_UpperCAmelCase , strength=0.85 , generator=_UpperCAmelCase , negative_prompt='' , ).to_tuple()
__snake_case : str = pipeline(
image=_UpperCAmelCase , image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , hint=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , )
__snake_case : Optional[Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
| 679 | from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
__magic_name__ = TypeVar('''T''')
class __SCREAMING_SNAKE_CASE ( Generic[T]):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
__snake_case : Optional[Any] = data
__snake_case : Node[T] | None = None
def __str__( self ):
return F"""{self.data}"""
class __SCREAMING_SNAKE_CASE ( Generic[T]):
"""simple docstring"""
def __init__( self ):
__snake_case : Node[T] | None = None
def __iter__( self ):
__snake_case : List[str] = self.top
while node:
yield node.data
__snake_case : Union[str, Any] = node.next
def __str__( self ):
return "->".join([str(_UpperCAmelCase ) for item in self] )
def __len__( self ):
return len(tuple(iter(self ) ) )
def lowercase_ ( self ):
return self.top is None
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Any = Node(_UpperCAmelCase )
if not self.is_empty():
__snake_case : Any = self.top
__snake_case : Dict = node
def lowercase_ ( self ):
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top , _UpperCAmelCase )
__snake_case : Optional[int] = self.top
__snake_case : Dict = self.top.next
return pop_node.data
def lowercase_ ( self ):
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def lowercase_ ( self ):
__snake_case : Optional[int] = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 679 | 1 |
def UpperCAmelCase__( __UpperCAmelCase : int = 10**12 ):
__snake_case : List[Any] = 1
__snake_case : str = 0
__snake_case : str = 1
__snake_case : int = 1
while numerator <= 2 * min_total - 1:
prev_numerator += 2 * numerator
numerator += 2 * prev_numerator
prev_denominator += 2 * denominator
denominator += 2 * prev_denominator
return (denominator + 1) // 2
if __name__ == "__main__":
print(F'''{solution() = }''')
| 679 | import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = ShapEPipeline
__UpperCAmelCase = ["prompt"]
__UpperCAmelCase = ["prompt"]
__UpperCAmelCase = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
__UpperCAmelCase = False
@property
def lowercase_ ( self ):
return 32
@property
def lowercase_ ( self ):
return 32
@property
def lowercase_ ( self ):
return self.time_input_dim * 4
@property
def lowercase_ ( self ):
return 8
@property
def lowercase_ ( self ):
__snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def lowercase_ ( self ):
torch.manual_seed(0 )
__snake_case : Union[str, Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(_UpperCAmelCase )
@property
def lowercase_ ( self ):
torch.manual_seed(0 )
__snake_case : Any = {
'num_attention_heads': 2,
'attention_head_dim': 16,
'embedding_dim': self.time_input_dim,
'num_embeddings': 32,
'embedding_proj_dim': self.text_embedder_hidden_size,
'time_embed_dim': self.time_embed_dim,
'num_layers': 1,
'clip_embed_dim': self.time_input_dim * 2,
'additional_embeddings': 0,
'time_embed_act_fn': 'gelu',
'norm_in_type': 'layer',
'encoder_hid_proj_type': None,
'added_emb_type': None,
}
__snake_case : Dict = PriorTransformer(**_UpperCAmelCase )
return model
@property
def lowercase_ ( self ):
torch.manual_seed(0 )
__snake_case : Tuple = {
'param_shapes': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'd_latent': self.time_input_dim,
'd_hidden': self.renderer_dim,
'n_output': 12,
'background': (
0.1,
0.1,
0.1,
),
}
__snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase )
return model
def lowercase_ ( self ):
__snake_case : Tuple = self.dummy_prior
__snake_case : Dict = self.dummy_text_encoder
__snake_case : Optional[int] = self.dummy_tokenizer
__snake_case : str = self.dummy_renderer
__snake_case : Tuple = HeunDiscreteScheduler(
beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , )
__snake_case : Optional[int] = {
'prior': prior,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'renderer': renderer,
'scheduler': scheduler,
}
return components
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ):
if str(_UpperCAmelCase ).startswith('mps' ):
__snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase )
else:
__snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
__snake_case : Tuple = {
'prompt': 'horse',
'generator': generator,
'num_inference_steps': 1,
'frame_size': 32,
'output_type': 'np',
}
return inputs
def lowercase_ ( self ):
__snake_case : Optional[int] = 'cpu'
__snake_case : Tuple = self.get_dummy_components()
__snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase )
__snake_case : Any = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) )
__snake_case : Union[str, Any] = output.images[0]
__snake_case : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__snake_case : Dict = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowercase_ ( self ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowercase_ ( self ):
__snake_case : List[str] = torch_device == 'cpu'
__snake_case : int = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , )
def lowercase_ ( self ):
__snake_case : Dict = self.get_dummy_components()
__snake_case : Any = self.pipeline_class(**_UpperCAmelCase )
__snake_case : Tuple = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__snake_case : int = 1
__snake_case : Optional[int] = 2
__snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
__snake_case : Union[str, Any] = batch_size * [inputs[key]]
__snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
def lowercase_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ):
__snake_case : str = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/shap_e/test_shap_e_np_out.npy' )
__snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' )
__snake_case : List[str] = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
__snake_case : Optional[Any] = pipe(
'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
| 679 | 1 |
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def UpperCAmelCase__( __UpperCAmelCase : Any ):
if not is_accelerate_available():
return method
__snake_case : Any = version.parse(accelerate.__version__ ).base_version
if version.parse(__UpperCAmelCase ) < version.parse('0.17.0' ):
return method
def wrapper(self : str , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Union[str, Any] ):
if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ):
self._hf_hook.pre_forward(self )
return method(self , *__UpperCAmelCase , **__UpperCAmelCase )
return wrapper
| 679 | import argparse
from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ):
# Initialise PyTorch model
__snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase )
print(F"""Building PyTorch model from configuration: {config}""" )
__snake_case : int = TaForConditionalGeneration(__UpperCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(__UpperCAmelCase )
if __name__ == "__main__":
__magic_name__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__magic_name__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 679 | 1 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=10 , _UpperCAmelCase=[10, 20, 30, 40] , _UpperCAmelCase=[1, 1, 2, 1] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=3 , _UpperCAmelCase=None , ):
__snake_case : List[Any] = parent
__snake_case : str = batch_size
__snake_case : str = image_size
__snake_case : str = num_channels
__snake_case : Dict = embeddings_size
__snake_case : Dict = hidden_sizes
__snake_case : Optional[Any] = depths
__snake_case : List[str] = is_training
__snake_case : Union[str, Any] = use_labels
__snake_case : Optional[int] = hidden_act
__snake_case : Optional[int] = num_labels
__snake_case : Tuple = scope
__snake_case : Union[str, Any] = len(_UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Optional[int] = None
if self.use_labels:
__snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : Any = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ):
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : str = TFResNetModel(config=_UpperCAmelCase )
__snake_case : Any = model(_UpperCAmelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : List[Any] = self.num_labels
__snake_case : List[str] = TFResNetForImageClassification(_UpperCAmelCase )
__snake_case : Optional[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase_ ( self ):
__snake_case : Dict = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Optional[Any] = config_and_inputs
__snake_case : Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
__UpperCAmelCase = (
{"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification}
if is_tf_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def lowercase_ ( self ):
__snake_case : Any = TFResNetModelTester(self )
__snake_case : str = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def lowercase_ ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self ):
return
@unittest.skip(reason='ResNet does not use inputs_embeds' )
def lowercase_ ( self ):
pass
@unittest.skip(reason='ResNet does not support input and output embeddings' )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
__snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : List[str] = model_class(_UpperCAmelCase )
__snake_case : Union[str, Any] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : str = [*signature.parameters.keys()]
__snake_case : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase_ ( self ):
def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : int = model_class(_UpperCAmelCase )
__snake_case : Tuple = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__snake_case : int = self.model_tester.num_stages
self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : int = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__snake_case : Tuple = layer_type
__snake_case : Optional[int] = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Dict = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def lowercase_ ( self ):
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Optional[Any] = TFResNetModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def UpperCAmelCase__( ):
__snake_case : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
@cached_property
def lowercase_ ( self ):
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def lowercase_ ( self ):
__snake_case : Optional[Any] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__snake_case : Optional[int] = self.default_image_processor
__snake_case : Any = prepare_img()
__snake_case : Union[str, Any] = image_processor(images=_UpperCAmelCase , return_tensors='tf' )
# forward pass
__snake_case : List[Any] = model(**_UpperCAmelCase )
# verify the logits
__snake_case : Optional[Any] = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
__snake_case : Tuple = tf.constant([-11.1069, -9.7877, -8.3777] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCAmelCase , atol=1E-4 ) )
| 679 | import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
__magic_name__ = logging.getLogger(__name__)
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ):
__snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] )
__snake_case : Optional[Any] = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
super().__init__(_UpperCAmelCase )
__snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase )
self.init_weights()
__snake_case : str = 0
__snake_case : List[str] = 0
__snake_case : int = 0
__snake_case : Tuple = 0
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Dict = threshold
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : List[Any] = patience
def lowercase_ ( self ):
__snake_case : Dict = 0
__snake_case : Dict = 0
def lowercase_ ( self ):
__snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num
__snake_case : int = (
F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="""
F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"""
)
print(_UpperCAmelCase )
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
__snake_case : Union[str, Any] = input_ids.size()
elif inputs_embeds is not None:
__snake_case : int = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
__snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
__snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase )
if token_type_ids is None:
__snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
__snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
__snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size()
__snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
__snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase )
__snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase )
else:
__snake_case : str = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
__snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers )
__snake_case : Any = self.embeddings(
input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase )
__snake_case : List[str] = embedding_output
if self.training:
__snake_case : Dict = []
for i in range(self.config.num_hidden_layers ):
__snake_case : str = self.encoder.adaptive_forward(
_UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase )
__snake_case : Optional[Any] = self.pooler(_UpperCAmelCase )
__snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) )
res.append(_UpperCAmelCase )
elif self.patience == 0: # Use all layers for inference
__snake_case : Dict = self.encoder(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , )
__snake_case : str = self.pooler(encoder_outputs[0] )
__snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )]
else:
__snake_case : List[str] = 0
__snake_case : str = None
__snake_case : Tuple = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
__snake_case : List[Any] = self.encoder.adaptive_forward(
_UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase )
__snake_case : Any = self.pooler(_UpperCAmelCase )
__snake_case : int = output_layers[i](_UpperCAmelCase )
if regression:
__snake_case : Optional[int] = logits.detach()
if patient_result is not None:
__snake_case : Dict = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
__snake_case : Any = 0
else:
__snake_case : str = logits.detach().argmax(dim=1 )
if patient_result is not None:
__snake_case : List[str] = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ):
patient_counter += 1
else:
__snake_case : Dict = 0
__snake_case : str = logits
if patient_counter == self.patience:
break
__snake_case : str = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def __init__( self , _UpperCAmelCase ):
super().__init__(_UpperCAmelCase )
__snake_case : List[str] = config.num_labels
__snake_case : Dict = BertModelWithPabee(_UpperCAmelCase )
__snake_case : int = nn.Dropout(config.hidden_dropout_prob )
__snake_case : Optional[int] = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ):
__snake_case : List[str] = self.bert(
input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
__snake_case : int = (logits[-1],)
if labels is not None:
__snake_case : List[Any] = None
__snake_case : Optional[int] = 0
for ix, logits_item in enumerate(_UpperCAmelCase ):
if self.num_labels == 1:
# We are doing regression
__snake_case : List[str] = MSELoss()
__snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
__snake_case : List[str] = CrossEntropyLoss()
__snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
__snake_case : List[Any] = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
__snake_case : int = (total_loss / total_weights,) + outputs
return outputs
| 679 | 1 |
from __future__ import annotations
def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int ):
if partitions <= 0:
raise ValueError('partitions must be a positive number!' )
if partitions > number_of_bytes:
raise ValueError('partitions can not > number_of_bytes!' )
__snake_case : str = number_of_bytes // partitions
__snake_case : Union[str, Any] = []
for i in range(__UpperCAmelCase ):
__snake_case : Tuple = i * bytes_per_partition + 1
__snake_case : List[Any] = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(F"""{start_bytes}-{end_bytes}""" )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 679 | def UpperCAmelCase__( __UpperCAmelCase : str ):
if not all(x.isalpha() for x in string ):
raise ValueError('String must only contain alphabetic characters.' )
__snake_case : str = sorted(string.lower() )
return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) )
if __name__ == "__main__":
__magic_name__ = input('''Enter a string ''').strip()
__magic_name__ = is_isogram(input_str)
print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
| 679 | 1 |
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = '''▁'''
__magic_name__ = {
'''vocab_file''': '''vocab.json''',
'''spm_file''': '''sentencepiece.bpe.model''',
}
__magic_name__ = {
'''vocab_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'''
),
},
'''spm_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'''
)
},
}
__magic_name__ = {
'''facebook/s2t-small-librispeech-asr''': 1_024,
}
__magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de''']
__magic_name__ = {'''mustc''': MUSTC_LANGS}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = MAX_MODEL_INPUT_SIZES
__UpperCAmelCase = ["input_ids", "attention_mask"]
__UpperCAmelCase = []
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ):
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
__snake_case : Dict = do_upper_case
__snake_case : Optional[Any] = do_lower_case
__snake_case : List[Any] = load_json(_UpperCAmelCase )
__snake_case : Dict = {v: k for k, v in self.encoder.items()}
__snake_case : Optional[Any] = spm_file
__snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs )
if lang_codes is not None:
__snake_case : Optional[Any] = lang_codes
__snake_case : int = LANGUAGES[lang_codes]
__snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs]
__snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs}
__snake_case : Dict = self.lang_tokens
__snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
__snake_case : Optional[int] = {}
@property
def lowercase_ ( self ):
return len(self.encoder )
@property
def lowercase_ ( self ):
return self._tgt_lang
@tgt_lang.setter
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : str = new_tgt_lang
self.set_tgt_lang_special_tokens(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Tuple = self.lang_code_to_id[tgt_lang]
__snake_case : Optional[Any] = [lang_code_id]
def lowercase_ ( self , _UpperCAmelCase ):
return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] )
def lowercase_ ( self , _UpperCAmelCase ):
return self.decoder.get(_UpperCAmelCase , self.unk_token )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : str = []
__snake_case : Any = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
__snake_case : Dict = self.sp_model.decode(_UpperCAmelCase )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
__snake_case : Any = []
else:
current_sub_tokens.append(_UpperCAmelCase )
__snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
__snake_case : Union[str, Any] = [1] * len(self.prefix_tokens )
__snake_case : Optional[Any] = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones
def lowercase_ ( self ):
__snake_case : List[Any] = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
__snake_case : int = self.__dict__.copy()
__snake_case : str = None
return state
def __setstate__( self , _UpperCAmelCase ):
__snake_case : List[Any] = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__snake_case : Optional[int] = {}
__snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
__snake_case : str = Path(_UpperCAmelCase )
assert save_dir.is_dir(), F"""{save_directory} should be a directory"""
__snake_case : int = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file']
)
__snake_case : Union[str, Any] = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file']
)
save_json(self.encoder , _UpperCAmelCase )
if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , _UpperCAmelCase )
elif not os.path.isfile(self.spm_file ):
with open(_UpperCAmelCase , 'wb' ) as fi:
__snake_case : List[str] = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (str(_UpperCAmelCase ), str(_UpperCAmelCase ))
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ):
__snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase )
spm.Load(str(__UpperCAmelCase ) )
return spm
def UpperCAmelCase__( __UpperCAmelCase : str ):
with open(__UpperCAmelCase , 'r' ) as f:
return json.load(__UpperCAmelCase )
def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ):
with open(__UpperCAmelCase , 'w' ) as f:
json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
| 679 | from ....configuration_utils import PretrainedConfig
from ....utils import logging
__magic_name__ = logging.get_logger(__name__)
# TODO: upload to AWS
__magic_name__ = {
'''yjernite/retribert-base-uncased''': (
'''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json'''
),
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "retribert"
def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__snake_case : Tuple = vocab_size
__snake_case : Optional[int] = hidden_size
__snake_case : str = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Any = hidden_act
__snake_case : List[Any] = intermediate_size
__snake_case : Dict = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : Optional[int] = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = layer_norm_eps
__snake_case : int = share_encoders
__snake_case : Optional[Any] = projection_dim
| 679 | 1 |
# Function to print upper half of diamond (pyramid)
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
for i in range(0 , __UpperCAmelCase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(' ' , end='' )
for _ in range(0 , i + 1 ): # printing stars
print('* ' , end='' )
print()
def UpperCAmelCase__( __UpperCAmelCase : List[str] ):
for i in range(__UpperCAmelCase , 0 , -1 ):
for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars
print('* ' , end='' )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(' ' , end='' )
def UpperCAmelCase__( __UpperCAmelCase : List[Any] ):
if n <= 0:
print(' ... .... nothing printing :(' )
return
floyd(__UpperCAmelCase ) # upper half
reverse_floyd(__UpperCAmelCase ) # lower half
if __name__ == "__main__":
print(r'''| /\ | |- | |- |--| |\ /| |-''')
print(r'''|/ \| |- |_ |_ |__| | \/ | |_''')
__magic_name__ = 1
while K:
__magic_name__ = int(input('''enter the number and , and see the magic : '''))
print()
pretty_print(user_number)
__magic_name__ = int(input('''press 0 to exit... and 1 to continue...'''))
print('''Good Bye...''')
| 679 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__magic_name__ = {
'''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''],
'''tokenization_biogpt''': ['''BioGptTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BioGptForCausalLM''',
'''BioGptForTokenClassification''',
'''BioGptForSequenceClassification''',
'''BioGptModel''',
'''BioGptPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 679 | 1 |
class __SCREAMING_SNAKE_CASE : # Public class to implement a graph
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : Optional[Any] = row
__snake_case : Optional[int] = col
__snake_case : str = graph
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
# Checking all 8 elements surrounding nth element
__snake_case : str = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
__snake_case : Optional[int] = [-1, 0, 1, -1, 1, -1, 0, 1]
__snake_case : List[Any] = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase )
def lowercase_ ( self ): # And finally, count all islands.
__snake_case : Tuple = [[False for j in range(self.COL )] for i in range(self.ROW )]
__snake_case : int = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
count += 1
return count
| 679 | import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
def lowercase_ ( self ):
__snake_case : List[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) )
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ):
__snake_case : List[str] = parent
__snake_case : Tuple = batch_size
__snake_case : str = image_size
__snake_case : Union[str, Any] = patch_size
__snake_case : Optional[int] = num_channels
__snake_case : List[str] = last_hidden_size
__snake_case : Optional[Any] = num_attention_heads
__snake_case : Dict = hidden_act
__snake_case : List[Any] = conv_kernel_size
__snake_case : int = output_stride
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Dict = attention_probs_dropout_prob
__snake_case : Any = classifier_dropout_prob
__snake_case : str = use_labels
__snake_case : Optional[Any] = is_training
__snake_case : Dict = num_labels
__snake_case : str = initializer_range
__snake_case : Union[str, Any] = scope
def lowercase_ ( self ):
__snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : str = None
__snake_case : Dict = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__snake_case : Tuple = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase_ ( self ):
return MobileViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : List[Any] = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : Tuple = self.num_labels
__snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : Optional[Any] = self.num_labels
__snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : Tuple = model(_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase_ ( self ):
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs
__snake_case : Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
"feature-extraction": MobileViTModel,
"image-classification": MobileViTForImageClassification,
"image-segmentation": MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def lowercase_ ( self ):
__snake_case : Dict = MobileViTModelTester(self )
__snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def lowercase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def lowercase_ ( self ):
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def lowercase_ ( self ):
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
__snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Tuple = model_class(_UpperCAmelCase )
__snake_case : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : List[str] = [*signature.parameters.keys()]
__snake_case : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase_ ( self ):
def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : str = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
__snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__snake_case : Optional[Any] = outputs.hidden_states
__snake_case : str = 5
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__snake_case : Optional[Any] = 2
for i in range(len(_UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Tuple = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase )
@slow
def lowercase_ ( self ):
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def UpperCAmelCase__( ):
__snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
@cached_property
def lowercase_ ( self ):
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def lowercase_ ( self ):
__snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : str = prepare_img()
__snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : Tuple = model(**_UpperCAmelCase )
# verify the logits
__snake_case : Tuple = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
__snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
@slow
def lowercase_ ( self ):
__snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case : str = model.to(_UpperCAmelCase )
__snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case : Optional[int] = prepare_img()
__snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : int = model(**_UpperCAmelCase )
__snake_case : int = outputs.logits
# verify the logits
__snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _UpperCAmelCase )
__snake_case : Optional[int] = torch.tensor(
[
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
] , device=_UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
@slow
def lowercase_ ( self ):
__snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case : str = model.to(_UpperCAmelCase )
__snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case : Any = prepare_img()
__snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : Optional[Any] = model(**_UpperCAmelCase )
__snake_case : str = outputs.logits.detach().cpu()
__snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] )
__snake_case : List[Any] = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
__snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase )
__snake_case : List[str] = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
| 679 | 1 |
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
__magic_name__ = {
'''E''': 12.70,
'''T''': 9.06,
'''A''': 8.17,
'''O''': 7.51,
'''I''': 6.97,
'''N''': 6.75,
'''S''': 6.33,
'''H''': 6.09,
'''R''': 5.99,
'''D''': 4.25,
'''L''': 4.03,
'''C''': 2.78,
'''U''': 2.76,
'''M''': 2.41,
'''W''': 2.36,
'''F''': 2.23,
'''G''': 2.02,
'''Y''': 1.97,
'''P''': 1.93,
'''B''': 1.29,
'''V''': 0.98,
'''K''': 0.77,
'''J''': 0.15,
'''X''': 0.15,
'''Q''': 0.10,
'''Z''': 0.07,
}
__magic_name__ = '''ETAOINSHRDLCUMWFGYPBVKJXQZ'''
__magic_name__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
def UpperCAmelCase__( __UpperCAmelCase : str ):
__snake_case : str = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def UpperCAmelCase__( __UpperCAmelCase : tuple ):
return x[0]
def UpperCAmelCase__( __UpperCAmelCase : str ):
__snake_case : Optional[int] = get_letter_count(__UpperCAmelCase )
__snake_case : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(__UpperCAmelCase )
__snake_case : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__UpperCAmelCase )
__snake_case : List[Any] = ''.join(freq_to_letter[freq] )
__snake_case : List[str] = list(freq_to_letter_str.items() )
freq_pairs.sort(key=__UpperCAmelCase , reverse=__UpperCAmelCase )
__snake_case : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(__UpperCAmelCase )
def UpperCAmelCase__( __UpperCAmelCase : str ):
__snake_case : Optional[Any] = get_frequency_order(__UpperCAmelCase )
__snake_case : Dict = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 679 | def UpperCAmelCase__( __UpperCAmelCase : int | float | str ):
try:
__snake_case : int = float(__UpperCAmelCase )
except ValueError:
raise ValueError('Please enter a valid number' )
__snake_case : Any = decimal - int(__UpperCAmelCase )
if fractional_part == 0:
return int(__UpperCAmelCase ), 1
else:
__snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] )
__snake_case : Tuple = int(decimal * (10**number_of_frac_digits) )
__snake_case : List[Any] = 10**number_of_frac_digits
__snake_case , __snake_case : List[Any] = denominator, numerator
while True:
__snake_case : Any = dividend % divisor
if remainder == 0:
break
__snake_case , __snake_case : Optional[int] = divisor, remainder
__snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor
return int(__UpperCAmelCase ), int(__UpperCAmelCase )
if __name__ == "__main__":
print(F'''{decimal_to_fraction(2) = }''')
print(F'''{decimal_to_fraction(89.0) = }''')
print(F'''{decimal_to_fraction("67") = }''')
print(F'''{decimal_to_fraction("45.0") = }''')
print(F'''{decimal_to_fraction(1.5) = }''')
print(F'''{decimal_to_fraction("6.25") = }''')
print(F'''{decimal_to_fraction("78td") = }''')
| 679 | 1 |
import numpy
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : List[str] = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
__snake_case : Tuple = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
__snake_case : Any = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
__snake_case : Union[str, Any] = numpy.random.rand(3 , 1 )
# Real output values provided.
__snake_case : Tuple = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
__snake_case : Dict = numpy.zeros(output_array.shape )
def lowercase_ ( self ):
__snake_case : List[Any] = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
__snake_case : Optional[int] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
__snake_case : int = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def lowercase_ ( self ):
__snake_case : Optional[Any] = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
__snake_case : int = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
__snake_case : int = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
for iteration in range(1 , iterations + 1 ):
__snake_case : Tuple = self.feedforward()
self.back_propagation()
if give_loss:
__snake_case : int = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F"""Iteration {iteration} Loss: {loss}""" )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Dict = input_arr
__snake_case : List[Any] = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
__snake_case : List[str] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
__snake_case : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def UpperCAmelCase__( __UpperCAmelCase : numpy.ndarray ):
return 1 / (1 + numpy.exp(-value ))
def UpperCAmelCase__( __UpperCAmelCase : numpy.ndarray ):
return (value) * (1 - (value))
def UpperCAmelCase__( ):
__snake_case : List[Any] = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
__snake_case : Dict = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
__snake_case : Union[str, Any] = TwoHiddenLayerNeuralNetwork(
input_array=__UpperCAmelCase , output_array=__UpperCAmelCase )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=__UpperCAmelCase , iterations=10 , give_loss=__UpperCAmelCase )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 679 | import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
__magic_name__ = logging.getLogger(__name__)
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
__UpperCAmelCase = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"})
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__UpperCAmelCase = field(
default=UpperCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def lowercase_ ( self ):
if self.train_file is not None:
__snake_case : Union[str, Any] = self.train_file.split('.' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
__snake_case : List[str] = self.validation_file.split('.' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = True
__UpperCAmelCase = None
__UpperCAmelCase = None
def __call__( self , _UpperCAmelCase ):
__snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels'
__snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features]
__snake_case : List[Any] = len(_UpperCAmelCase )
__snake_case : Union[str, Any] = len(features[0]['input_ids'] )
__snake_case : Union[str, Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features
]
__snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) )
__snake_case : Optional[Any] = self.tokenizer.pad(
_UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
# Un-flatten
__snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()}
# Add back labels
__snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa )
return batch
def UpperCAmelCase__( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__snake_case : Tuple = training_args.get_process_log_level()
logger.setLevel(__UpperCAmelCase )
datasets.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
__snake_case : Dict = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__snake_case : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
__snake_case : Optional[int] = {}
if data_args.train_file is not None:
__snake_case : Optional[int] = data_args.train_file
if data_args.validation_file is not None:
__snake_case : int = data_args.validation_file
__snake_case : int = data_args.train_file.split('.' )[-1]
__snake_case : Tuple = load_dataset(
__UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
__snake_case : Optional[int] = load_dataset(
'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__snake_case : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__snake_case : str = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
__snake_case : str = [F"""ending{i}""" for i in range(4 )]
__snake_case : Optional[Any] = 'sent1'
__snake_case : Tuple = 'sent2'
if data_args.max_seq_length is None:
__snake_case : List[Any] = tokenizer.model_max_length
if max_seq_length > 10_24:
logger.warning(
'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'
' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'
' override this default with `--block_size xxx`.' )
__snake_case : List[Any] = 10_24
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
__snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(__UpperCAmelCase : Tuple ):
__snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]]
__snake_case : Union[str, Any] = examples[question_header_name]
__snake_case : Optional[int] = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase )
]
# Flatten out
__snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) )
__snake_case : int = list(chain(*__UpperCAmelCase ) )
# Tokenize
__snake_case : Tuple = tokenizer(
__UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset' )
__snake_case : Optional[Any] = raw_datasets['train']
if data_args.max_train_samples is not None:
__snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples )
__snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
__snake_case : int = train_dataset.map(
__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset' )
__snake_case : Optional[Any] = raw_datasets['validation']
if data_args.max_eval_samples is not None:
__snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples )
__snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
__snake_case : List[Any] = eval_dataset.map(
__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
__snake_case : str = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(__UpperCAmelCase : int ):
__snake_case , __snake_case : Union[str, Any] = eval_predictions
__snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
__snake_case : List[str] = Trainer(
model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , )
# Training
if training_args.do_train:
__snake_case : Dict = None
if training_args.resume_from_checkpoint is not None:
__snake_case : Any = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__snake_case : List[str] = last_checkpoint
__snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase )
trainer.save_model() # Saves the tokenizer too for easy upload
__snake_case : List[Any] = train_result.metrics
__snake_case : Optional[Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase )
)
__snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.log_metrics('train' , __UpperCAmelCase )
trainer.save_metrics('train' , __UpperCAmelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__snake_case : Dict = trainer.evaluate()
__snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase )
__snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.log_metrics('eval' , __UpperCAmelCase )
trainer.save_metrics('eval' , __UpperCAmelCase )
__snake_case : List[Any] = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'multiple-choice',
'dataset_tags': 'swag',
'dataset_args': 'regular',
'dataset': 'SWAG',
'language': 'en',
}
if training_args.push_to_hub:
trainer.push_to_hub(**__UpperCAmelCase )
else:
trainer.create_model_card(**__UpperCAmelCase )
def UpperCAmelCase__( __UpperCAmelCase : Dict ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 679 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__magic_name__ = logging.get_logger(__name__)
# TODO: upload to AWS
__magic_name__ = {
'''yjernite/retribert-base-uncased''': (
'''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json'''
),
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "retribert"
def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__snake_case : Tuple = vocab_size
__snake_case : Optional[int] = hidden_size
__snake_case : str = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Any = hidden_act
__snake_case : List[Any] = intermediate_size
__snake_case : Dict = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : Optional[int] = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = layer_norm_eps
__snake_case : int = share_encoders
__snake_case : Optional[Any] = projection_dim
| 679 | import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = '''▁'''
__magic_name__ = {
'''vocab_file''': '''vocab.json''',
'''spm_file''': '''sentencepiece.bpe.model''',
}
__magic_name__ = {
'''vocab_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'''
),
},
'''spm_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'''
)
},
}
__magic_name__ = {
'''facebook/s2t-small-librispeech-asr''': 1_024,
}
__magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de''']
__magic_name__ = {'''mustc''': MUSTC_LANGS}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = MAX_MODEL_INPUT_SIZES
__UpperCAmelCase = ["input_ids", "attention_mask"]
__UpperCAmelCase = []
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ):
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
__snake_case : Dict = do_upper_case
__snake_case : Optional[Any] = do_lower_case
__snake_case : List[Any] = load_json(_UpperCAmelCase )
__snake_case : Dict = {v: k for k, v in self.encoder.items()}
__snake_case : Optional[Any] = spm_file
__snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs )
if lang_codes is not None:
__snake_case : Optional[Any] = lang_codes
__snake_case : int = LANGUAGES[lang_codes]
__snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs]
__snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs}
__snake_case : Dict = self.lang_tokens
__snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
__snake_case : Optional[int] = {}
@property
def lowercase_ ( self ):
return len(self.encoder )
@property
def lowercase_ ( self ):
return self._tgt_lang
@tgt_lang.setter
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : str = new_tgt_lang
self.set_tgt_lang_special_tokens(_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Tuple = self.lang_code_to_id[tgt_lang]
__snake_case : Optional[Any] = [lang_code_id]
def lowercase_ ( self , _UpperCAmelCase ):
return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase ):
return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] )
def lowercase_ ( self , _UpperCAmelCase ):
return self.decoder.get(_UpperCAmelCase , self.unk_token )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : str = []
__snake_case : Any = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
__snake_case : Dict = self.sp_model.decode(_UpperCAmelCase )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
__snake_case : Any = []
else:
current_sub_tokens.append(_UpperCAmelCase )
__snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
__snake_case : Union[str, Any] = [1] * len(self.prefix_tokens )
__snake_case : Optional[Any] = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones
def lowercase_ ( self ):
__snake_case : List[Any] = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
__snake_case : int = self.__dict__.copy()
__snake_case : str = None
return state
def __setstate__( self , _UpperCAmelCase ):
__snake_case : List[Any] = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__snake_case : Optional[int] = {}
__snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
__snake_case : str = Path(_UpperCAmelCase )
assert save_dir.is_dir(), F"""{save_directory} should be a directory"""
__snake_case : int = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file']
)
__snake_case : Union[str, Any] = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file']
)
save_json(self.encoder , _UpperCAmelCase )
if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , _UpperCAmelCase )
elif not os.path.isfile(self.spm_file ):
with open(_UpperCAmelCase , 'wb' ) as fi:
__snake_case : List[str] = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (str(_UpperCAmelCase ), str(_UpperCAmelCase ))
def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ):
__snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase )
spm.Load(str(__UpperCAmelCase ) )
return spm
def UpperCAmelCase__( __UpperCAmelCase : str ):
with open(__UpperCAmelCase , 'r' ) as f:
return json.load(__UpperCAmelCase )
def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ):
with open(__UpperCAmelCase , 'w' ) as f:
json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
| 679 | 1 |
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def UpperCAmelCase__( __UpperCAmelCase : str ):
return EnvironmentCommand()
def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ):
return EnvironmentCommand(args.accelerate_config_file )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
@staticmethod
def lowercase_ ( _UpperCAmelCase ):
__snake_case : Any = parser.add_parser('env' )
download_parser.set_defaults(func=_UpperCAmelCase )
download_parser.add_argument(
'--accelerate-config_file' , default=_UpperCAmelCase , help='The accelerate config file to use for the default values in the launching script.' , )
download_parser.set_defaults(func=_UpperCAmelCase )
def __init__( self , _UpperCAmelCase , *_UpperCAmelCase ):
__snake_case : List[str] = accelerate_config_file
def lowercase_ ( self ):
__snake_case : Optional[int] = 'not installed'
if is_safetensors_available():
import safetensors
__snake_case : List[Any] = safetensors.__version__
elif importlib.util.find_spec('safetensors' ) is not None:
import safetensors
__snake_case : str = F"""{safetensors.__version__} but is ignored because of PyTorch version too old."""
__snake_case : List[Any] = 'not installed'
__snake_case : Tuple = 'not found'
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__snake_case : List[str] = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(_UpperCAmelCase ):
__snake_case : List[Any] = load_config_from_file(self._accelerate_config_file ).to_dict()
__snake_case : int = (
'\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] )
if isinstance(_UpperCAmelCase , _UpperCAmelCase )
else F"""\t{accelerate_config}"""
)
__snake_case : Union[str, Any] = 'not installed'
__snake_case : Union[str, Any] = 'NA'
if is_torch_available():
import torch
__snake_case : str = torch.__version__
__snake_case : Union[str, Any] = torch.cuda.is_available()
__snake_case : Any = 'not installed'
__snake_case : Union[str, Any] = 'NA'
if is_tf_available():
import tensorflow as tf
__snake_case : Tuple = tf.__version__
try:
# deprecated in v2.1
__snake_case : Dict = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__snake_case : Tuple = bool(tf.config.list_physical_devices('GPU' ) )
__snake_case : List[Any] = 'not installed'
__snake_case : Any = 'not installed'
__snake_case : int = 'not installed'
__snake_case : Union[str, Any] = 'NA'
if is_flax_available():
import flax
import jax
import jaxlib
__snake_case : List[Any] = flax.__version__
__snake_case : Optional[int] = jax.__version__
__snake_case : str = jaxlib.__version__
__snake_case : Optional[Any] = jax.lib.xla_bridge.get_backend().platform
__snake_case : int = {
'`transformers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'Huggingface_hub version': huggingface_hub.__version__,
'Safetensors version': F"""{safetensors_version}""",
'Accelerate version': F"""{accelerate_version}""",
'Accelerate config': F"""{accelerate_config_str}""",
'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""",
'Tensorflow version (GPU?)': F"""{tf_version} ({tf_cuda_available})""",
'Flax version (CPU?/GPU?/TPU?)': F"""{flax_version} ({jax_backend})""",
'Jax version': F"""{jax_version}""",
'JaxLib version': F"""{jaxlib_version}""",
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(_UpperCAmelCase ) )
return info
@staticmethod
def lowercase_ ( _UpperCAmelCase ):
return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
| 679 | def UpperCAmelCase__( __UpperCAmelCase : list ):
__snake_case : List[Any] = len(__UpperCAmelCase )
for _ in range(__UpperCAmelCase ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
__snake_case , __snake_case : int = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
__magic_name__ = list(range(10, 0, -1))
print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
| 679 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = "rwkv"
__UpperCAmelCase = {"max_position_embeddings": "context_length"}
def __init__( self , _UpperCAmelCase=50_277 , _UpperCAmelCase=1_024 , _UpperCAmelCase=4_096 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=1E-5 , _UpperCAmelCase=0 , _UpperCAmelCase=0 , _UpperCAmelCase=6 , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ):
__snake_case : int = vocab_size
__snake_case : Union[str, Any] = context_length
__snake_case : Any = hidden_size
__snake_case : str = num_hidden_layers
__snake_case : int = attention_hidden_size if attention_hidden_size is not None else hidden_size
__snake_case : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size
__snake_case : List[str] = layer_norm_epsilon
__snake_case : List[str] = rescale_every
__snake_case : Dict = use_cache
__snake_case : str = bos_token_id
__snake_case : List[Any] = eos_token_id
super().__init__(
tie_word_embeddings=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 679 | import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
__magic_name__ = '''pt'''
elif is_tf_available():
__magic_name__ = '''tf'''
else:
__magic_name__ = '''jax'''
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = PerceiverTokenizer
__UpperCAmelCase = False
def lowercase_ ( self ):
super().setUp()
__snake_case : str = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase_ ( self ):
return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' )
def lowercase_ ( self , **_UpperCAmelCase ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
__snake_case : List[Any] = []
for i in range(len(_UpperCAmelCase ) ):
try:
__snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) )
__snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) )
if max_length is not None and len(_UpperCAmelCase ) > max_length:
__snake_case : List[str] = toks[:max_length]
if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0:
while len(_UpperCAmelCase ) < min_length:
__snake_case : Optional[int] = toks + toks
# toks_str = [t[1] for t in toks]
__snake_case : List[Any] = [t[0] for t in toks]
# Ensure consistency
__snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
if " " not in output_txt and len(_UpperCAmelCase ) > 1:
__snake_case : List[str] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase )
)
if with_prefix_space:
__snake_case : List[Any] = ' ' + output_txt
__snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
return output_txt, output_ids
def lowercase_ ( self ):
__snake_case : List[Any] = self.perceiver_tokenizer
__snake_case : Dict = 'Unicode €.'
__snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase )
__snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['input_ids'] , _UpperCAmelCase )
# decoding
__snake_case : int = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' )
__snake_case : Optional[Any] = tokenizer('e è é ê ë' )
__snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['input_ids'] , _UpperCAmelCase )
# decoding
__snake_case : str = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' )
def lowercase_ ( self ):
__snake_case : Union[str, Any] = self.perceiver_tokenizer
__snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
__snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
__snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
if FRAMEWORK != "jax":
__snake_case : List[str] = list(batch.input_ids.numpy()[0] )
else:
__snake_case : List[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def lowercase_ ( self ):
__snake_case : Dict = self.perceiver_tokenizer
__snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _UpperCAmelCase )
self.assertIn('attention_mask' , _UpperCAmelCase )
self.assertNotIn('decoder_input_ids' , _UpperCAmelCase )
self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : List[str] = self.perceiver_tokenizer
__snake_case : Tuple = [
'Summary of the text.',
'Another summary.',
]
__snake_case : int = tokenizer(
text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def lowercase_ ( self ):
# safety check on max_len default value so we are sure the test works
__snake_case : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Tuple = tempfile.mkdtemp()
__snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running'
__snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
__snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
__snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
shutil.rmtree(_UpperCAmelCase )
__snake_case : Dict = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Tuple = tempfile.mkdtemp()
__snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
__snake_case : Optional[int] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
__snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
__snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
__snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Tuple = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
__snake_case : Any = json.load(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
__snake_case : List[str] = json.load(_UpperCAmelCase )
__snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )]
__snake_case : Dict = added_tokens_extra_ids + [
'an_additional_special_token'
]
__snake_case : List[Any] = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Optional[Any] = tokenizer_class.from_pretrained(
_UpperCAmelCase , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )]
__snake_case : str = tokenizer_class.from_pretrained(
_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def lowercase_ ( self ):
__snake_case : Tuple = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , '�' )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
__snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
__snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]']
__snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
| 679 | 1 |
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=None , _UpperCAmelCase=2 , ):
__snake_case : List[Any] = parent
__snake_case : List[Any] = batch_size
__snake_case : Dict = image_size
__snake_case : int = patch_size
__snake_case : Optional[Any] = num_channels
__snake_case : Union[str, Any] = is_training
__snake_case : int = use_labels
__snake_case : Any = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Dict = hidden_act
__snake_case : List[str] = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : List[str] = type_sequence_label_size
__snake_case : Optional[int] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : List[str] = encoder_stride
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__snake_case : int = (image_size // patch_size) ** 2
__snake_case : Union[str, Any] = num_patches + 1
def lowercase_ ( self ):
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : str = None
if self.use_labels:
__snake_case : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Tuple = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ):
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : int = ViTModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : Union[str, Any] = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : Tuple = ViTForMaskedImageModeling(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : Optional[int] = model(_UpperCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__snake_case : str = 1
__snake_case : List[Any] = ViTForMaskedImageModeling(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__snake_case : List[Any] = model(_UpperCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__snake_case : Optional[int] = self.type_sequence_label_size
__snake_case : Optional[int] = ViTForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : int = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__snake_case : List[Any] = 1
__snake_case : Optional[Any] = ViTForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__snake_case : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__snake_case : int = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase_ ( self ):
__snake_case : List[Any] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = config_and_inputs
__snake_case : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = (
(
ViTModel,
ViTForImageClassification,
ViTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{"feature-extraction": ViTModel, "image-classification": ViTForImageClassification}
if is_torch_available()
else {}
)
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def lowercase_ ( self ):
__snake_case : Union[str, Any] = ViTModelTester(self )
__snake_case : Tuple = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 )
def lowercase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='ViT does not use inputs_embeds' )
def lowercase_ ( self ):
pass
def lowercase_ ( self ):
__snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = model_class(_UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def lowercase_ ( self ):
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : List[str] = model_class(_UpperCAmelCase )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : List[str] = [*signature.parameters.keys()]
__snake_case : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def lowercase_ ( self ):
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Dict = ViTModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def UpperCAmelCase__( ):
__snake_case : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
@cached_property
def lowercase_ ( self ):
return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None
@slow
def lowercase_ ( self ):
__snake_case : List[str] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(_UpperCAmelCase )
__snake_case : int = self.default_image_processor
__snake_case : str = prepare_img()
__snake_case : int = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : Optional[Any] = model(**_UpperCAmelCase )
# verify the logits
__snake_case : Dict = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
__snake_case : Tuple = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
@slow
def lowercase_ ( self ):
# ViT models have an `interpolate_pos_encoding` argument in their forward method,
# allowing to interpolate the pre-trained position embeddings in order to use
# the model on higher resolutions. The DINO model by Facebook AI leverages this
# to visualize self-attention on higher resolution images.
__snake_case : Any = ViTModel.from_pretrained('facebook/dino-vits8' ).to(_UpperCAmelCase )
__snake_case : Optional[Any] = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 )
__snake_case : Optional[int] = prepare_img()
__snake_case : Union[str, Any] = image_processor(images=_UpperCAmelCase , return_tensors='pt' )
__snake_case : Tuple = inputs.pixel_values.to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : str = model(_UpperCAmelCase , interpolate_pos_encoding=_UpperCAmelCase )
# verify the logits
__snake_case : Optional[Any] = torch.Size((1, 3_601, 384) )
self.assertEqual(outputs.last_hidden_state.shape , _UpperCAmelCase )
__snake_case : Union[str, Any] = torch.tensor(
[[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def lowercase_ ( self ):
__snake_case : Any = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' )
__snake_case : List[str] = self.default_image_processor
__snake_case : int = prepare_img()
__snake_case : Optional[Any] = image_processor(images=_UpperCAmelCase , return_tensors='pt' )
__snake_case : int = inputs.pixel_values.to(_UpperCAmelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
__snake_case : Union[str, Any] = model(_UpperCAmelCase )
| 679 | from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = None
# Automatically constructed
__UpperCAmelCase = "dict"
__UpperCAmelCase = None
__UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase)
def __call__( self ):
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def lowercase_ ( self ):
from .features import Value
return {k: Value('string' ) for k in sorted(self.languages )}
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
# Automatically constructed
__UpperCAmelCase = "dict"
__UpperCAmelCase = None
__UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase)
def lowercase_ ( self ):
__snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None
__snake_case : Optional[Any] = len(self.languages ) if self.languages else None
def __call__( self ):
return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} )
def lowercase_ ( self , _UpperCAmelCase ):
__snake_case : Optional[int] = set(self.languages )
if self.languages and set(_UpperCAmelCase ) - lang_set:
raise ValueError(
F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__snake_case : Any = []
for lang, text in translation_dict.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def lowercase_ ( self ):
from .features import Sequence, Value
return {
"language": Sequence(Value('string' ) ),
"translation": Sequence(Value('string' ) ),
}
| 679 | 1 |
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
__magic_name__ = {
'''vocab_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'''
},
'''merges_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'''
},
'''tokenizer_config_file''': {
'''facebook/blenderbot_small-90M''': (
'''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'''
)
},
}
__magic_name__ = {
'''facebook/blenderbot_small-90M''': 512,
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = BlenderbotSmallTokenizer
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ):
super().__init__(
ByteLevelBPETokenizer(
vocab=_UpperCAmelCase , merges=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , ) , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , **_UpperCAmelCase , )
__snake_case : List[Any] = add_prefix_space
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ):
__snake_case : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
__snake_case : Union[str, Any] = [self.sep_token_id]
__snake_case : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 679 | from __future__ import annotations
__magic_name__ = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ):
__snake_case : Optional[int] = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) )
] # the reference grid
__snake_case : List[str] = 1
__snake_case : str = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) )
] # the action grid
__snake_case : Dict = init[0]
__snake_case : List[str] = init[1]
__snake_case : Optional[Any] = 0
__snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell
__snake_case : Any = [[f, g, x, y]]
__snake_case : List[str] = False # flag that is set when search is complete
__snake_case : str = False # flag set if we can't find expand
while not found and not resign:
if len(__UpperCAmelCase ) == 0:
raise ValueError('Algorithm is unable to find solution' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
__snake_case : List[Any] = cell.pop()
__snake_case : Optional[int] = next_cell[2]
__snake_case : int = next_cell[3]
__snake_case : Optional[Any] = next_cell[1]
if x == goal[0] and y == goal[1]:
__snake_case : Union[str, Any] = True
else:
for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions
__snake_case : Tuple = x + DIRECTIONS[i][0]
__snake_case : Tuple = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
__snake_case : List[str] = g + cost
__snake_case : Optional[Any] = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
__snake_case : Dict = 1
__snake_case : Any = i
__snake_case : Tuple = []
__snake_case : Dict = goal[0]
__snake_case : Optional[int] = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
__snake_case : Tuple = x - DIRECTIONS[action[x][y]][0]
__snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1]
__snake_case : Tuple = xa
__snake_case : List[str] = ya
invpath.append([x, y] )
__snake_case : Dict = []
for i in range(len(__UpperCAmelCase ) ):
path.append(invpath[len(__UpperCAmelCase ) - 1 - i] )
return path, action
if __name__ == "__main__":
__magic_name__ = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
__magic_name__ = [0, 0]
# all coordinates are given in format [y,x]
__magic_name__ = [len(grid) - 1, len(grid[0]) - 1]
__magic_name__ = 1
# the cost map which pushes the path closer to the goal
__magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
__magic_name__ = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
__magic_name__ = 99
__magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic)
print('''ACTION MAP''')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 679 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.